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Abstract Proinflammatory cytokines perturb brain development and neurotrans-
mission and are implicated in various psychiatric diseases, such as schizophrenia
and depression. These cytokines often induce the production of reactive oxygen
species (ROS) and regulate not only cell survival and proliferation but also
inflammatory process and neurotransmission. Under physiological conditions, ROS
are moderately produced in mitochondria but are rapidly scavenged by reducing
agents in cells. However, brain injury, ischemia, infection, or seizure-like neural
activities induce inflammatory cytokines and trigger the production of excessive
amounts of ROS, leading to abnormal brain functions and psychiatric symptoms.
Protein phosphatases, which are involved in the basal silencing of cytokine receptor
activation, are the major targets of ROS. Consistent with this, several ROS scav-
engers, such as polyphenols and unsaturated fatty acids, attenuate both cytokine
signaling and psychiatric abnormalities. In this review, we list the inducers, pro-
ducers, targets, and scavengers of ROS in the brain and discuss the interaction
between ROS and cytokine signaling implicated in schizophrenia and its animal
models. In particular, we present an animal model of schizophrenia established by
perinatal exposure to epidermal growth factor and illustrate the pathological role of
ROS and antipsychotic actions of ROS scavengers, such as emodin and edaravone.
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1 Oxidative Stress Is Implicated in the Pathogenesis
of Schizophrenia

Oxygen radicals are molecules essential for energy production, metabolic pro-
cesses, and germicide in our body; however, they are also toxic to cellular com-
ponents, such as membrane lipids and DNA (Brewer et al. 2015). Therefore, our
tissues and cells contain a large variety of reducing agents (i.e., scavengers) as well
as reactive oxygen species (ROS)-degrading enzymes (Chan 2001; Table 1). This is
especially true in the brain, which produces high energy accompanying ROS
generation and is enriched with these antioxidants to protect the tissue from
oxidative stress. Following brain injury, ischemia, infection, or seizures, NADPH
oxidase (NOX) is activated in microglia and GABAergic neurons and produces
large amounts of ROS in the brain (Kaur et al. 2015). When ROS is not scavenged
immediately, they act not only on cell components (membrane lipids and DNA) but
also on the molecules that carry ROS (redox) sensors, such as the protein tyrosine
phosphatase PTP1B, nuclear factor kappa B (NF-κB), potassium channels,
hypoxia-inducible factors, or N-methyl-D-aspartic acid (NMDA) receptor. For
example, ROS acts on free cysteine residues of the NMDA receptor, altering its
channel conformation to decrease NMDA-mediated cation movements, presumably
attenuating neuronal cell death (Sanchez et al. 2000; Dukoff et al. 2014). This
anti-ROS process functions as a self-defense system in the brain; however, when
ROS generation is prolonged, the reduction in NMDA receptor channel activity can
perturb normal neurotransmission and brain function. Chronic suppression of
NMDA receptor activity is known to result in abnormal cognition and behaviors
relevant to schizophrenia (Mohn et al. 1999; Takahashi et al. 2006).

Several reports on ROS generation show that contents of reducing agents are
decreased and oxidizing agents are increased in patients and animal models with
schizophrenia (Yao and Keshavan 2011; Bokkon and Antal 2011). For example,
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the products of reactions between ROS and membrane lipids (i.e., peroxidized
lipids) are increased in patients in the acute phase of schizophrenia (Mahadik and
Scheffer 1996; Ben Othmen et al. 2008). ROS also reacts with the guanosine
residue of DNA in nuclei, converting it to 8-hydroxy-2-deoxyguanosine and
leading to DNA fragmentation. The brain contents of 8-hydroxy-2-deoxyguanosine
and fragmented DNA are elevated in patients with schizophrenia (Nishioka and
Arnold 2004; Buttner et al. 2007). Blood levels of pentosidine, an advanced gly-
cation end product, are also elevated as a result of sugar oxidation and are higher in
patients with schizophrenia (Arai et al. 2010, 2014).

Conversely, the total amount of ROS scavengers (TAR, the total antioxidative
response) is reduced in patients with schizophrenia (Ustundag et al. 2006). Blood
concentrations of vitamins C and E are decreased in patients with schizophrenia
(Suboticanec et al. 1990; McCreadie et al. 1995). In addition to these small
molecules, the levels of enzymes that produce or degrade ROS are also altered. The
activities of superoxide dismutase (SOD) and catalase are downregulated in the
erythrocytes of patients with schizophrenia (Ben Othmen et al. 2008). Glutamate
cysteine ligase is also decreased in patients with schizophrenia (Gysin et al. 2007).
These findings suggest that the magnitude of ROS generation appears to be
upregulated in patients with schizophrenia.

