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Abstract Anhedonia has long been recognized as a central feature of major
depression, yet its neurobiological underpinnings remain poorly understood. While
clinical definitions of anhedonia have historically emphasized reductions in plea-
sure and positive emotionality, there has been growing evidence that motivation
may be substantially impaired as well. Here, we review recent evidence suggesting
that motivational deficits may reflect an important dimension of symptomatology
that is discrete from traditional definitions of anhedonia in terms of both behavior
and pathophysiology. In summarizing this work, we highlight two candidate neu-
robiological mechanisms—elevated inflammation and reduced synaptic plasticity—
that may underlie observed reductions in motivation and reinforcement learning in
depression.
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1 Introduction

The term anhedonia—introduced to the clinical literature over 100 years ago—
describes a debilitating psychological state that reflects an almost complete lack of
enjoyment and positive emotionality. Activities such as meals, work, and social
interaction are left devoid of the normal pleasures associated with appetite, moti-
vation, or connection. Though anhedonia was originally intended to describe a state
of severe despair and lack of pleasure (Ribot 1896), it has been used by clinicians
and clinical researchers as a “catch-all” term related to patient impairments across a
range of components that underlie approach behavior, including motivation,
enjoyment, optimism, and positive mood states. As discussed in more detail below,
this “big tent” definition for anhedonia can raise challenges when attempting to
study its pathophysiology. Consequently, the current chapter uses the term anhe-
donia to denote a symptom domain that has a variety of possible subcomponents
rather than a single construct and focuses primarily on what is known about
pathomechanisms for deficits related to motivation and impaired reinforcement
learning as compared to a pure loss of pleasure.

This stance is consistent with a number of recent reviews that have called for a
critical reexamination of the anhedonia construct [(Foussias and Remington 2008;
Barch and Dowd 2010; Treadway and Zald 2011; Strauss and Gold 2012) also see
chapters in this volume by Barch et al., Reddy et al., Waltz and Gold]. A central
question raised by this work has been whether anhedonia describes a primary deficit
in the capacity to experience positive emotions, or does it include deficiencies in a
number of reward-related domains? While there is no debate that depressive states
are associated with reduced motivation for and failure to anticipate rewarding
experiences, the former hypothesis assumes that these are more or less normative
responses to reduced hedonic capacity. In contrast, the alternative hypothesis is that,
at least for some depressed individuals, the pathophysiology of the disorder may
diminish motivation directly. The answer to this question has substantial implica-
tions for the theoretical conceptualization of anhedonia and related constructs, for
the assessment of psychopathology involving these symptoms, for understanding
the neural substrates of psychiatric symptoms, and for the treatment or reward
processing abnormalities.

As currently defined by the DSM-5, anhedonia is one of two symptoms required
for diagnosis of a depressive episode. A patient is considered to meet the anhedonia
criterion by reporting either the loss of pleasure in previously enjoyable activities or
a loss of interest/motivation in pursuing them. If pleasure and interest are reflections
of a singular process, then this reduction to a single symptom is not a problem.
However, if reductions in pleasure and interest reflect different pathophysiologies,
then underlying neurobiological mechanisms may differ across anhedonic patients,
thereby eluding their detection in research studies that treat both manifestations of
anhedonia as being equivalent (Barch and Dowd 2010; Treadway and Zald 2011).
Indeed, most traditional measures of psychopathology and dimensional assessments
of anhedonia fail to discriminate between these various domains of reward
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processing. While such measures have had a useful place in the context of clinical
assessment and care, they may mask important behavioral and biological distinc-
tions that are critical toward understanding pathophysiology. It has long been
recognized that reinforcement involves multiple subprocesses, such as anticipation,
motivation, prediction, subjective pleasure, and satiety. It has only been more
recently, however, that investigators have been able to clearly show that these
subcomponents are neurobiologically dissociable (see Robinson et al., in this vol-
ume). That is, manipulations of distinct circuits and neurochemicals can produce
isolated effects on a single dimension of reward-related behavior, such as an abo-
lition of motivation without any change in hedonic responsiveness. This finding
suggests that a reduction in reward-seeking behavior may result from impairments
in one or many subcomponent processes, which in turn implies that they may have
shared or unshared neurobiological origins across different individuals. Despite this
new understanding of the biological divisions involved in reward and reinforcement
in the preclinical literature, current clinical methods have largely continued to
conceptualize anhedonic symptoms along a unitary dimension of pleasure and
positive emotions (Gold et al. 2008; Treadway and Zald 2011).

