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Abstract The motivation to engage in social behaviors is influenced by past
experience and internal state, but also depends on the behavior of other animals.
Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently
been linked to the modulation of motivated social behaviors. However, how they
interact with other systems, such as the mesolimbic dopamine system, remains
understudied. Further, while the neurobiological mechanisms that regulate
prosocial/cooperative behaviors have been extensively examined, far less is
understood about competitive behaviors, particularly in females. In this chapter, we
highlight the specific contributions of Oxt and Avp to several cooperative and
competitive behaviors and discuss their relevance to the concept of social moti-
vation across species, including humans. Further, we discuss the implications for
neuropsychiatric diseases and suggest future areas of investigation.
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1 Overview

Motivation is a dominant construct in psychology, psychiatry, and neuroscience, as
trying to understand why animals, including humans, do what they do is at the core
of these disciplines. Although motivation can be defined in a variety of ways, a key
component is that motivated behaviors are directed toward (approach) or away
(avoidance) from a stimulus. Motivation also contains emotional elements with
approach linked to positive hedonic valence and avoidance linked to negative
valence. This review focuses on social motivation, which, like other forms of
motivation, is influenced by past experience and an individual’s internal state.
Social motivation is, however, intrinsically more dynamic and less predictable
because the drive to approach or avoid another individual(s) depends in large
measure on how that individual behaves.

Recent studies of the neurobiology of social behavior have often characterized
social behavior as having a positive valence, described as prosocial or affiliative
interactions (e.g.,pair bonding, maternal behavior), or as having a negative valence,
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described as negative social interactions (e.g., aggression, territoriality). Although
such a dichotomy is convenient and can have descriptive value, a closer look at
these behaviors suggests that social motivation is more complex. For example,
while the formation of a pair bond in a species like prairie voles has positive
behavioral elements, such as highly affiliative behaviors directed toward a partner, it
is also associated with mate guarding, in which males display selective aggression
toward other voles. Thus, in the context of a pair bond, simply ascribing positive
valence to the affiliative behaviors and negative valence to aggression is an over-
simplification. Further, all aggressive behaviors are not the same, nor are the effects
on the players. The fact is, winning is rewarding (Martinez et al. 1995; Meisel and
Joppa 1994), and there is even the possibility that losing can be rewarding as long
as the defeat is not too severe (Gil et al. 2013). Therefore, assigning hedonic
valence to social behaviors (e.g., aggressive behavior) or to mating strategies (e.g.,
pair bonding) must be done with great care, particularly when linking approach or
avoidance with the neural mechanisms underlying motivation.

Historically, investigations into the neurobiology of motivation have primarily
focused on the mesolimbic dopamine (DA) system where DA neurons were thought
of as “reward” neurons. It has now been recognized that the role of the mesolimbic
DA system in hedonic mechanisms is far more complex. Understanding social
motivation requires us to expand our studies of the neural mechanisms of moti-
vation beyond this system into the networks that control the expression of social
behavior in response to social stimuli. Of the myriad of neurochemical signals that
are known to be involved in the modulation of social behaviors, two neuropeptides,
oxytocin (Oxt) and vasopressin (Avp), stand out as being critical across species.
Because of the vast literature on the role of these two nine-amino acid neuropep-
tides, or nonapeptides, in regulating social behavior, this chapter will focus on
mammalian social behavior and provide examples of the powerful contributions of
these two neuropeptide systems to cooperative and competitive behaviors.

2 Origins and Mechanisms of Motivated Social Behaviors

When considering the evolutionary origins of motivated behaviors, most simply
put, it all comes down to fitness. Animals engage in species-specific behaviors
because over evolutionary time these behaviors were either selected for via natural
or sexual selection, or occurred through some other mechanism of evolution. In the
context of sexual behavior, males are described as “ardent” and females as
“choosy,” which is reflected in their physiology. Males make a lot of sperm and
often display behaviors that that will result in the fertilization of as many eggs as
possible over their reproductive lifetime. Female mammals on the other hand
typically have to invest in the gestation and the care of offspring, so they tend to be
more selective about their mates. These differences in selective pressures result in
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vastly different behavioral displays between males and females. However, these
behavioral differences are not limited to sexual behaviors. For instance, in mam-
mals, biparental behavior is scarce, occurring in fewer than 6 % of rodent species
and 5–10 % of all mammals (Kleiman 1977). Thus, a male that engages in parental
care does so because the “cost” of not being paternal is too high; for instance, while
reproductive success may be compromised, his proximity to the female increases
the likelihood that he is the sire of the offspring. There are also sex differences in
displays of cooperative and competitive behaviors, with females often displaying
more cooperative behaviors across the lifetime and males displaying more com-
petitive behaviors, particularly during the breeding season.

In nature, the diversity in cooperativity and competitiveness observed across
animal species is striking. Some animals have social structures that are character-
ized by high levels of cooperativity, such as that observed in species that form
long-term social bonds like pair bonds. In other species, high levels of competitive
behaviors serve to establish and maintain social dominance relationships. Overlaid
on the complexity of social life for a given species is a lack of stability, as social
behaviors often change over the seasons and over the lifetime. Further, the different
behavioral strategies employed by an animal have their particular costs and benefits.
To explore these costs and benefits we can take a closer look at cooperative and
competitive behaviors.

2.1 Cooperative and Competitive Behaviors

Cooperative behaviors, associated with affiliative behaviors, are thought to have
evolved from reproductive and parental behaviors, in turn being permissive for the
development of longer-term social bonds (Crews 1997). Competitive behaviors too
are important in the formation of social bonds, as intraspecific interactions are
universal and often governed by dominance relationships. Some evolutionary
advantages to forming social bonds include localization of resources, lower pre-
dation due to group aggression, and increased reproductive opportunities
(Alexander 1974). Social bonds have been extensively studied in primates and in
some instances have been shown to increase evolutionary fitness (Silk 2007). In
free-ranging baboons, females that have strong social bonds with one another live
longer than those who have weaker social bonds (Silk et al. 2009). Even in humans
social relationships can have profound effects on an individual’s health, including
improved mood and a longer life (House et al. 1988; Rodriguez-Laso et al. 2007;
Baumeister and Leary 1995).

However, being social does have its cost, such as increased susceptibility to
disease, parasites, or injury (Alexander 1974; Crews 1997). In order for animals to
live in groups, they must be able to tolerate close proximity; thus, keeping levels of
aggression in check becomes particularly important. It also requires a memory of
the members of the social group, as this allows animals to identify familiar stimuli,
which in turn is permissive for adaptive behavioral responses. While many
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mammalian species live in groups, some species show “shifts” in the nature of their
social interactions depending on where they are in their breeding cycle. Some
species display high levels of affiliative behaviors in the non-breeding season, while
others increase their intraspecific aggression when resources are scarce (Anacker
and Beery 2013).

Over the last several decades, investigation of the neural mechanisms underlying
social behavior has focused primarily on “prosocial” behaviors, rather than com-
petitive behaviors. The tremendous progress that has been made in understanding
the neural mechanisms underlying phenomena such as maternal behavior and pair
bonding has likely contributed to this imbalance. Unfortunately, investigation of
more competitive behaviors, such as aggression, has been on the decline for a
variety of reasons (see Blanchard et al. 2003). Within studies of competitive
behavior, males have been the main experimental subjects, perhaps because of
Darwin’s emphasis on male–male competition and female mate choice in the
context of sexual selection (Darwin 1871). More recently, however, the importance
of competitive behaviors in females has been recognized. Not only do female
mammals compete for resources and mates to achieve reproductive benefits, but
female competition is widespread in the animal kingdom (Rosvall 2011; Stockley
and Bro-Jorgensen 2011; Huchard and Cowlishaw 2011). Females compete for
resources such as food, nest sites, and protection using a variety of strategies
including intergroup aggression, dominance relationships, and territoriality, as well
as through the inhibition of the reproductive capacity of other females. In many
primate species female aggression is associated with rank and ultimately repro-
ductive goals (for review, see Stanyon and Bigoni 2014). As a result, investigation
of female competitive behavior is essential to understanding social behavior and its
translational implications.

In rodents, one reason that there are few data on female competitive behavior is
that in commonly studied laboratory species, i.e., rats and mice, females display
little or no competitive behavior (Blanchard and Blanchard 2003). This contrasts
with what is observed in another laboratory rodent, whose utility as an experimental
model continues to increase, Syrian hamsters (Mesoscricetus auratus). Female
Syrian hamsters display a range of competitive strategies including the expression
of high levels of spontaneous offensive aggression, the rapid formation of robust
dominance relationships, and the ability to inhibit the reproductive capacity of other
females (Albers et al. 2002; Huck et al. 1988). While there is very little known
about the neural mechanisms controlling female offensive aggression in any
mammalian species, studies in hamsters have provided a good deal of information
about how gonadal hormones influence this form of aggression (Albers et al. 2002).