The pathologic interactions between ROS and psychosis have been investigated
in animal models for drug-induced psychosis to monitor ROS generation following
exposure to psychostimulants such as amphetamine, phencyclidine, ketamine, or

Table 1 Oxidative and
antioxidative agents and
enzymes

Reactive oxygen species generators (enzymes)

Cytochromes

NAD(P)H oxidase

Cyclooxygenase

Lipooxygenase

Monoamine oxidase, etc.

Oxidative agents

O2
·−: Superoxide anion

·OH: Hydroxyl radical

H2O2: Hydrogen peroxide

ONOO−: Peroxynitrite, etc.

Antioxidative enzymes

Superoxide dismutase

Catalase, etc.

Antioxidants

Thioredoxin

Glutathione

Vitamins C, A, E

N-acetyl cysteine

Cysteine, etc.
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the NMDA receptor blocker dizocilpine (MK-801). Behrens et al. (2007) showed
that a ketamine-induced abnormality in GABAergic neurotransmission and
behavior involves ROS generation by NOX. Zuo et al. (2007) also observed
increases in hydroxyl radicals in the brain following MK-801 and ketamine chal-
lenges. It is established that psychostimulants upregulate ROS production in the
brain and contribute to psychostimulant-driven behavioral impairments.

However, caution is necessary when relating these findings to schizophrenia.
One problem is the disease specificity of ROS pathology (Cobb and Cole 2015).
The pathologic implications of ROS are not limited to schizophrenia. ROS is also
implicated in Alzheimer’s disease and Parkinson’s disease (Lovell and Markesbery
2007; Nakabeppu et al. 2007). Neural activity itself involves higher energy meta-
bolism and results in higher ROS production, as evident in patients with epilepsy
(Puttachary et al. 2015). Medication for schizophrenia also enhances the production
of ROS; the metabolism of antipsychotic drugs necessitates cytochrome P450
recruitment and also promotes dopamine release and monoamine oxidase activa-
tion, all of which drive ROS generation (Martins et al. 2008; Reinke et al. 2004;
Table 1). In this context, the pathologic and pharmacologic roles of ROS generation
in patients with schizophrenia are controversial and remain to be characterized
further (Naviaux 2012).

2 Pharmacologic Actions of Antioxidants in Patients
with and Animal Models for Schizophrenia

In contrast to arguments supporting the pathologic role of ROS in patients with
schizophrenia, many reports more consistently describe the antipsychotic actions of
reducing agents. A variety of reducing agents and radical scavengers, including ω-3
fatty acids, N-acetyl cysteine, minocycline, and vitamins C and E, have been
administered to patients, and their therapeutic effects evaluated. Based on this
theory, Sivrioglu et al. (2007) supplemented the food of patients with schizophrenia
with ω-3 fatty acids and reported a reduction in antipsychotic side effects and an
improvement in psychotic symptoms. Farokhnia et al. (2013) administered a more
potent antioxidant, N-acetyl cysteine, to patients with schizophrenia and observed
its effectiveness on negative symptoms. In combination with atypical antipsy-
chotics, minocycline was administered to patients in the acute phase, resulting in an
improvement in cognition and negative symptoms (Miyaoka et al. 2007; Levkovitz
et al. 2010).

The antipsychotic effects of reducing agents have also been tested in several
animal models. Both MK-801 and methamphetamine induce hyperlocomotion and
social interaction deficits and cause neurodegeneration in various parts of the brain
(Ozyurt et al. 2007). The administration of vitamin E into MK-801-challenged rats
decreased cell death in the cingulated cortex (Zhang et al. 2006; Willis and Ray
2007), whereas the administration of the radical scavenger edaravone inhibited cell
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death in striatal neurons (Kawasaki et al. 2006). In addition to cell death, the
behavioral deficits induced by phencyclidine are also ameliorated by the scavenger
of a SOD mimetic (Wang et al. 2003). Neonatal hippocampal lesions result in
behavioral impairments at the postpubertal stage and serve as an animal model of
schizophrenia (Lipska et al. 1993). The antipsychotic effects of N-acetyl cysteine
have been verified in this animal model (Cabungcal et al. 2014). Despite discrep-
ancies in the arguments supporting an etiologic or pathologic role of ROS in
schizophrenia, almost all antioxidative agents exhibit beneficial effects on cognitive
abnormalities relevant to schizophrenia, although the cellular and molecular
mechanisms underlying these pharmacologic phenomena remain unclear.