It is worth highlighting that this debate has occurred against a backdrop of
growing interest in the clinical significance of anhedonia. Following the publication
of DSM-3, which prominently featured anhedonia in conditions of major depressive
disorder (MDD) and schizophrenia (Klein 1974; Meehl 1975), empirical research
devoted to the understanding and treatment of this symptom domain has grown
rapidly. Further augmenting the focus on anhedonic symptoms has been the
observation of comparatively poorer treatment outcomes for patients with an
anhedonic presentation (Shelton and Tomarken 2001), as well as a steep rise in
preclinical discoveries regarding the molecular and system-level mechanisms
underlying reward processing generally [for reviews, see Salamone et al. 2007;
Berridge and Kringelbach 2008; Rushworth et al. 2011 as well as chapters in this
volume by Corbit and Balleine, Robinson et al., Roesch et al., and Salamone et al.].
This latter trend is of particular importance as the field of psychiatry has increas-
ingly turned toward translational neuroscience as a means of understanding the
etiopathophysiology of mental disorders (Insel et al. 2010; Insel and Cuthbert
2015).

Despite this heightened focus, many fundamental questions remain regarding the
nature of anhedonic symptoms, their etiology, phenomenology, biological under-
pinnings, and specificity to psychiatric illness. In this chapter, we briefly review the
known neural circuitry evidence supporting motivated behavior, highlight recent
behavioral evidence suggesting that impairments in these processes are associated
with depressive symptoms, and discuss candidate pathomechanisms that may
underlie the expression and etiology of these deficits. Importantly, we believe that
this work can help begin to isolate subtypes of depressive disorders that may be
defined by distinct pathophysiologies rather than symptoms, which has long been a
goal of psychiatric medicine.
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2 Motivation, Reinforcement, and Dopamine

Over the past two decades, animal models have found robust evidence linking
mesolimbic dopamine circuitry to motivated behavior. The mesolimbic DA system
encompasses a specific subpopulation of DA neurons that innervate the ventral
striatum (VS), an integrative hub involved in translating value-related information
into motivated action (Haber and Knutson 2010; Floresco 2015). Evidence for the
role of mesolimbic DA in motivation was first provided through the use of
effort-based decision-making tasks in rodents (see Salamone et al., this volume). In
these paradigms, animals must choose whether to exert physical effort in exchange
for greater or more palatable food rewards (High Effort) or to consume freely
available, but less desirable food rewards (Low Effort). Across different paradigms,
healthy rats on a food-restricted diet typically show a strong preference for the
High-Effort option, while attenuation or blockade of DA—especially in the VS—
results in a behavioral shift toward Low-Effort options (Cousins and Salamone 1994;
Salamone et al. 2007). Importantly, DA blockade does not reduce overall con-
sumption, suggesting that these manipulations do not impair primary motivation for
food, but rather selectively ablate willingness to work for larger or more preferred
rewards. Additionally, potentiation of DA through drugs such as d-amphetamine
produces the opposite effects, resulting in an increased willingness to work for
preferred rewards (Bardgett et al. 2009). In contrast to this strong evidence for DA in
motivation, attenuation or even complete absence of DA appears to have little effect
on measures of hedonic response, including sucrose preference and hedonic facial
reactions (for a review, see Berridge and Kringelbach 2008).

In humans, similar results have been observed using effort-based
decision-making tasks in which participants choose how much (physical or men-
tal) effort to invest in order to obtain a reward (typically money). Previously, our
laboratory developed the effort expenditure for reward task (EEfRT, pronounced
“effort”), which has been used to examine neural substrates of effort mobilization in
humans. During this task, participants perform a series of trials in which they are
asked to choose between completing a “High Effort” task and completing a “Low
Effort” task in exchange for monetary compensation, where the required effort is in
the form of speeded button presses (see Fig. 1). Other groups have developed
similar tasks for physical effort using handgrip paradigms (Pessiglione et al. 2007;
Hartmann et al. 2013) or cognitive effort in the form of task switching (McGuire
and Botvinick 2010), attentional control (Croxson et al. 2009) or working memory
(Westbrook et al. 2013).