In males, high levels of aggressive behaviors, intermale and territorial in partic-
ular, are often at their peak with the onset of breeding. Other forms of aggression are
closely linked to parental behaviors, thus allowing for the defense of young, mates,
food, or territories. Seasonal shifts from high cooperativity/affiliative behaviors to
competitive behaviors are mediated primarily by changes in gonadal steroids, which
are often linked to changes in photoperiod, though numerous
neurotransmitter/neuropeptides are also involved. In many mammalian species,
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androgen concentrations are very high during the breeding season, as they are needed
to support reproductive behaviors as well as the physiology of the gonads. During the
non-breeding season, seasonal breeders will often undergo a period of gonadal qui-
escence, whereby the testes shrink in size and levels of circulating androgens
plummet. However, it should be noted that in some species, such as hamsters (also
seen in birds), androgens, specifically dehydroepiandrosterone (DHEA), produced by
the adrenal glands may help to support aggressive behavior during the non-breeding
season by serving as a prohormone or neurosteroid for the brain when gonadally
derived androgen levels are low (for review, see Soma et al. 2015).

2.2 Brain Areas that Regulate Cooperative and Competitive
Behaviors

The social behavior neural network (SBNN) hypothesis by Newman (1999) proposes
that a network composed of neural groups or “nodes” including, but not limited to, the
extended amygdala, the bed nucleus of the stria terminalis (BNST), lateral septum
(LS), periaqueductal gray (PAG), medial preoptic area (MPOA), ventromedial
hypothalamus (VMH), and anterior hypothalamus (AH) controls social behavior.
Each node within the SBNN meets several criteria: reciprocal connectivity, neurons
with gonadal steroid hormone receptors, and having been identified as being important
tomore than one social behavior. The SBNNhypothesis has gained traction in thefield
in recent years (reviewed byAlbers 2012, 2015;Crews 1997;Goodson andKingsbury
2013). It represents amore nuanced and complicated approach to the understanding of
social behavior, as it takes the regulation of these behaviors beyond the examination of
just a single neuroanatomical area and supposes that the output of the network is an
emergent property. The identification of SBNN for different species is an important
next step in understanding the complexity of behavior. While previous approaches
have been more simplistic, examining specific neural anatomical areas, single
neurotransmitter/neuropeptides, and behaviors, the foundation has now been laid for
impactful studies focused on how social behavior emerges from complex neural
networks. A large number of different types of motivated social behaviors are thought
to be controlled by the SBNN, including offensive and defensive aggression, social
recognition memory, parental behavior, and social communication. Importantly,
Oxt/Avp and their receptors are found throughout the SBNN and are ideally suited to
regulate the expression of social behavior because of their plasticity in response to
factors that influence social behavior (Fig. 1) (reviewed in Kelly and Goodson 2014;
Goodson and Kingsbury 2013; Albers 2012, 2015; Caldwell et al. 2008a;
Adkins-Regan 2009; Bosch and Neumann 2012).

Motivated behaviors also arise from a network of reciprocally connected brain
regions that determine the salience of stimuli, assign motivational value, and initiate
appropriate action (reviewed by Love 2014). The ventral tegmental area (VTA) is a
key region in this network in that VTA neurons producing DA project to a large
number of cortical and limbic structures, forming the foundation underlying the
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motivational circuitry. This network plays a critical role in social as well as
nonsocial behavior and appears to provide an alerting signal for unexpected stimuli.
Within this network, there are distinct groups of DA neurons that determine
motivational value, being excited by appetitive stimuli and inhibited by aversive
stimuli. Other groups of DA neurons appear to encode motivational salience, but
not valence, in that they are excited by the intensity of the stimulus, regardless of
whether it is appetitive or aversive (reviewed by Love 2014). See chapters by
Bissonette and Roesch, Robinson et al., Redish et al., and Salamone et al. for
detailed discussions of these issues.

While the SBNN and the mesolimbic DA system are distinct from one another,
they are thought to dynamically interact and support decision making in the context
of motivated social behaviors (O’Connell and Hofmann 2011a, b). O’Connell and
Hofmann (2011b) have proposed that these two systems should be considered as

Fig. 1 Oxytocin and vasopressin signaling in brain areas important to social motivation. Oxytocin
(Oxtr) and vasopressin receptors (Avprs) are found throughout the structures of the social behavior
neural network (SBNN) and the mesocorticolimbic dopamine (DA) system. Their localization in
these nuclei is critical for oxytocin’s and vasopressin’s modulation of socially motivated behaviors
and may serve as the functional connection between the SBNN and DA systems, particularly by
their action in the lateral septum (LS) and extended amygdala, including the bed nucleus of the
stria terminalis (BNST). Other abbreviations: AH anterior hypothalamus; BLA basolateral
amygdala; HIPP hippocampus; MeA medial amygdala; NAcc nucleus accumbens; OB olfactory
bulb; PAG periaqueductal gray; PFC prefrontal cortex; POA preoptic area; VP ventral pallidum;
VTA ventral tegmental area; VMH ventromedial hypothalamus
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part of a larger social decision-making network (SDM) that is relatively conserved
across species. Across these two systems, there are two neuroanatomical areas, or
nodes, of overlap—the LS and the extended amygdala—including the BNST.
These areas provide the functional connection between the two systems by acting as
relays, providing the SBNN with information from the motivational network about
the salience of a social stimulus in turn allowing for an appropriate behavioral
response. With these concepts in mind, in the following sections, we will discuss
the possibility that Oxt and Avp provide critical links between specific elements
within the SBNN and the motivational network that contribute to the motivational
forces driving social behaviors.

3 Neuroendocrine Modulation of Social Behaviors

The first hormones implicated in the regulation of social behaviors were the gonadal
steroids (Berthold 1849), since changes in social behaviors are observed following
gonadectomy. While the gonadal steroids are important, so too are the evolution-
arily ancient Oxt and Avp neuropeptide systems, as well as their non-mammalian
homologues. Oxt and Avp are both primarily synthesized in the paraventricular
nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Their genes sit
in opposite transcriptional direction on the chromosome as the result of the
duplication of an ancestral vasotocin gene (Acher and Chauvet 1995; Acher et al.
1995) and they are synthesized as part of a larger precursor preprohormone (Hara
et al. 1990). Since they are so structurally similar, Oxt and Avp are considered
“sister” hormones, though their actions both peripherally and centrally can differ
significantly from one another. Interestingly, across mammalian species, the roles of
Oxt and Avp with regard to cooperative and competitive behaviors tend to be fairly
conserved (Caldwell et al. 2008a; Caldwell and Young 3rd 2006; Lee et al. 2009a;
Adkins-Regan 2009; Neumann 2008; Veenema and Neumann 2008; Carter et al.
2008; Albers 2012, 2015).

3.1 The Oxytocin System

Oxytocin literally meaning “sharp childbirth” is known for its peripheral actions on
the regulation of uterine contraction as well as the facilitation of milk ejection (Dale
1906; Ott and Scott 1910). In rats, Oxt is synthesized in larger, magnocellular
neurons, of the PVN and SON that project to the posterior pituitary and mediate the
aforementioned actions. However, it is Oxt that is synthesized in the smaller,
parvocellular neurons of the PVN that project centrally and mediate many of the
central actions of Oxt. It should be noted, however, that this compartmentalization
of function by magnocellular versus parvocellular neurons is not found in all
species. For example, in Syrian hamsters, magnocellular neurons do not exclusively

58 H.K. Caldwell and H.E. Albers



project to the posterior pituitary and seem to project centrally (Ferris et al. 1992b).
Also, in mice and several vole species, there are reports of parvocellular Oxt
neurons outside of the PVN (Castel and Morris 1988; Jirikowski et al. 1990; Wang
et al. 1996) as well as reports of Oxt collaterals from the SON/PVN to the nucleus
accumbens (NAcc) (Ross et al. 2009a).

Thus far, only a single Oxt receptor (Oxtr) has been identified, and it is thought
to be the primary mechanism for the transduction of the Oxt signal (Kimura et al.
1992; Kubota et al. 1996); however, see the section titled “Signaling by Oxytocin
and Vasopressin in the Brain.” The Oxtr is a member of the seven-transmembrane
G-protein-coupled receptor family and signals through Gαq/11 GTP-binding proteins
and Gβλ (Ku et al. 1995; Gimpl and Fahrenholz 2001; Zingg and Laporte 2003),
which results in the hydrolysis of phosphatidylinositol. The structure and sequence
of the Oxtr is similar to the Avp receptors (Gimpl and Fahrenholz 2001). In rats and
mice, the Oxtr is most often visualized with receptor autoradiography through the
use of a potent and specific 125I-labeled antagonist (Kremarik et al. 1993; Veinante
and Freund-Mercier 1997). The Oxtr is observed in several areas of the brain,
including the hippocampal formation, LS, central amygdala (CeA), olfactory
tubercle, NAcc shell, dorsal caudate–putamen, BNST, medial amygdala (MeA),
and VMH (Kremarik et al. 1993; Veinante and Freund-Mercier 1997; Insel et al.
1991), but there are seasonal as well as species- and sex-specific differences.