3 Strong Interactions Between ROS and Cytokine
Signaling

ROS signaling is known to link to cytokine production and cytokine receptor
signaling (Landskron et al. 2014). Proinflammatory cytokines and growth factors
activate NOX and produce ROS. Brain neurons and microglia release ROS in
response to cytokines. Conversely, generated ROS stimulate cytokine production
by activating the redox sensor NF-κB (Lian and Zheng 2009) or accelerate cytokine
receptor signaling by inhibiting the redox sensor phosphatase. Notably, ROS alone
induces the phosphorylation and activation of cytokine receptors in the absence of
cytokine ligands such as epidermal growth factor (EGF). In this review, we discuss
the interaction between ROS and EGF signaling most extensively demonstrated in
the field of carcinogenesis (Chiarugi et al. 2003; Goldkorn et al. 2005).

EGF signaling is highly implicated and serves as a drug target in tumor biology,
because this cytokine potently produces ROS, which are known to be DNA
mutagens. An EGF challenge to cancer cells and cultured neurons elevates intra-
cellular ROS concentrations (Bae et al. 1997; Cha et al. 2000). Table 2 shows the
potency of the cytokines that induce ROS production in cultured neocortical

Table 2 Comparison of
cytokine-induced reactive
oxygen species production

DHE oxidation levels (% control)

Control 100 ± 6.3

EGF 132 ± 5.4

Interleukin-1 125 ± 5.8

Interleukin-6 130 ± 6.1

Neuregulin-1 130 ± 8

BDNF 142 ± 8

Ionomycin (positive control) 153 ± 8.7

Cultured cortical neurons were exposed to various cytokines in
the presence of dihydroethidium. Fluorescence intensity (560 nm)
was measured in randomly selected 10 cells (n = 8)
DHE dihydroethidium; EGF epidermal growth factor
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neurons. EGF oxidizes the ROS indicator dihydroethidium and changes the indi-
cator to a fluorescent form. This EGF-triggered increase in ROS levels is blocked
by the co-application of antioxidants (apocynin, Trolox; Fig. 1). These results
indicate that EGF indeed induces ROS production in the brain.

In such inflammatory conditions, the main source of ROS is NOX, which is
highly potentiated by EGF signals (Fan et al. 2005a, b; Chen et al. 2008). De Yulia
et al. (2005) proposed that hydrogen peroxide is produced by the EGF receptor
(EGFR, also known as ErbB1) itself. Conversely, ROS converts the thiol group of a
cysteine residue to sulfuric acid in the core region of the tyrosine phosphatase
PTP1B, inactivating this enzyme (Yip et al. 2010). Compared with many
receptor-type protein tyrosine kinases, the EGFR undergoes a significant amount of
basal autophosphorylation in the absence of its ligand and requires phosphatases for
its silencing in a basal condition. Thus, the ROS-driven inactivation of PTP1B
alone increases phosphorylation of the EGFR, resulting in the activation of EGF
signaling without ligands (Lee et al. 1998; De Wit et al. 2001). Thus, hydrogen
peroxide-oxidized low-density lipoprotein can also phosphorylate EGFR in the
absence of EGF and evoke EGFR signaling (Suc et al. 1998). If acting on peripheral
cells, hydrogen peroxide may promote cell proliferation and induce carcinogenesis.
In this context, the EGFR signaling cascade appears to be one of the most crucial
ROS targets.

Figure 2 summarizes the production of and interaction between EGF and ROS.
The ligand EGF binds to EGFR and activates calcium signaling, in turn activating
the ROS generators NOX, cyclooxygenase, and cytochromes in mitochondria.
The ROS produced acts on phosphatases such as PTP1B and enhances and pro-
longs the EGF signal transduction. The enhanced phosphorylation of EGFR also
hinders its internalization (Ravid et al. 2002). Additionally, ROS acts on the redox
site of the transcription factor NF-κB and accelerates NF-κB-mediated gene
expression, leading to the synthesis of mRNA for EGF and other cytokines.
When ROS reacts with ion channels, neurotransmission in the brain is perturbed
unless ROS are trapped by various scavenger molecules (glutathione, thioredoxin,
SOD, catalase, etc.).