Using these tasks, human studies have begun to map out the role of mesolimbic
DA circuitry in normal and abnormal reward motivation. Mirroring the effects of
DA potentiation in rats, one study found that administration of the DA agonist
d-amphetamine produced a dose-dependent increase in the willingness to work for
rewards as assessed by the EEfRT (Wardle et al. 2011) (see Fig. 2a). Similar effects
of DA enhancement using the DA precursor L-Dopa have been observed on
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Fig. 1 Schematic diagram of a single trial of the effort expenditure for reward task (EEfRT)
(Treadway et al. 2009). a Trial begins with a 1-s fixation cue, followed by b a 5-s choice period in
which subjects are presented with information regarding the reward magnitude of the hard task for
that trial, and the probability of receiving a reward. After making a choice, c a 1-s “ready” screen is
displayed, after which d subjects make rapid button presses to complete the chosen task for 7 s
(easy task) or 21 s (hard task). e Subjects receive feedback on whether they have completed the
task. f Subjects receive reward feedback as to whether they received any money for that trial

Fig. 2 Summary of recent EEfRT studies in humans (adapted from Treadway and Zald (2013)).
a Administration of amphetamine produces a dose-dependent increase in willingness to expend
greater effort for larger rewards (Wardle et al. 2011). b Proportion of High-Effort choices during
low-probability trials shows positive associations with amphetamine-induced change in D2/D3
binding potential in striatum and vmPFC (Treadway et al. 2012). c Proportion of High-Effort
choices is inversely associated with amphetamine-induced change in D2/D3 binding potential in
bilateral insula. d Depressed patients choose fewer High-Effort options than matched controls
(Treadway et al. 2012)
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measures of vigorous effortful responding (Beierholm et al. 2013) as well reward
anticipation (Sharot et al. 2009).

While these studies have suggested that direct manipulation of DAergic systems
may alter motivated behavior in humans, they do not address the questions of
whether endogenous variability in DA function may serve as a substrate for indi-
vidual differences. This latter issue is particularly important if DA dysfunction is to
serve as a pathomechanism for depressive symptoms. To investigate this question, a
follow-up study from our group used positron emission tomography (PET) imaging
to test associations between amphetamine-induced DA release (a probe of DA
system reactivity) and willingness to work for rewards on during the EEfRT
(Treadway 2012). Here, we found that the magnitude of DA release in dorsomedial
and ventral aspects of the striatum positively predicted the proportion of
High-Effort choices subjects made during low-probability trials (see Fig. 2b).
Localization to this region is consistent with preclinical findings (Cousins and
Salamone 1994; Salamone et al. 2007) as well as human functional neuroimaging
studies (Croxson et al. 2009; Kurniawan et al. 2010; Schmidt et al. 2012, also see
O’Doherty, this volume). Intriguingly, our study also found a negative relationship
between percentage of High-Effort choices and DA release in the insula (see
Fig. 2c). While insula DA function has not traditionally been a focus for rodent
models of effort-based decision-making, recent work suggests that insula DA
receptor mRNA expression is predictive of effort-related behaviors (Simon et al.
2013). Moreover, other human imaging studies have observed insula activation
when participants chose not to expend effort (Prevost et al. 2010). Although further
investigation is necessary, these data suggest that the insula and striatum may play
somewhat antagonistic roles in determining whether an individual is willing to
overcome effort costs.

In addition to the role of DA in motivation, DA signaling in the striatum–

especially phasic signaling–has been heavily linked to reinforcement learning.
Consistent evidence from DA cell recordings (Schultz 2007) and fast-scan cyclic
voltammetry of DA projection targets in the striatum (Hart et al. 2014) support the
hypothesis that phasic DA signaling in the striatum reflects the difference between
expected rewards and received rewards, often referred to as a “prediction error”
(Sutton and Barto 1998). In humans, corroborative results have been obtained using
high-resolution fMRI of the midbrain (D’Ardenne et al. 2008), as well as phar-
macologic manipulations (Pessiglione et al. 2006).