3.2 The Vasopressin System

Avp is named for its involvement in the constriction of blood vessels, but is also
important to salt and water balance. The peripheral actions of Avp are primarily
mediated by the magnocellular neurons of the PVN and SON, which result in Avp
release from the posterior pituitary. Centrally, Avp is more widely expressed than
Oxt, and its distribution can vary substantially between species. Avp immunore-
active (ir) cell bodies are consistently found in several hypothalamic nuclei
including the suprachiasmatic nucleus (SCN), PVN, SON as well as in groups of
accessary nuclei (Sofroniew 1983). Outside of the hypothalamus, Avp-ir neuronal
cell bodies can be observed in the BNST and MeA in most rodent species examined
to date (Sofroniew 1985). Interestingly, in Syrian hamsters, neuronal cell bodies
containing Avp are absent in the BNST and MeA (Albers et al. 1991). Projections
from Avp-producing neurons form a dense vasopressinergic network throughout
the brain (Buijs et al. 1983, 1987; De Vries and Buijs 1983; Sawchenko and
Swanson 1982).

Avp receptors can be divided into two classes: Avp1 and Avp2 receptors (Avpr1
and Avpr2, respectively), both of which are seven-transmembrane
G-protein-coupled receptors that are similar in structure to the Oxtr. There are
two subtypes of the Avpr1: the Avpr1a and the Avpr1b. Peripherally, the Avpr1a
mediates the effects of Avp on vasoconstriction and can be found in the liver,
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kidney, platelets, and smooth muscle (Ostrowski et al. 1992; Watters et al. 1998).
Centrally, the Avpr1a is found in a variety of brain nuclei (Johnson et al. 1995;
Tribollet et al. 1997; Ostrowski et al. 1994; Szot et al. 1994). The Avpr1a is
modulated by gonadal hormones and photoperiod in some brain regions, but not
others (Johnson et al. 1995; Young et al. 2000; Caldwell and Albers 2004b;
Caldwell et al. 2008b). The Avpr1b was originally described in the anterior pitu-
itary, where it is prominent on the corticotrophs; however, it can also be found in
the brain (Antoni 1984; Lolait et al. 1995). In rats, there is a lack of consensus about
the central distribution of the Avpr1b, with some groups reporting Avpr1b in the
olfactory bulb, piriform cortical layer II, LS, cerebral cortex, hippocampus, PVN,
SCN, cerebellum, and red nucleus (Lolait et al. 1995; Saito et al. 1995; Vaccari
et al. 1998; Hernando et al. 2001; Stemmelin et al. 2005). However, a later study by
Young and colleagues, which used more stringent conditions for in situ
hybridization histochemistry (ISHH), determined that the Avpr1b in rats and mice
is more discretely localized with prominent expression in hippocampal field CA2
pyramidal neurons (Young et al. 2006). The Avpr2 is found in the periphery and is
primarily expressed in the kidney; it has not been localized to the brain. Its role in
the kidney is to transduce the antidiuretic effects of Avp within the renal collecting
ducts (Bankir 2001).

3.3 Signaling by Oxytocin and Vasopressin in the Brain

Neuropeptides can act in a highly localized manner, similar to classic neurotrans-
mitter release at the synapse. However, neuropeptides can also be released in a
much more diffuse manner, potentially impacting large numbers of neurons at
multiple sites (Engelmann et al. 2000; Landgraf and Neumann 2004; Ludwig 1998;
Ludwig and Leng 2006). This diversity of action has long been recognized,
although the role of these different types of signaling mechanisms in the control of
social behavior is not well understood. Neuropeptides such as Oxt and Avp are
usually packaged in large dense-core vesicles (LDCV) that can be found in all areas
of neurons including the presynaptic terminal (Jakab et al. 1991; Buijs and Swaab
1979; van Leeuwen et al. 1978). Because of the broad distribution of LDCV
throughout the cell, neuropeptides can act locally at the synapse or much more
broadly when released from non-synaptic regions (e.g., dendrites) in what is called
volume transmission. Many factors affect the profiles of neuropeptide release such
as the size of the neurons from which they are released, the spread of peptide after
release, and the timing and intensity of its degradation by peptidases. While the
spatial and temporal profiles of peptide release via volume transmission are not well
understood (Leng and Ludwig 2008), estimates suggest that they may travel as far
as 4–5 mm from their site of release (Engelmann et al. 2000). Magnocellular
neurons in the hypothalamus represent the largest pool of nonapeptides in the brain,
and there is evidence that they are activated by a variety of stimuli related to social
behavior (Delville et al. 2000). As a result, it seems likely that volume transmission
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of nonapeptides from these neurons plays an important role in regulating social
behavior by acting on nonapeptide receptors throughout the SBNN.

Another consideration is that neuropeptides are commonly found in neurons that
also produce small molecular weight “classical neurotransmitters” (e.g., amino
acids) (for review, see van den Pol 2012; Albers 2015), thus allowing for their
co-release. In most cases, classical neurotransmitters are packaged in small synaptic
vesicles (SSVs) in presynaptic terminals. The exocytosis of both SSVs and LDCVs
at synapses is Ca2+ dependent. Because SSVs are usually in closer proximity to the
membrane than LDCV, less activity is required for classic neurotransmitter release
than for neuropeptide release. Therefore, synaptic release of neuropeptides is
thought to lag behind that of neurotransmitter release and to require more electrical
activity. The functional significance of synaptic co-release of classical neuro-
transmitters and neuropeptides is not known, but dynamic interactions of these
signals will likely be important in understanding neuropeptide regulation of
behavior (Bamshad et al. 1996). In summary, the ways that Oxt and Avp contribute
to neurochemical signaling within the brain are varied and complex. As a result,
researchers are left to untangle very intricate pharmacological interactions when
they consider the effects of these neuropeptides on behavior.

In addition to the diversity seen in the ways that Oxt and Avp can signal, Oxt
and Avp also have a high degree of similarity in their structure as well as in the
structure of their canonical receptors (Maybauer et al. 2008; Gimpl and Fahrenholz
2001; Manning et al. 2012; Song et al. 2014b). Due to these structural similarities,
there is a substantial amount of cross talk between these systems (Schorscher-Petcu
et al. 2010; Sala et al. 2011), with Oxt and Avp having similar affinities for the
Oxtr, Avpr1a, and Avpr1b in rats and mice (Manning et al. 2008, 2012). For
example, both Oxt and Avp can induce communicative behavior in hamsters when
injected into the AH by activating Avpr1a rather than the Oxtr (Song et al. 2014b).
Similarly, both Oxt and Avp can enhance social recognition and social reward by
activating the Oxtr and not the Avpr1a (Song et al. 2014a, b, 2015; Ragnauth et al.
2004). These data indicate that the effects of Oxt and Avp on different social
behaviors can result from their activation of the Avpr1a, the Oxtr, or both.

Oxt and Avp receptors are distributed within structures of the mesolimbic DA
system, providing a means by which these systems may interact. These areas
include the amygdala, the hippocampus, the VTA, the prefrontal cortex (PFC), the
NAcc, and the ventral pallidum (VP) (Vaccari et al. 1998; Baskerville and Douglas
2010; Curtis et al. 2008). It is also important to remember that there is a great deal
of interspecies and interindividual variability in the distribution of Oxt and Avp
receptors and that these differences play a major role in producing differences in the
expression of social behavior.

Recent work in primates has shed some light on the complexity of these systems
in a broader evolutionary context, as there are some significant evolutionary
changes in the Oxt and Avp systems. As discussed above, in rats and mice, the Oxtr
and Avprs are relatively non-selective for Oxt and Avp; however, in humans, the
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OXTR has significant selectivity for Oxt over Avp. The functional significance of
these differences in receptor selectivity is not known but is likely to be important.
Aside from cross talk, there are also sequence differences in Oxt across primate
species. Specifically, work by Lee et al. (2011) challenged the idea that Oxt is an
invariant nine-amino acid sequence by determining that some New World primates
have an amino acid substitution in the 8th position, a leucine rather than a proline.
The implications of these findings are still being explored (Cavanaugh et al. 2014),
but this coupled with variations in the Avpr1a gene suggests that there has been,
and perhaps continues to be, an evolutionary shift in these systems and reinforces
the importance of studying these systems together rather than in isolation (for
review, see Ragen and Bales 2013). These findings are likely to impact work in
preclinical models and may help to resolve some of the conflicting findings in the
literature between primates and other mammalian species.

3.4 Epigenetics

The advent of epigenetics has also challenged our understanding of how these
systems are regulated and potentially how they regulate other systems. Epigenetics
refers to changes in gene transcription that are not due to changes in nucleotide
sequence, but rather are “above” the genome. Epigenetic mechanisms include
histone modification and gene methylation, both of which alter the ability of the
transcriptional machinery to access promoter regions. While much of this work
originally centered on Oxt and maternal behavior in animal models, it has now been
expanded to human studies.