As shown in Table 2, the EGF homologue neuregulin-1 (NRG-1) triggers ROS
production in the brain. In contrast to EGF, NRG-1 binds to the ErbB3 or ErbB4
receptor tyrosine kinases, but NRG-1 signal transduction also involves
ROS-mediated autoregulation. However, compared with EGF, NRG-1-driven ROS
production is more persistent (Goldsmit et al. 2001).

b Fig. 1 The effects of EGF and antioxidants on the levels of ROS in neocortical cultures.
a Cultured cortical neurons (DIV7) were stimulated with or without 20 ng/ml EGF. ROS
production was assessed by mitotracker, which sensed mitochondrial membrane potential. Scale
bar 50 µm. b Cultured cortical neurons were treated with antioxidants (0.5 mM apocynin, 100 µM
Trolox) in the absence or presence of 20 ng/ml EGF. c Cultured cortical neurons were stimulated
with 20 ng/ml EGF, 20 ng/ml neuregulin-1, or 1 µM ketamine. The MitoTracker fluorescence
intensity was measured in 10 cells per well using Image J (National Institutes of Health, Bethesda,
MD, USA; arbitrary units, A.U.). n = 8, *P < 0.05, EGF epidermal growth factor
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4 Establishment of Animal Models of Schizophrenia
by Exposure to EGF and NRG-1

Maternal viral infection and obstetric complication are implicated as environmental
risk factors for schizophrenia (Nawa and Takei 2006; Iwakura and Nawa 2013).
EGF is known to be highly enriched in human amniotic fluids and contributes to
obstetric complication (Varner et al. 1996). EGF derivatives are known to be
encoded in viral genome of poxviruses and might be supplied to human fetus and
neonates via their infection (Tzahar et al. 1998). Genetic linkage studies and neu-
ropathologic investigations also suggest an association between schizophrenia and
EGF and its derivative NRG-1 (Futamura et al. 2002; Anttila et al. 2004; Stefansson
et al. 2004; Groenestege et al. 2007). On the premise of the neurodevelopmental

Fig. 2 Schematic diagram of the interaction between EGF and ROS. EGF and its homologues
(transforming growth factor alpha, amphiregulin, heparin-binding EGF-like growth factor,
betacellulin, epiregulin, neuregulins 1–6) as well as poxvirus virokines (SMDF, VGF, etc.)
directly and indirectly interact with the EGFR (also known as ErbB1) to evoke calcium signaling.
This activates NOX, cyclooxgenase (COX), and mitochondrial cytochrome c, which produce ROS.
In turn, ROS act on and inhibit protein tyrosine phosphatases (SHP2, the protein tyrosine
phosphatase PTP1B, etc.) and promote the phosphorylation and activation of EGFR, leading to the
production of other cytokines and the further activation of NOX, COX, and mitochondrial
cytochromes. EGF epidermal growth factor; EGFR EGF receptor; NOX NADPH oxidase; ROS
reactive oxygen species
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hypothesis for this illness, therefore, we analyzed animal models of schizophrenia
established by perinatal exposure to EGF and its derivatives (Futamura et al. 2003;
Tohmi et al. 2004; Watanabe et al. 2004; Tsuda et al. 2008; Kato et al. 2011).
Treatment of neonatal rats and mice with EGF, NRG-1, and their homologues and
paralogues (i.e., transforming growth factor alpha, epiregulin) all showed the
behavioral deficits relevant to schizophrenia at the postpubertal stage (Fig. 3).
Injected factors penetrate the immature blood–brain barrier and bind to brain
neurons carrying EGFR or ErbB receptors, such as GABAergic and dopaminergic
neurons (Abe et al. 2009; Namba et al. 2009). In addition to dopaminergic neurons,
GABAergic neurons and glial cells also respond to these cytokines, but their
responses gradually diminish after the cessation of cytokine treatment (Nagano
et al. 2007; Abe et al. 2011). The most prominent and persistent influences of
cytokine treatment are those on dopaminergic neurons, which cause the animals to
display cognitive and behavioral impairments (Sotoyama et al. 2011, 2013). These
behavioral impairments include abnormalities in sensorimotor gating (prepulse
inhibition [PPI]), social interaction, exploratory movement, latent inhibition of
learning, and sensitivity to psychostimulants (methamphetamine and/or MK-801),
although the directions and magnitudes of these deficits are significantly altered by
the genetic background of the animal species used (Mizuno et al. 2004; Tohmi et al.
2005). This observation agrees with the current theory that the onset of
schizophrenia involves both genetic and environmental factors.