Taken together, a solid body of evidence has implicated DA signaling in the
striatum in both reward motivation (effort expenditure) and reinforcement learning.
Using these data as a foundation, a number of studies in depression over the last ten
years have investigated whether this disorder is associated with alterations in these
behaviors, possibly implicating a corticostriatal DAergic mechanism.
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3 Motivation and Reinforcement in Depression—
Implications for DA Dysfunction

In a relatively recent literature, studies of motivation and reinforcement in
depression have been largely consistent in detecting differences as compared to
healthy controls (Whitton et al. 2015). In several studies using the effort expendi-
ture for reward task (EEfRT), patients with MDD expended less effort for rewards
when compared with controls (Treadway et al. 2012; Yang et al. 2014) (see
Fig. 2d). Further evidence suggests that the longer the depressive episode is, the
more impaired this decision-making is (Treadway et al. 2012a), and when in
remission, this deficit normalizes (Yang et al. 2014). However, a similarly designed
study did not detect a main effect of depression on willingness to expend effort for
rewards (Sherdell et al. 2011). It is worth noting, however, that this study utilized
an EEfRT requiring significantly fewer button presses for its High-Effort condition
(an average of 42 mouse clicks as compared to the EEfRT, which requires 100
button presses in 21 s with the non-dominant pinky finger); these varying levels of
required effort may have influenced the sensitivity to these two tasks for detecting
group differences. For reinforcement learning, Pizzagalli and colleagues have used
a signal detection task that has consistently demonstrated reduced implicit rein-
forcement learning in depression (Pizzagalli et al. 2008; Vrieze et al. 2013). Like
the EEfRT, performance on this task has similarly been linked to DA function in
humans (Vrieze et al. 2011). Supporting these behavioral findings, functional
neuroimaging studies have found that depression is associated with reduced pre-
diction error signaling in the striatum during reinforcement learning (Kumar et al.
2008) as well as striatal responses to reward feedback (Pizzagalli et al. 2009).

In sum, clinical, behavioral, and a handful of imaging studies support the
hypothesis that motivation and reinforcement learning are impaired in MDD and
that DA function may serve as a primary substrate. Several factors complicate this
hypothesis, however, as most studies focused on direct imaging of DA have pro-
duced ambiguous results (Treadway and Pizzagalli 2014). First, PET studies of DA
receptor distribution—a common tool for measuring pathological alteration of DA
systems—have found some mixed evidence for DA involvement in depression. An
early study using single-photon emission tomography (SPECT) found that MDD
patients exhibited reduced DA synthesis capacity as measured by L-Dopa uptake
(Agren and Reibring 1994). In subsequent PET and SPECT studies of the DA
transporter (DAT), MDD has been associated with both lower (Meyer et al. 2001)
and higher (Laasonen-Balk et al. 1999; Amsterdam and Newberg 2007; Yang et al.
2008) binding potential in the striatum. These data should be taken with the caveat
that all studies that observed an increase in striatal DAT binding in MDD used
SPECT, which has much lower sensitivity than PET (Rahmim and Zaidi 2008), and
postmortem studies also suggest a decrease, rather than increase, in DAT avail-
ability in depression (Klimek et al. 2002).
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PET studies of DA receptor availability have yielded similarly mixed results.
PET measures of striatal D2/D3 receptor binding potential have observed increases
in several depressed samples (D’Haenen and Bossuyt 1994; Shah et al. 1997), a
finding that conflicts with predictions based on some preclinical animal data
(Gershon et al. 2007). It should be noted, however, that striatal D2/D3 PET ligands
are unable to differentiate between pre- versus postsynaptic receptors. Given that
pre- and postsynaptic D2/D3 receptors are known to exert distinct—even opposi-
tional—effects on postsynaptic DA signaling, the inability to resolve this difference
in clinical studies may limit interpretability. Other studies using medication-naïve
or medication-free patients have failed to find group differences in striatal receptor
binding (Parsey et al. 2001; Hirvonen et al. 2008). Interestingly, one additional
small study showed variable changes in D2-like binding following treatment with
SSRIs such that patients who showed increased binding exhibiting greater clinical
improvement than those who did not (Klimke et al. 1999). With respect to the D1
receptor, fewer studies have examined this system given the lack of available
ligands that reliably distinguish between D1 and serotonin 5-HT2A receptors,
especially in extrastriatal areas where the receptor density of D1 and 5-HT2A is
roughly equivalent. One study reported reduced D1 availability in left middle
caudate (Cannon et al. 2009), but this finding has not yet been replicated. Taken
together, while behavioral and clinical evidence suggests that depression affects
motivational and reinforcement behaviors that are known to depend heavily on
DAergic function, the evidence for a primary DAergic deficit is undeniably
equivocal, particularly when compared to other DA-linked neuropsychiatric dis-
orders, such as schizophrenia, Parkinson’s disease, or substance use.