Elegant work from Dr. Michael Meaney’s laboratory found that in rats, the
quality of mother–infant interactions affected DNA methylation and histone
acetylation patterns in the offspring (e.g., Champagne et al. 2001, 2004; Fish et al.
2004; Francis et al. 1999; Weaver et al. 2004). During the first postpartum week,
low licking-and-grooming (LG) dams have reduced Oxtr binding in the MPOA
compared to high LG dams (Champagne et al. 2001; Francis et al. 2000). Further,
microinjection of an Oxtr antagonist reduces licking and grooming in high LG
dams, with essentially no effect in low LG dams (Champagne et al. 2001). For more
complete reviews of this work, see (Champagne 2008; Bridges 2015).

More recently, work in humans suggests that changes in the methylation of the
OXTR are associated with a variety of diseases/disorders, including anorexia ner-
vosa (Kim et al. 2014), the perception of fear and anxiety (Puglia et al. 2015;
Ziegler et al. 2015), psychopathy (Dadds et al. 2014), and autism (Gregory et al.
2009). However, a direct causal link between methylation patterns and behavior has
yet to be made; however, given the animal literature, it seems likely that this is an
important means by which early life experience may be able to directly impact
behavior.
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4 Oxytocin/Vasopressin and Cooperative and Competitive
Behaviors: Social Memory, Social Interactions,
and Aggression

Within mammals, social structures can vary widely. Take for instance naked mole
rats and their large insect-like colony structure, prairie voles and their pair bonding
that results in a lifetime social dyad, or more solitary species such as Syrian
hamsters. With this diversity, it might be assumed that there are vast differences in
the types of behaviors that these species are capable of displaying and in the
neurotransmitters and/or brain areas that are important to their regulation. This,
however, does not seem to be the case. While the details may differ, there are a
limited number of social behaviors common to most species and they include the
ability to remember others of the same species (social memory) as well as the social
behaviors that determine the nature of their relationships with conspecifics (e.g.,
affiliation/dominance). Furthermore, the roles of Oxt and Avp in the modulation of
social behaviors have been evolutionarily conserved across species. For example,
aggression is modulated by social experience-induced changes in the expression of
Avpr1a in the hypothalamus in both male prairie voles and hamsters.

Since 90 % of mammals are not biparental, it is common for them to live in large
social groups and display both cooperativity and competitiveness, depending on the
context. Even in species that are more solitary and highly competitive, individuals
have the capacity for social recognition, social communication, as well as the
potential to form stable long-standing social relationships. There are also sex dif-
ferences as well as environmental effects, such as photoperiod, which can cause
shifts in social behaviors from the breeding to the non-breading season. In this
section, we will explore the role of Oxt and Avp in selected forms of cooperative
and competitive behavior in these differing and complex social contexts.

4.1 Social Recognition Memory

Displays of social behaviors often depend on whether the interaction is with an
individual that is familiar or unknown. Thus, the ability to recognize individuals
and remember them, i.e., social recognition memory, plays an important role in the
decision to approach or avoid. There are considerable data that both Oxt and Avp
contribute to social recognition memory. Oxt is thought to facilitate social memory
by altering the processing of socially salient olfactory information (for review, see
Lee et al. 2009a; Gabor et al. 2012; Wacker and Ludwig 2012). In males, Oxt
infused into the olfactory bulb (OB), lateral ventricles, and MPOA facilitates social
recognition memory (Dluzen et al. 1998; Benelli et al. 1995; Popik and Van Ree
1991). Some of the particulars of the circuit have been worked out with the
assistance of genetic knockouts of the Oxt system, with Oxt knockout (Oxtr −/−)
mice and forebrain-specific Oxtr knockout (Oxtr FB/FB, where CRE recombinase
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is driven by a CaMKIIα promoter) mice having deficits in social recognition
memory (Lee et al. 2008a, b; Takayanagi et al. 2005; Macbeth et al. 2009; Ferguson
et al. 2000; Hattori et al. 2015). Based on this work, a four-gene micronet involving
Oxt, the Oxtr, estrogen receptor α, and estrogen receptor β has been proposed as
being critical to the regulation of social recognition memory in both males and
females (Choleris et al. 2003). In particular, estrogen-dependent Oxt signaling in
the MeA appears to be key for normal social recognition memory. Infusion of Oxt
into the MeA of Oxt −/− mice can rescue deficits in social recognition memory
(Ferguson et al. 2001), and infusion of an Oxtr antisense DNA or an Oxtr antagonist
into control mice can block social recognition memory (Choleris et al. 2007;
Ferguson et al. 2001). Female Oxt −/− mice also have a disrupted Bruce effect
(Bruce 1959), whereby they terminate their pregnancy when exposed to their mate,
which suggests that they do not remember him (Wersinger et al. 2008).

Recent work suggests that Oxt may also play a role in human social recognition.
Generally speaking, exogenous Oxt enhances the memory for faces (Savaskan et al.
2008; Guastella et al. 2008; Rimmele et al. 2009). Further, a common
single-nucleotide polymorphism (SNP) (rs237887) in the OXTR is moderately
associated with face recognition memory in families from the UK and Finland that
have a child with an autism spectrum disorder (ASD) (Skuse et al. 2014). Taken
together, these data suggest that Oxt and the Oxtr have a conserved role in the
modulation of social memory across species.

Avp also appears to be important for social memory. Androgen-dependent Avp
projections from the MeA and BNST to the LS, all parts of the SBNN, are
important for individual recognition (De Vries et al. 1984; Mayes et al. 1988;
Bluthe et al. 1990, 1993). Microinjections of Avp into the LS of control or
AVP-deficient Brattleboro rats facilitates social memory, whereas microinjections
of Avpr1a antagonists or infusions of antisense Avpr1a oligonucleotides into the LS
of control rats impairs social recognition memory (Engelmann and Landgraf 1994;
Landgraf et al. 1995). The use of Avpr1a −/− and Avpr1b −/− mice has also
provided some insight into the contributions of Avp to social memory. However, in
the NIMH line of Avpr1a −/− mice, the findings have been mixed (Hu et al. 2003),
with one group reporting that males have impaired social recognition that can be
rescued by the overexpression of Avpr1a in the LS (Bielsky et al. 2003, 2005;
Bielsky and Young 2004) and another group reporting no deficits in social
recognition, but rather in olfaction (Wersinger et al. 2007b). While the reason for
the discrepancy remains unknown, it is obvious from previous reports that Avpr1a
in the LS is important for normal social recognition memory. Interestingly, Avpr1b
−/− mice have mild impairments in social recognition memory (Wersinger et al.
2002). Further, lesions and genetic silencing of the CA2 region of the hippocampus,
where the Avpr1b is prominently expressed, also results in impaired social
recognition memory (Stevenson and Caldwell 2012; Hitti and Siegelbaum 2014).

While the aforementioned data provide strong support for a role of Avp in social
recognition, how or if Avp modulates social recognition has really only been
studied in a small number of species. Further, the data are limited by the fact that
the vast majority of studies have only examined social recognition for very short
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intervals (<2 h). However, there are some studies that suggest that Avp may be
important for long-term social recognition. Specifically, injection of an Avpr1a
antagonist into the LS can block the formation of a mating-induced pair bond in
male prairie voles, while injection of Avp into the LS institutes a pair bond in the
absence of mating (Liu et al. 2001). Since social recognition is a necessary part of
pair bonding and pair bonds can last a lifetime, these data suggest that Avp sig-
naling via the Avpr1a can induce long-term changes in social recognition. There are
also data to suggest that Avpr1a antagonists administered into the MeA can alter
maternal memories in rats. Normally, after a ten-day separation from their pups,
mothers display full maternal behavior within about 12 h of re-exposure. However,
in peripartum mothers, in which an Avpr1a antagonist is infused into the MeA, the
latency to display full maternal behavior does not occur for approximately 60 h; the
antagonist had no effect on the initial expression of maternal behavior on the day of
parturition (Nephew and Bridges 2008).

More recently, we have found that male Syrian hamsters can recognize social
odors of other male Syrian hamsters for 24 h. Injection of Oxt or Avp intracere-
broventricular (i.c.v) extends their social memory to 48 h. Interestingly, these
effects are mediated by the Oxtr and not the Avpr1a (Song et al. 2015). In the
broader context of animal behavior, it will also be important to determine whether
Avp mediates some of the more complex forms of social recognition found by
rodents such as kin recognition and the true recognition of specific individuals (e.g.,
Mateo and Johnston 2003; Johnston and Peng 2008; Petrulis 2009).