Prepulse Inhibition
Decreased

Decreased

Decreased
Social Interaction

Fear Learning
Normal

S.C. Latent Learning

Neonates

Methamphetamine

Abnormal Working 
Memory

Hyper-Sensitive

Fig. 3 Behavioral
impairments in the animal
model of schizophrenia
established by perinatal
exposure to EGF. EGF
epidermal growth factor.
Various behavioral
abnormalities emerge at the
post-pubertal stage

Cytokines and Oxidative Stress in Schizophrenia 437



Although many animal models of schizophrenia have been established, our
animal models have the following three characteristic features (Nawa et al. 2014):

• The emergence of behavioral abnormalities occurs not before or during puberty,
but around the postpubertal stage. The EGF-exposure-generated monkey model
of schizophrenia shows striking behavioral deficits from 5 years of age (Sakai
et al. 2014).

• EGF- and NRG-1-exposure-generated models have no apparent deficits in
learning. In the eight-arm radial maze test, context fear-learning paradigm, and
active avoidance test, these models are indistinguishable from controls
(Futamura et al. 2003; Kato et al. 2011).

• Atypical antipsychotics, such as risperidone and clozapine, are effective for the
above behavioral deficits, whereas the pharmacologic action of typical
antipsychotics (i.e., haloperidol) is limited (Futamura et al. 2003, Sotoyama
et al. 2013).

We found similar behavioral abnormalities in transgenic mice in which EGF or
NRG-1 was overexpressed from their transgenes (Kato et al. 2010; Eda et al. 2013).
However, these approaches to cytokine administration obscure their cellular target
(s). The behavioral abnormalities may therefore be ascribed not only to the dys-
function of midbrain dopaminergic neurons but also to that of other peripheral
organs. To limit the target organ of the cytokines, we conducted intracerebroven-
tricular administration of EGF into adult rats and verified the reproducibility of the
behavioral impairments achieved by perinatal pre-exposure to EGF (Mizuno et al.
2007). This result suggests that peripherally administered EGF targets brain neu-
rons in the neonatal EGF model for schizophrenia.

Subsequent analyses of these models revealed that NRG-1 mainly acts on
dopaminergic neurons in the ventral tegmental area of the midbrain, whereas EGF
interacts with those in the substantia nigra to promote dopamine synthesis and
terminal arborization (Abe et al. 2009; Iwakura et al. 2011a, b). Neonatal mice
treated with NRG-1 exhibit a hyperdopaminergic state in the prelimbic cortex (i.e.,
the medial prefrontal cortex) as adults (Kato et al. 2011). Similarly, neonatal rats
treated with EGF display a hyperdopaminergic state in the globus pallidus
(Sotoyama et al. 2011). Dopaminergic innervation and release in the globus pallidus
are significantly elevated in this model. However, their PPI deficits and abnormal
dopamine release are simultaneously normalized by the local administration of an
antipsychotic drug to the globus pallidus (Sotoyama et al. 2011, 2013). The globus
pallidus is enriched with dopamine D2 receptors and is the major target of
antipsychotic drugs in the indirect pathway of the basal ganglia.
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5 Pharmacologic Actions of ROS Scavengers
in the EGF-Exposure-Generated Model

As mentioned earlier, EGF is a potent ROS producer, and knockdown of protein
phosphatases by ROS in turn enhances phosphorylation-based signaling cascades
emanating from EGFR. In agreement, Finch et al. (2006) found that catalase
degrades hydrogen peroxide and reduces EGF signaling. To assess the direct
interaction between ROS production and EGF signaling, we administered the three
ROS scavengers (Trolox, edaravone, and 2,2,6,6-tetramethyl-4-piperidinol-N-oxyl
[TEMPOL]) during EGF treatment in neonatal rats. The effects of these scavengers
on the PPI deficits of EGF-treated rats were evaluated at the adult stage (Fig. 4).
Co-administration of TEMPOL and edaravone with EGF resulted in attenuation of
the PPI deficits of the EGF-exposure-generated model. This result suggests that
ROS production during neonatal EGF treatment is required to generate the model.