One explanation for these discrepancies is the possibility of distinct subtypes of
depression, only some of which may involve alterations to DA signaling.
Supporting this is the observation of slightly more consistent effects when MDD
samples are selected on the basis of a particular symptom profile. For example, one
study that restricted its MDD patient sample to individuals with symptoms of
affective flattening as assessed by the Snaith–Hamilton Pleasure Scale reported
decreased DAT binding (Sarchiapone et al. 2006). In addition, decreases in [18F]
Dopa binding—a marker of DA synthesis capacity—have been observed in the
striatum of depressed individuals with flat affect or psychomotor slowing as mea-
sured by the Depression Retardation Scale (Martinot et al. 2001; Bragulat et al.
2007). As with behavioral studies, these data suggest that some—but not all—
patients with depression may exhibit abnormalities in DA signaling, which may
manifest as anhedonic symptoms. If true, however, this hypothesis begs the
question as to what possible mechanisms may account for this selective effect.
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4 Candidate Pathophysiological Mechanisms
of Motivational and Reinforcement Deficits
in Depression

In this next section, we present two candidate mechanisms that may be partially
responsible for motivational and reinforcement learning impairments observed in
depression.

4.1 A Role for Inflammation in Motivational Deficits
in Depression

One candidate mechanism for motivation-related impairments in MDD is inflam-
mation. An extensive literature has now shown that compared to controls, a subset
of depressed patients exhibit elevated inflammatory proteins and gene expression in
both peripheral tissue and cerebrospinal fluid (CSF), as well as increased peripheral
blood acute-phase proteins, chemokines, and adhesion molecules (Miller et al.
2009a, b). Meta-analyses of this literature have identified that the most reliable
inflammatory biomarkers in depression are increases in peripheral blood inflam-
matory cytokine tumor necrosis factor (TNF) and interleukin (IL)-6 as well as
increases in the acute-phase protein C-reactive protein (CRP) (Howren et al. 2009;
Miller et al. 2009a, b; Dowlati et al. 2010). Finally, non-depressed individuals who
develop a primary immune disorder show substantially higher rates of anhedonic
symptoms on commonly used symptom inventories than the general population
(Pincus et al. 1996; Dickens and Creed 2001; Blume et al. 2011).

While inflammation may affect a variety of brain areas, significant data highlight
the striatum as a primary site of inflammation-induced CNS dysfunction (Capuron
et al. 2007; Miller et al. 2009a, b). Inflammatory cytokines are known to disrupt DA
neurotransmission including DA synthesis and release in rodents and non-human
primates (Felger et al. 2007; Qin et al. 2007; Miller et al. 2009a, b; Dantzer et al.
2012; Felger et al. 2013), leading to impairments in effort expenditure and
anticipation.

Of note, these reductions in motivation are similar to those observed by direct
DA antagonism in the striatum as described above and suggest that cytokine
interference with DA synthesis capacity may be partially responsible for these
effects. Moreover, the effects of inflammation on DA signaling may worsen over
time; DA plays an important anti-inflammatory role in the brain (Sarkar et al. 2010;
Yan et al. 2015), and decreased DA availability may further exacerbate inflam-
matory effects via a positive feedback loop, resulting in a chronically inflamed,
hypo-dopaminergic state.

As a consequence of inflammation-mediated DA interference, corticostriatal
networks may become dysfunctional. Supporting this notion, human fMRI studies
have identified associations between peripheral cytokine levels and fMRI measures
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of neural processing in the DA-rich striatum and regions of medial prefrontal cortex
(mPFC) in healthy volunteers exposed to typhoid vaccination (Harrison et al. 2009).
Additionally, administration of inflammatory cytokines [interferon (IFN) alpha] or
cytokine inducers (endotoxin) is associated with blunted ventral striatal responses to
reward anticipation (Eisenberger et al. 2010; Capuron et al. 2012), as well as
decreased DA release within the striatum as measured by [18F] Dopa binding in
humans and in vivo microdialysis in non-human primates (Capuron et al. 2012;
Felger et al. 2013). These data clearly demonstrate that increasing inflammation can
reduce DA availability and impair corticostriatal circuit function.