4.2 Cooperative Behavior

Although cooperative behavior is certainly not limited to species that pair bond, pair
bonding species do provide an important model system in which to investigate the
neurobiology of cooperation. That said, it remains important to recognize that these
bonds are formed by mating and are limited to the cooperation of a male and a
female. Pair bonding, formed by mating, represents one form of cooperative
behavior. Pair bonds are somewhat unique among mammals in that they are only
seen in 3–5 % of mammalian species (Kleiman 1977). Defined as a preference for
contact with a familiar sexual partner, selective aggression toward unfamiliar
conspecifics, biparental care, socially regulated reproduction, and incest avoidance
(Carter et al. 1995; Carter and Getz 1993), pair bonding can be found in titi
monkeys (Callicebus cupreus), marmosets (Callithrix penicillata and Callithrix
jacchus jacchus), California mice (Peromyscus californicus), and prairie voles
(Microtus ochrogaster). Humans too can have strong selective bonds between
mates, but also show cooperative behaviors in many other contexts as well. The
extent to which human pair bonds and other forms of human cooperative behavior
are regulated by Oxt and Avp remains to be determined.

Our understanding of the mechanisms by which Oxt and Avp contribute to pair
bonding comes primarily from work in prairie voles. Prairie voles live in extended
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family groups and are considered a socially monogamous species (Carter et al.
1995) (social monogamy is distinct from sexual monogamy as most individuals
have extra-pair copulations). The formation of a pair bond is experimentally tested
in the laboratory using a partner preference test (Williams et al. 1992), whereby the
preference of a male or female for an animal in which they have previously
cohabitated, i.e., the partner, versus a “stranger,” is assessed. If the experimental
subject spends twice as much time with the “partner” animal, then it is said to have
formed a pair bond with that individual (Insel and Hulihan 1995; Carter and Getz
1993; Williams et al. 1994; Carter et al. 1995).

Due to the diversity in social structures within the genus Microtus, comparative
studies between vole species have provided significant insight into the neural
regulation of social bonding. By comparing the neurochemistry of monogamous
vole species, such as the prairie or pine vole (Microtus pinetorum), to
non-monogamous voles, such as the montane (Microtus montanus) or meadow
(Microtus pennsylvanicus) voles, scientists have explored how variations in Oxt and
Avp neurochemistry between highly related species can result in significant dif-
ferences in social behavior (Young et al. 2008, 2011; Adkins-Regan 2009). While
there are differences in Oxt- and Avp-ir cells or their projections between species,
most profound are the changes in the neuroanatomical distribution of the Oxtr and
the Avpr1a. Relative to non-monogamous voles, monogamous voles have higher
densities of Oxtr, as measured using Oxtr autoradiography and ISHH, in the NAcc,
the PFC, and the BNST. In contrast, promiscuous voles have higher Oxtr density in
the LS, VMH, and the cortical nucleus of the amygdala (Insel and Shapiro 1992;
Young et al. 1996; Smeltzer et al. 2006). Evidence that the differences in the
distribution of the Oxtr between species might be behaviorally meaningful comes
primarily from pharmacological studies.

In female prairie voles, central infusion of an Oxtr antagonist blocks the for-
mation of the pair bond, but has no effect on sexual behavior, whereas central
infusion of Oxt facilitates the pair bond in the absence of mating (Insel et al. 1995;
Williams et al. 1994; Cho et al. 1999) and can decrease male-directed aggression
(Bales and Carter 2003). In the aforementioned studies, the infusions were i.c.v.;
however, manipulation of Oxtr signaling, using Oxtr antagonists and RNAi
knockdown of the Oxtr within the NAcc, inhibits formation of a partner preference
(Liu and Wang 2003; Young et al. 2001; Keebaugh et al. 2015), and overexpression
of the Oxtr in the NAcc of adult female prairie voles accelerates the formation of
partner preference (Ross et al. 2009b). However, overexpression of the Oxtr in the
NAcc of non-monogamous meadow voles is not sufficient to promote pair bond
formation (Ross et al. 2009b), which suggests that all of the required neurocircuitry
is not in place for this species.

There are also differences in the distribution of the Avpr1a between vole species.
Prairie voles have a higher density of Avpr1a, as measured using receptor autora-
diography and ISHH, within the MeA, accessory olfactory bulb, diagonal band,
thalamus, VP, and BNST compared to montane voles (Young et al. 1997; Insel et al.
1994). Montane voles, on the other hand, have a higher density of Avpr1a in the
medial PFC and the LS (Smeltzer et al. 2006; Insel et al. 1994). These differences in

66 H.K. Caldwell and H.E. Albers



Avpr1a distribution are thought to contribute to differences in social organization
between monogamous and non-monogamous vole species. This hypothesis is sup-
ported by data in pine voles and meadow voles, which suggest similar social
structure-specific distributions of Avpr1a between these species (Insel et al. 1994).
Further support for this hypothesis comes from pharmacological manipulations of
the Avpr1a in prairie voles. When an Avp antagonist is injected i.c.v. prior to mating,
the formation of a partner preference is inhibited. Conversely, Avp infusion facili-
tates the formation of the partner preference (Winslow et al. 1993; Cho et al. 1999).
Some of the more interesting data that support a role for the differential distribution
of the Avpr1a in the formation of social bonds come from a study in which the prairie
vole Avpr1a gene was overexpressed in the ventral forebrain of meadow voles,
resulting in increases in the amount of time meadow voles spent huddled with their
partners compared to controls (Lim et al. 2004).

4.3 Competitive Behavior

The most conspicuous form of competitive behavior is aggression. Offensive and
defensive aggressions have been studied intensely and almost exclusively in male
mammals. Further, neural circuits that overlap much of the SBNN have been
proposed for each of these forms of aggression (Delville et al. 2000; Choi et al.
2005). Although frequently characterized as a negative social interaction, aggres-
sion plays a highly constructive role in the formation of social relationships. In the
vast majority of mammals that do not form pair bonds, dominance relationships
provide social bonds that serve many adaptive functions (e.g., resource distribution)
and that ultimately reduce social conflict. Typically, dominance relationships are
rapidly determined through aggressive interactions but are primarily maintained
through social communication (e.g., scent marking, vocalization), thereby reducing
the dangers associated with intense fighting (Albers et al. 2002; Fernald 2014).

4.3.1 Oxytocin and Competitive Behavior

Some of the earliest evidence that Oxt is involved in both aggression and social
communication came from studies in squirrel monkeys. In male squirrel monkeys,
with established dominant–subordinate relationships, i.c.v. administration of Oxt
increases aggression in dominant males, while having no effect in subordinate
males (Winslow and Insel 1991b). In contrast, Oxt stimulates scent marking in
subordinate males but does not alter scent marking in dominant males (Winslow
and Insel 1991b), thus demonstrating that social experience can determine the
behavioral response to Oxt acting in the brain. Studies in rats suggest one mech-
anism that might contribute to the effects of social experience on the behavioral
response to Oxt. Dominant male rats have significantly higher levels of Oxtr mRNA
in the MeA 3 h after the social encounter that defined their relationship. Further,
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infusion of an Oxtr antagonist immediately after the establishment of subordinate
status increases the duration of the dominant–subordinate relationship (Timmer
et al. 2011). Social status also significantly impacts the circulating levels of serum
Oxt in primates. In rhesus monkeys, dominant females have significantly higher
levels of serum Oxt than subordinates (Michopoulos et al. 2011, 2012). The
importance of social experience in determining the behavioral response to Oxt/Avp
is a theme seen repeatedly in this chapter.

Historically, there have been little data supporting a role for Oxt in the regulation
of intermale aggression in laboratory species of rodents. However, some recent
work suggests that pharmacological treatment with Oxt may have antiaggressive
effects in adult males. Work from Jaap Koolhaas’ laboratory has found that phar-
macological enhancement of Oxt in rats, by intranasal treatment or i.c.v. infusion,
reduces offensive aggression and promotes prosocial exploratory behaviors
(Calcagnoli et al. 2013, 2014, 2015a). Furthermore, these inhibitory effects seem to
be mediated by Oxt acting via the Oxtr in the CeA; however, it should be noted that
blocking endogenous Oxt signaling in the CeA has no effect (Calcagnoli et al.
2015b). Thus, it is proposed that these findings should be considered in the context
of pharmacological effects rather than being directly regulated by the local
endogenous Oxt system (Calcagnoli et al. 2015b).

The role of Oxt in the neural regulation of female offensive aggression is sparse;
as mentioned previously, females of the most commonly studied laboratory rodents,
unlike many other mammalian species, rarely display aggressive behaviors outside
of the peripartum period. However, there is evidence in female Syrian hamsters that
Oxt can influence competitive behaviors. Specifically, microinjection of Oxt into
the MPOA-AH reduces offensive aggression, and injection of an Oxtr antagonist
increases offensive aggression directed toward a female intruder (Harmon et al.
2002a). Traditionally, studies of Oxt in female rodents have focused on maternal
aggression. This is a unique, and transient, hormonal/physiological time in a
female’s life and is characterized by high levels of nurturing behaviors directed
toward pups and aggressive behaviors directed toward intruders. During the peri-
partum period, Oxt has anxiolytic effects (Bosch and Neumann 2008), specifically
via its actions in the PVN and CeA (Blume et al. 2008; Jurek et al. 2012; Windle
et al. 1997; Huber et al. 2005; Viviani et al. 2011; Knobloch et al. 2012). These
decreases in anxiety permit females to attend to their pups. But even with lower
levels of anxiety and strong bonds with her offspring, dams can display high levels
of maternal aggression. Depending on the brain area and the behavioral state of the
animal, Oxt and/or Oxtr antagonists can either increase or decrease maternal
aggression (for review, please see Bosch 2013). For instance, in rats bred for
low-anxiety rats, Oxt in the PVN increases maternal aggression (Bosch et al. 2005),
but when microinjected into the BNST of Wistar rats decreases maternal aggression
(Consiglio et al. 2005). In hamsters, injection of Oxt into the amygdala facilitates
maternal aggression (Ferris et al. 1992a). So, while central Oxt is important to
aggression in females, its effects are context and site specific. There are also
numerous studies that support the assertion that developmental exposure to Oxt is
important for the proper development of motivated social behaviors, including
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aggression, but those studies will not be reviewed in this chapter (recently reviewed
in Miller and Caldwell 2015; Hammock 2015).