We also examined the medication effects of ROS scavengers (emodin, Trolox,
edaravone) on the behavioral impairments of the EGF- pretreatment model at the
adult stage (Fig. 5). Emodin is a polyphenol ROS scavenger known as
3-methyl-1,6,8-trihydroxyanthraquinone and attenuates EGFR signaling (Mizuno
et al. 2008). Edaravone is otherwise known as 3-methyl-1-phenyl-2-pyrazolin-
5-one and is prescribed to patients who have suffered a stroke to mitigate the
expansion of cerebral ischemic injuries. This drug is verified to reduce EGFR
signaling in cancer cells (Suzuki et al. 2005). Subchronic treatment with emodin at

Fig. 4 Competition by antioxidants with neonatal EGF treatment. Epidermal growth factor (EGF;
0.875 µg/g, administered subcutaneously) or saline was administered daily on postnatal days 2–11
together with antioxidants (3 mg/kg TEMPOL, 10 mg/kg edaravone, and 10 mg/kg Trolox).
Interference with the effects of EGF on prepulse inhibition scores was monitored at the adult stage.
n = 5 in each group, *P < 0.05 and **P < 0.01, EGF epidermal growth factor
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the adult stage suppressed the acoustic startle response and abolished the PPI
deficits of the EGF-pretreatment model (Mizuno et al. 2008). The medication
effects of emodin on social interaction impairments were undetectable. However,
we observed an antipsychotic-like activity of emodin in the methamphetamine
model (Mizuno et al. 2010). In contrast to emodin, intraperitoneal injection of
edaravone improved social interaction scores and decreased an abnormally high
acoustic startle response of the EGF-pretreatment model, although it had no effect
on their PPI deficits (Fig. 5). Both the results verified the pharmaceutical effec-
tiveness of ROS scavengers on behavioral impairments relevant to schizophrenia.
However, the antipsychotic-like profiles of the individual scavengers differed sig-
nificantly. Presumably, the preference for the target ROS species differs between
those ROS scavengers and results in the diversity between their pharmacologic
profiles (Suzuki et al. 2005).

Although the therapeutic mechanism of ROS scavengers remains undetermined,
we believe the EGFR signaling cascade to be one of their molecular targets, as
suggested by Suzuki et al. (2005). We postulate that an elevation in EGFR signaling
(e.g., ErbB1, ErbB2) is sustained until the adult stage even when EGF treatment is
completed during the neonatal stage (Futamura et al. 2002). The hypothesis stems
from the fact that the administration of specific EGFR blockers also ameliorated the
behavioral deficits of the EGF-exposure-generated model (Mizuno et al. 2008,
2013). In light of the strong interaction between EGF signaling and ROS produc-
tion, further study is warranted into which plays the crucial role in the pathogenesis
of both the EGF-exposure-generated model and patients with schizophrenia.
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Fig. 5 Antipsychotic effects of edaravone on the EGF model relevant to schizophrenia. Epidermal
growth factor (0.875 µg/g) or saline was administered subcutaneously daily on postnatal days
2–11. Adult rats were treated with or without the radical scavenger edaravone (5 mg/kg/day for
7 days, administered intraperitoneally). n = 6–11 in each group, *P < 0.05, **P < 0.01, and
***P < 0.001. EGF epidermal growth factor
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6 Conclusion

There are tight interactions between ROS and cytokine signaling. In particular, such
interactions are evident for the EGF signal cascade in which basal EGFR
autophosphorylation is not negligible. ROS itself inactivates its phosphatases and
provokes EGF receptor signaling without any ligands. Conversely, EGFR phos-
phorylation efficiently activates various ROS-generating enzymes such as NOX and
COX to produce excess amounts of ROS. The cytokine–ROS system appears to be
recruited in the pathologic conditions of brain injury, infection, and seizures to
protect the organ with their given neurotrophic actions as well as to promote the
regeneration processes from the insults. When the activation of the cytokine–ROS
system is prolonged, the unfavorable side effects emerge in dopaminergic and
glutamatergic development/neurotransmission, leading to abnormal brain functions.
Our latest results from the EGF model indicate that oxygen radical scavengers are
beneficial for the medication of their cognitive deficits. However, the pharmaco-
logical profiles differ significantly among scavengers. We hope that safe and novel
antipsychotic drugs will be developed from any of oxygen radical scavengers.
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