Further supporting an inflammation–dopamine subtype of depression, growing
evidence suggests that inflammation may specifically induce symptoms related to
motivation. In animal models of effort-based decision-making, administration of
cytokines or cytokine inducers reduces willingness to work for rewards (Nunes et al.
2013; Vichaya et al. 2014), an effect which is reversible through pharmacologic
stimulation of striatal pathways (Nunes et al. 2013). Motivational deficits have also
been observed in rodents and non-human primates following IFN-α manipulations
(Couch et al. 2013; Felger et al. 2007; Thorne et al. 2008; Felger and Miller 2014).
Finally, in humans, IFN-α and cytokine inducers rapidly and robustly produce
motivational complaints (apathy, lassitude) in the majority of recipients, while
cognitive and affective symptoms develop later, and are often more pronounced in
individuals with a predisposing diathesis, such as elevated trait neuroticism
(Capuron et al. 2004; Capuron and Miller 2011).

Blockade of inflammation selectively improves motivation symptoms only in
patients with high baseline inflammation. Recently, a randomized, placebo-
controlled clinical study was conducted to determine the effects of inflammation
blockade on depressive symptoms (Raison et al. 2013). Blockade was achieved
using infliximab, a monoclonal antibody to TNF with minimal “off-target” effects
compared to other anti-inflammatory compounds. Following a single infusion of
this highly selective TNF antagonist, a robust decrease in the plasma inflammatory
biomarker, high-sensitivity C-reactive protein (hs-CRP), was observed and a sub-
sequent improvement in reported symptoms of motivation and engagement in
activities. Notably, the magnitude of change in this symptom domain following
infliximab was double that of any other symptoms, and this effect was only present
in patients with high inflammation at baseline (CRP > 5 mg/L).

In sum, there is strong evidence that inflammation is elevated in a subset of
depressed patients and that increased inflammatory signaling may deplete DA
availability, reduce DA-moderated regulation of inflammation, and produce moti-
vational impairments in animals that mirror depressed phenotypes. Moreover,
stimulation of cytokines results in motivational symptoms, and these symptoms are
selectively ameliorated by anti-inflammatory treatments in patients with elevated
inflammatory profiles. These data suggest that inflammation-mediated decreases in
DA synthesis capacity may underlie reduced motivation in a subset of depressed
patients.
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5 Synaptic Plasticity Alterations May Impact Motivation
in Patients with Depression

Clearly, however, many patients meeting criteria for depression and apathy do not
express gross alterations in immune signaling (Raison and Miller 2011).
Consequently, a second candidate mechanism underlying motivational deficits in
depression is impaired synaptic plasticity. Growing evidence from preclinical and
computational modeling work suggests that dopamine may contribute to rein-
forcement in large part through altering synaptic plasticity within corticostriatal
circuits; that is, DA signaling—particularly phasic DA bursts or dips—helps
strengthen corticostriatal synaptic connections that link reward-related cues to
rewarding outcomes (Reynolds et al. 2001; Frank et al. 2004; Wieland et al. 2015).
Alterations of postsynaptic plasticity mechanisms may therefore manifest as
blunting of DA-related reinforcement signals, thereby contributing to dysfunction
in DAergic circuitry without reflecting a primary deficit in DA-releasing neurons
per se.