4.3.2 Vasopressin and Competitive Behavior

Most of what we know about the role of nonapeptides in competitive behavior
comes from studies of Avp and aggressive behavior. Further, much of the work has
focused on the Avpr1a, as this was the first centrally identified receptor, and as
such, there are a number of pharmacological tools available. However, the Avpr1b
appears also to be important for displays of aggressive behavior. Because of the
differences in the distribution of these two receptor subtypes, this section will be
divided by subtype.

4.3.3 The Vasopressin 1a Receptor and Competitive Behavior

The first evidence for a role for Avp in aggression came from studies in male
hamsters, in which the injection of Avpr1a antagonists into the AH significantly
inhibited offensive aggression (Ferris and Potegal 1988; Potegal and Ferris 1990).
Subsequent studies have replicated these results and shown that Avp injected into
the AH stimulates offensive aggression (Caldwell and Albers 2004a; Ferris et al.
1997). However, the ability of Avp to stimulate aggression by its action in the AH
appears to depend on an individual’s prior social experience. Avp injected into the
AH increases aggression in male hamsters previously trained to fight other hamsters
and in hamsters socially isolated for at least four weeks, but not in hamsters housed
in social groups. The ability of social experience to enhance the response of the AH
to Avp appears to be mediated by experience-dependent increases in the number of
Avpr1a in the AH (Albers et al. 2006; Cooper et al. 2005). In summary, Avp has
powerful effects on offensive aggression in male hamsters, but only if social
experience has upregulated Avpr1a receptors in the AH.

Avp can also have potent effects on aggression in male prairie voles through a
similar mechanism. Sexually naïve male voles are essentially non-aggressive,
choosing to explore intruder males as opposed to attacking them (Winslow et al.
1993). Following mating-induced pair bonding, males display high levels of
aggression toward conspecifics other than their mate and have increases in the
density of Avpr1a receptors in the AH (Gobrogge et al. 2009). Further, overex-
pression of the Avpr1a in the AH using viral vector gene transfer increases
aggression in non-pair-bonded males. Thus, in male hamsters and prairie voles,
species with very different types of social organization, an individual’s social
experience can modulate the number of Avpr1a in the AH and thereby regulate the
intensity of aggression that is expressed.

Another hypothalamic region where Avp influences aggression is the ventro-
lateral hypothalamus (VLH). Avp injected into the VLH facilitates aggression in
gonadally intact males and castrated males given testosterone but does not facilitate
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aggression in castrated controls (Delville et al. 1996). Avpr binding is also reduced
in the VLH following castration and precastration levels of binding can be restored
by testosterone. In contrast, it is not known whether testosterone influences the
ability of Avp to alter aggression when injected into the AH. However, since
castration reduces Avpr binding within this region (Delville et al. 1996), it seems
possible that castration could reduce aggression stimulated by Avp. It should be
noted that the relationship between gonadal hormones and aggression is complex;
however, it is clear that testosterone does not simply induce aggression in males (for
review, see Johnson et al. 1995; Young et al. 2000; Demas et al. 2007). In females,
while there is evidence that gonadal hormones can affect Avpr1a binding within the
VLH (Delville and Ferris 1995), the specific effects on aggression are unknown.

There are also extra-hypothalamic regions where aggression and Avp activity
have been linked. In both male rats and mice selected for varying levels of
aggression, a negative correlation has been observed between Avp fiber density in
the LS and the amount of intermale aggression (Compaan et al. 1993; Everts et al.
1997). Interestingly, these differences in Avp and aggression are not related to
differences in circulating levels of testosterone (Elkabir et al. 1990). The role of
septal Avp in aggression has also been studied in male rats bred for low or high
anxiety. Release of Avp into the LS is significantly lower in the much more
aggressive low-anxiety rats than in the high-anxiety rats that exhibit lower levels of
aggression. In addition, septal administration of Avp to the highly aggressive group
and administration of the Avpr1a antagonist to the low aggressive group did not alter
the levels of aggression expressed (Beiderbeck et al. 2007). The level of aggres-
siveness and the pattern of Avp expression in the LS and BNST are also correlated in
mice. The monogamous California mice (Peromyscus californicus) have shorter
attack latencies and increased Avp-ir in the BNST and LS compared to the polyg-
amous, white-footed mice (Peromyscus leuopus) (Bester-Meredith et al. 1999).
Interestingly, when California mice pups are cross-fostered to white-footed mice
dams, they are less aggressive in adulthood than those reared by the same species,
and they have less Avp-ir in the BNST and SON compared to controls
(Bester-Meredith and Marler 2001). These data in mice, like those from hamsters,
suggest that changes in the social environment are able to alter Avp neurocircuitry
and the behavior driven by that circuitry. In addition, although relationships between
aggressiveness and Avp expression and release within the LS have been found, Avp
may not have any direct effects on male aggression by its actions in the LS.

Despite the powerful effects of Avp on aggression in the hypothalamus, not all
central manipulations of Avp have been found to influence offensive aggression.
Although i.c.v. injections of an Avpr1a antagonist increase the latency to the onset
of aggression in highly aggressive California mice, i.c.v. injections of Avp or
Avpr1a antagonists have no effect on aggression in white-footed mice
(Bester-Meredith and Marler 2001). In non-pair-bonded male prairie voles with
extensive experience with aggression, i.c.v. administration of an Avpr1a antagonist
does not inhibit aggression (Winslow et al. 1993). There is other evidence from rats
that i.c.v. administration of Avp does not alter the expression of aggression nor does
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deletion of the Avpr1a receptor in mice (Elkabir et al. 1990; Wersinger et al.
2007b). While it is clear that Avp can stimulate Aggression by its action in some
brain sites, it remains possible that Avp might act to reduce aggression by its action
in other brain regions or by its action on other receptors (e.g., the Oxtr) to
reduce/inhibit aggression. It is also important to recognize that aggression is a
complex behavior and may be facilitated by neurochemical systems other than Avp,
at least in some cases.

In females, Avp has very different effects on offensive aggression than it does in
males. As described above, in male hamsters, injection of Avpr1a antagonists into
the AH inhibits offensive aggression and injection of Avp stimulates aggression
(Ferris and Potegal 1988; Potegal and Ferris 1990; Caldwell and Albers 2004a;
Ferris et al. 1997). In contrast, in female hamsters, an Avpr1a antagonist injected
into the AH stimulates offensive aggression and injection of Avp inhibits aggres-
sion in the resident–intruder test (Gutzler et al. 2010). More recently, similar sex
differences have been seen in the effects of Avp and Avpr1a antagonists on social
play behavior in rats (Bredewold et al. 2014; Veenema et al. 2013). For example,
injection of Avpr1a antagonists in the LS increases social play in juvenile males and
reduces social play in juvenile females. In a related study, a negative correlation
was found between Avp mRNA levels in the BNST and social play in male juvenile
rats (Paul et al. 2014). As social play is hypothesized to be a precursor to aggressive
behavior, these data are consistent with Avp-related sex differences in the regulation
of competitive behaviors.

4.3.4 The Vasopressin 1A Receptor and Maternal Aggression

Maternal aggression is an intense form of aggression displayed by lactating mothers
confronted by intruders (Lonstein and Gammie 2002). Studies using Avpr1a −/−
mice found that maternal aggression does not differ from that seen in wild-type
mice (Wersinger et al. 2007b). In contrast, i.c.v. administration of Avp in lactating
rats reduces and an Avpr1a antagonist increases aggression toward male intruders
(Nephew and Bridges 2008; Nephew et al. 2010). The effects of i.c.v. adminis-
tration of Avp and an Avpr1a antagonist on maternal aggression were also exam-
ined in rat strains that had been selectively bred for high (HAB) or low
(LAB) anxiety (Bosch and Neumann 2010). In both strains, Avp was found to
increase and an Avpr1a antagonist to decrease maternal aggression, respectively.
Other studies have used microdialysis to examine the role of Avp in specific brain
regions in the regulation of maternal aggression in HAB and LAB rats (Bosch and
Neumann 2010). In HAB, but not LAB, rats, Avp is positively correlated with
maternal aggression in the CeA but not the PVN. In addition, administration of an
Avpr1a antagonist into the CeA reduces aggression in HAB rats, while adminis-
tration of Avp into the CeA increases aggression in LAB rats. The ability of Avp to
promote maternal aggression by acting in the CeA does not appear to be restricted
to HAB rat strains since similar results have been reported in Sprague-Dawley rats
(Meddle and Bosch, unpublished; cited in, Bosch 2011). In the future, it will be
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important to clarify the effects of Avp on maternal aggression, its site(s) of action,
and whether the effects of Avp on aggression are related to anxiety levels.

4.3.5 The Vasopressin 1b Receptor and Competitive Behavior

There is compelling evidence that the Avpr1b is essential for displays of aggressive
behavior directed toward a conspecific (for review, see Caldwell et al. 2008a, c;
Stevenson and Caldwell 2012). In resident–intruder and neutral cage aggression
tests, Avpr1b −/− mice display fewer attacks and have longer attack latencies than
Avpr1b +/+ controls (Wersinger et al. 2002, 2007a). Further, in a reversal of a
resident–intruder test where the experimental mice are intruders rather than resi-
dents, Avpr1b −/− mice display normal defensive avoidance behaviors when
attacked by a stimulus animal, but are less likely to initiate retaliatory attacks
(Wersinger et al. 2007a). Pharmacological studies using the Avpr1b antagonist,
SSR149415, support the findings of work in Avpr1b −/− mice. Syrian hamsters
orally administered SSR149415 have reductions in the frequency and duration of
offensive attacks, in chase behaviors, in flank marking, and in the olfactory
investigation that often precedes and accompanies an offensive attack (Blanchard
et al. 2005). Mice given SSR149415 display fewer defensive bites when forced to
encounter a threatening predator and reductions in the duration of offensive
aggression in a resident–intruder test (Griebel et al. 2002).

The deficits in aggressive behaviors observed in Avpr1b −/− mice are not
limited to males. Following parturition, female Avpr1b −/− mice have reductions in
maternal aggressive behaviors, compared to control mice, as measured by longer
attack latencies and fewer attacks, directed toward a male intruder (Wersinger et al.
2007a). Interestingly, the disruption of the Avpr1b does not affect all forms of
aggressive behavior. In a nonsocial context, such as the predation of a cricket,
Avpr1b −/− and Avpr1b +/+ mice have similar attack latencies (Wersinger et al.
2007a). Based on the genetic and pharmacological data, it has been hypothesized
that the disruption of the Avpr1b does not specifically disrupt aggressive behavior,
but rather the ability to have the appropriate behavioral response within a given
social context (Caldwell et al. 2008c; Young et al. 2006; Stevenson and Caldwell
2012).

With prominent expression within the pyramidal neurons of the CA2 region of
the hippocampus, recent work has focused on what the Avpr1b may be doing here.
To this end, Pagani et al. 2015 have shown that replacement of the Avpr1b in the
dorsal CA2 region of Avpr1b −/− mice restores socially mediated attack behaviors.
Further, selective Avpr1b antagonists result in the production of
N-methyl-D-aspartic-acid-dependent excitatory postsynaptic responses specifically
within the CA2 region of control mice, but not Avpr1b −/− mice (Pagani et al.
2015). While the hippocampus is not currently a recognized node in the SBNN, it is
a part of the motivational pathway. The CA2 region is structurally unique, as it does
not receive rich mossy fiber input from the dentate gyrus (Tamamaki et al. 1988),
and is the only part of the hippocampus to receive input from the posterior
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hypothalamus and the perforant pathway (Bartesaghi et al. 2006; Borhegyi and
Leranth 1997; Vertes and McKenna 2000), which connects the entorhinal cortex to
the hippocampal formation (Bartesaghi and Gessi 2004). Further, there is a vaso-
pressinergic projection from the PVN to the CA2 region (Cui et al. 2013). Based on
the findings described here, we, and others, have hypothesized that the CA2 region
of the hippocampus may aid in the formation and/or recall of accessory
olfactory-based memories (Caldwell et al. 2008c; Young et al. 2006). Thus, it
seems likely that this is a region that will need to be included in future discussions
of the SBNN and its interactions with the mesolimbic DA system.

4.4 Social Communication

While Avp plays a key role in the regulation of social communication in hamsters
(see below), Oxt also contributes to its regulation. Hamsters communicate using a
form of scent marking called flank marking, and the expression of flank marking is
essential for the maintenance of dominant/subordinate relationships (Johnston
1985). After the rapid establishment of dominance, aggressive behavior declines
and flank marking increases in dominant hamsters and to a lesser extent in sub-
ordinate hamsters (Ferris et al. 1987). In the absence of flank marking, aggression
remains high and a stable relationship is not formed.

Oxt injected into the areas extending from the MPOA to the posterior medial and
lateral aspects of the AH (referred to from here on as the MPOA-AH) of dominant
female hamsters induces flank marking in a dose-dependent manner but only when
the dominant hamsters are tested with their subordinate partners (Harmon et al.
2002b). Oxt does not induce flank marking when injected into the MPOA-AH of
socially naive female hamsters tested with an opponent or alone. In males, by
contrast, Oxt induces flank marking in dominant hamsters when they are tested with
their subordinate partner or alone (Harmon et al. 2002b). These data indicate that
social experience, social context, and sex interact to regulate the ability of Oxt to
stimulate flank marking by its actions in the MPOA-AH in hamsters.

Although Oxt can stimulate flank marking, Avp plays the predominate role in
regulating its expression. Avp stimulates high levels of flank marking in male and
female hamsters by acting on the Avpr1a in the rostral hypothalamus (Ferris et al.
1984, 1985; Albers et al. 1986). It is of note that the MPOA-AH is substantially
larger than the site where Avp can induce aggression (Ferris et al. 1986a). Avp can
also induce flank marking following its injection into the LS, BNST, and PAG (Irvin
et al. 1990; Hennessey et al. 1992). Gonadal hormones modulate the ability of Avp
to stimulate flank marking by regulating the number of hypothalamic Avpr1a
(Huhman and Albers 1993; Albers et al. 1988). In the LS, BNST, and PAG, gonadal
hormones have only small effects on the ability of Avp to stimulate flank marking,
suggesting that the MPOA-AH may be the primary site where gonadal hormones
influence the ability of Avp to stimulate flank marking (Albers and Cooper 1995).
Interestingly, Avp seems to induce flank marking regardless of the social context.
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For example, in hamsters with an established dominant/subordinate relationship,
injection of Avp produces high levels of flank marking in either the dominant or
subordinate hamster during social interactions (Ferris et al. 1986b). Similar results
have been obtained in squirrel monkeys where Avp injected i.c.v. induces scent
marking in both dominant and subordinate males (Winslow and Insel 1991a).

4.5 Interactions Between Oxytocin, Vasopressin,
and Dopamine in the Regulation
of Cooperation/Competition

As discussed in detail above, Oxt and Avp act within brain regions considered to be
components of the mesolimbic DA system to influence cooperative and competitive
behaviors. There is also evidence that DA in the mesolimbic DA system plays
important roles in the regulation of both cooperative and competitive behaviors.
Non-selective DA antagonists block mating-induced partner preferences in both
male and female prairie voles, and treatment with the non-selective DA agonist
apomorphine facilitates partner preference in the absence of mating (Aragona et al.
2003; Wang et al. 1999). The NAcc shell, and not the core, appears to be the site of
action for these drugs since local administration into the NAcc shell, but not the
core, has the same effects as systemic administration. Increases in DA activity
within the NAcc that occurs following mating is necessary for the formation of pair
bonds in male prairie voles (Aragona et al. 2003). Activation of DA D2 receptors in
the NAcc can induce a pair bond in cohabiting voles in the absence of mating, while
activation of D1 receptors can block pair bonding (Aragona et al. 2006). In addi-
tion, D1 receptors are increased in the NAcc in male prairie voles following the
formation of a pair bond. Mate guarding aggression in males can also be inhibited
by D1 antagonists injected into the NAcc (Aragona and Wang 2009). Other regions
in the network also play a key role in the formation of cooperative behavior.
Pair-bonded voles have lower concentrations of D1 receptors and higher concen-
trations of D2 receptors in the medial prefrontal cortex than non-pair-bonded voles
(Smeltzer et al. 2006). Enhancement of DA release in the VTA via administration
of GABA or glutamate antagonists can also induce pair bonding in male voles
(Curtis and Wang 2005).