A variety of data support the hypothesis that neuroplasticity is affected in MDD.
Early evidence comes from structural neuroimaging studies, demonstrating dimin-
ished gray matter volume in the hippocampus (Sheline et al. 1999; MacQueen et al.
2003)—a key region involved in neurogenesis—and these findings have been
confirmed and replicated in meta-analyses and subsequent large-sample studies
(Kempton et al. 2011; Schmaal et al. 2015). Further evidence comes from post-
mortem studies, where decreases in cellular density (Cotter et al. 2001; Chana et al.
2003; Monkul et al. 2006) and reduced expression of proteins involved in neuro-
genesis and synaptic plasticity (Kempermann and Kronenberg 2003; Dwivedi et al.
2005; Pittenger and Duman 2007) have been observed. More recently, serum
measures of brain-derived neurotrophic factor (BDNF) have been found to be sig-
nificantly decreased in patients during a depressive episode (Molendijk et al. 2014;
Bus et al. 2015). This latter finding is of particular interest, as BDNF is a
well-characterized neurotrophin that is known to stimulate growth of new synapses
and dendrites throughout the life span via stimulation of tropomyosin kinase B
(Trk-B) receptors (Yoshii and Constantine-Paton 2010; Autry and Monteggia 2012).

Finally, the discovery of ketamine as an efficacious antidepressant with
remarkably rapid onset (Zarate et al. 2006; Diazgranados et al. 2010; Ibrahim et al.
2011; Zarate et al. 2012; Murrough et al. 2013a, b) has suggested possible
plasticity-dependent mechanisms. Administration of ketamine at therapeutic doses
is believed to stimulate synaptic plasticity (Duman and Aghajanian 2012,
Monteggia and Zarate 2015). Evidence for this hypothesis comes from a recent
study showing that ketamine may stimulate BDNF expression via inhibition of a
eukaryotic elongation factor 2 signaling pathway that ultimately results in reduced
suppression of BDNF translation (Autry et al. 2011). Moreover, this study found
that administration of ketamine failed to produce antidepressant effects in BDNF
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knockout animals, suggesting that enhanced BDNF translation may be a necessary
component for ketamine’s antidepressant effects.

In sum, two plausible biological pathways are proposed that may result in dis-
ruption of DAergic corticostriatal circuitry and subsequent reductions in motivation
and reinforcement learning. Both of these pathways have found significant support
in preclinical and clinical studies of depression, though we note that only one
involves a direct effect on DA itself, which may partially account for some of the
heterogeneity observed in DA imaging studies in depression. It is worth noting that
some studies have suggested that these pathways may interact, as inflammation may
directly impair peripheral BDNF levels in humans (Lotrich et al. 2013), as well as
disrupt neurogenesis in rodents (Monje et al. 2003). Conversely, DA is believed to
play a role in synaptic plasticity via promoting long-term potentiation or depression
within striatal circuits, as described above (Reynolds et al. 2001; Wieland et al.
2015). Therefore, it may be the case that inflammation and impaired plasticity
represent distinct points of vulnerability within a common circuit and may act
independently or in concert to produce deficits in motivation and reinforcement
learning associated with depression.

6 Conclusion

Anhedonia is a complex symptom domain that may include multiple facets asso-
ciated with approach behavior. Over the years, there have been various efforts to
introduce new terminology to distinguish the narrow definition of anhedonia as “loss
of pleasure” from the much broader connotation used in the clinical literature (Klein
1987; Salamone et al. 1994; Treadway and Zald 2011), but a new consensus has yet
to emerge. This can hamper translational efforts, as studies performed at different
levels may use the same terms to describe distinct processes. As described in this
chapter, the various components of anhedonia are likely instantiated by distinct
neural circuits, and isolating these factors biologically may require parsing this
symptom domain more finely than has been achieved by many clinical measures.

In this review, we have focused primarily on possible mechanisms related to
deficits in motivation and reinforcement learning, as these are two possible com-
ponents of anhedonia that have received empirical support in recent years. This
should not be taken to imply, however, that other aspects of anhedonic symptoms,
such as loss of pleasure, are unimportant or less prevalent. Indeed, these questions
have yet to be fully addressed in part because the relational structure of different
components within the anhedonic symptom domain remains unknown. Rather, a
possible advantage of the focus on motivation and reinforcement learning is that
there is a rich preclinical literature upon which to draw. As summarized above, this
approach has already begun to bear fruit, as studies linking elevated neuroinflam-
mation, decreased dopamine signaling, and reduced motivation have begun to point
to the targeted administration of anti-inflammatory treatments for individuals with
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depression and high inflammation. In the not-too-distant future, one can even
imagine that screening for high inflammation may become a routine part of
selecting an antidepressant treatment. While more needs to be done, progress has
been made in our understanding of the pathophysiology of motivational symptoms
in depression.
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