There is also considerable evidence that the mesolimbic DA system plays a
critical role in the regulation of competitive behavior and in particular aggression
(for review, see de Almeida et al. 2005). For instance, the non-selective DA
receptor agonist apomorphine stimulates aggression and flank marking in male
hamsters (Hyer et al. 2012). Social experience can regulate the expression of DA in
several nodes of the SBBN. The amount of the rate-limiting synthetic enzyme for
DA, tyrosine hydroxylase, increases significantly in several regions of the SBNN
including the LS and BNST as well as within the shell of the NAcc in males trained
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to fight as compared to controls (Schwartzer et al. 2013). In addition, activation of
D1 and D2 receptors in the NAcc influences the expression of aggression and its
rewarding properties (Couppis and Kennedy 2008; Miczek et al. 2002); although
selective aggression in male voles appears to require only the D1 receptor activation
(Aragona et al. 2006). While DA is involved in various aspects of the preparation,
expression, and consequences of aggression, its precise role remains elusive.

The importance of interactions between Oxt, Avp, and DA in social motivation
has been widely discussed, and yet there are few studies demonstrating a direct link
between these neuropeptides and DA in controlling social behavior. Partner pref-
erences induced by the activation of D2 receptors in the NAcc can be prevented by
administration of an Oxtr antagonist and partner preference induced by i.c.v. Oxt
administration can be blocked by a D2 antagonist administered in the NAcc (Liu
and Wang 2003). In addition, overexpression of Avpr1a in the VP of the
non-pair-bonded meadow voles results in mating-induced partner preferences that
can be blocked by a D2 antagonist given prior to mating (Lim et al. 2004).

Despite the mounting empirical evidence suggesting that Oxt and Avp can directly
interact with DA to influence social behavior, the majority of evidence for this
interaction comes from studies showing either that Oxt and/or Avp act within
structures that comprise the mesolimbic DA system, or that manipulations of DA can
influence the same social behaviors that are influenced by Oxt and Avp. Interestingly,
there are very little data on whether Oxt or Avp might contribute the rewarding
properties of social behavior. A limited amount of data suggest that Oxt can induce a
conditioned place preference (CPP) when given peripherally to male rats or centrally
to female mice (Liberzon et al. 1997; Kent et al. 2013). Recently, we investigated
whether injection of Oxt or Avp into the VTA could produce a conditioned place
preference in male hamsters (Song et al. 2014a). Both Oxt and Avp increase CPP
when injected into the VTA. The administration of selective Oxt and Avpr1a agonists
and antagonists revealed that the rewarding properties of both Oxt and Avp in the
VTA are mediated by the Oxtr and not the Avpr1a.

5 Cooperativity and Competitiveness in Humans

As we all know, cooperation and competition are a hallmark of nearly all human
endeavors. Successful cooperation and competition require a set of social skills
collectively termed social cognition, which allow an individual to engage in social
behaviors that are appropriate for a particular context. Since the emergence of the
social cognition field in the late 1960s and early 1970s, there has been a concerted
scientific effort to understand the complicated cognitive processes that underlie
human social interactions. While social cognition and many disciplines that are
brought to bear in this field are interesting, there is accumulating evidence that Oxt
and Avp in humans are important to social cognition. This section will highlight
what we know about Oxt and Avp in humans, in particular how exogenous
administration of these nonapeptides impacts measures of social cognition.
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As described throughout this chapter, there is considerable compelling evidence
that Oxt promotes social behaviors, at least in specific contexts. In humans, the
study of social behaviors includes testing procedures designed to measure trust, the
ability to read facial expressions, the memory for socially salient information, such
as faces, and more recently measures of empathy. In most human studies focused on
the therapeutic effects of Oxt and Avp, they are exogenously administered intra-
nasally. This delivery system is preferable as it is considered noninvasive and some
assert that Oxt and Avp are able to cross the blood–brain barrier (Born et al. 2002);
however, this latter assertion is questionable given their size, hydrophilic nature, as
well as numerous other issues.

5.1 Nonapeptides and Social Cognition in Healthy Humans

5.1.1 Oxytocin and Social Cognition in Humans

Investigation into the role of Oxt in human cognition has dramatically increased over
the last decade. More recently, attempts have been made to reconcile the existing
data on the role of Oxt into a broader theory and understanding of human cognition.
For example, De Dreu proposes that Oxt plays a critical role in the motivation of
cooperation and competition in humans (De Dreu and Kret 2015; De Dreu 2012).
This hypothesis stems from the idea that humans are social animals and are likely to
cooperate with others, even with those genetically unrelated. He suggests that Oxt
motivates humans to like and empathize with others in their group, to comply with
group norms, and to reciprocate trust with other group members, while competing
with out-group members. While De Dreu’s hypothesis is in reference to the
endogenous Oxt system, this idea is supported by some recent work using intranasal
Oxt. Essentially, intranasal Oxt increases “in-group” favoritism when individuals are
asked to use intuitive decision making; however, Oxt has an opposite effect if
individuals are asked to use reflective decision making (Ma et al. 2015). These data
suggest that an individual’s “cognitive style” may contribute to the effects of Oxt,
which has implications for both endogenous and exogenous Oxt.

Given the literature in animal models, and the proposed prosocial effects of Oxt,
in recent years, there has been a surge in the number of clinical studies that have
administered exogenous Oxt to improve social interactions in healthy individuals.
While the data do suggest that intranasal Oxt as a therapeutic agent has some
efficacy, long-term and dose–response studies have yet to be completed. In humans,
intranasal Oxt may influence the processing of social information in several ways,
including selective attention, enhancement of the memory, and/or the appraisal of
socially relevant information (Guastella and MacLeod 2012). Intranasal Oxt also
increases trust, as measured by an individual’s willingness to accept social risk
during a social interaction (Zak et al. 2005; Kosfeld et al. 2005). However, similar
to what is observed in other species, the effects of Oxt on trust are nuanced and
often sex specific. For instance, if subjects are provided with information that
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suggests that a trustee is untrustworthy, then intranasal Oxt does not facilitate trust,
or as the authors state, “Oxt makes people trusting, not gullible” (Mikolajczak et al.
2010). In females that have had their trust betrayed, intranasal Oxt results in less
restoration of trust behavior compared to controls (Yao et al. 2014). However, in
males, intranasal Oxt does not alter trust behavior in individuals that have had their
trust betrayed, whereas placebo controls decrease their trust in response to betrayal
(Baumgartner et al. 2008). Further, when intranasal Oxt treatment in males is
coupled with functional magnetic resonance imaging (fMRI), there is a reduction in
activity in areas of the brain associated with processing fearful stimuli, such as the
amygdala and some areas of the midbrain, and reward feedback, such as the
striatum (Baumgartner et al. 2008).

Oxt also has sex-specific effects in the context of reciprocal altruism, as mea-
sured using the prisoner’s dilemma game, which examines cooperative exchange
(Chen et al. 2015b; Feng et al. 2014; Rilling et al. 2014). Specifically, intranasal
Oxt administered to females causes them to treat computer partners more like
human partners; this same effect is not observed in males (Rilling et al. 2014). In
this same context, there are also striking sex differences in neural activation, as
measured by fMRI. In males, Oxt increases activation in the caudate/putamen while
decreasing activation in females. The authors suggest that in this context, Oxt may
increase the reward or salience of positive social interactions among males, while
having the opposite effect in females (Feng et al. 2014; Rilling et al. 2014). Recent
work also indicates that Oxt selectively improves kinship recognition in women but
not men and that Oxt improves men’s performance in competition recognition
(Fischer-Shofty et al. 2013). Taken together, these data suggest that intranasal Oxt
does not universally promote social interactions, but rather that the effects are subtle
and dependent upon the social context and sex of the individuals. As mentioned
previously, there has been a flood of clinical studies using intranasal Oxt, and with
those studies, there is evidence that it can improve the ability to infer another
individual’s mental state, improves facial recognition memory, alters the processing
of faces, and can facilitate empathy (Heinrichs et al. 2009; Rimmele et al. 2009;
Domes et al. 2007; Guastella et al. 2008, 2009; Zak et al. 2007; Hurlemann et al.
2010; Unkelbach et al. 2008; Bos et al. 2015).

While the intranasal administration of Oxt can definitely influence aspects of
social cognition, it is the individual differences in endogenous Oxt and their asso-
ciation with social cognition that is equally, if not more, important. Not only are
individual differences in Oxt genetically heritable (Rubin et al. 2014), but also they
appear to be stable (Feldman et al. 2007) and can be modulated by social interactions
(Feldman et al. 2010). Further, individual differences in Oxt and Oxt signaling may
increase an individual’s vulnerability to certain neuropsychiatric disorders charac-
terized by altered social cognition; see the section titled “Implications for
Neuropsychiatric Disorders.” Some recent work suggests that endogenous Oxt
may underlie natural variations in social perception (Lancaster et al. 2015). Further,
in a more recent study, plasma Oxt is associated with increases in activity in brain
areas that are important to social cognition such as the superior temporal sulcus,
inferior frontal gyrus, and medial prefrontal cortex (Lancaster et al. 2015).
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Interpretation of some of the aforementioned data is muddled by our lack of
understanding about the functional relationship between peripheral and central Oxt.
But, it does follow that peripheral physiology and central physiology (behavioral
output) are often going to be coupled, even if the systems are separate. However,
while there is some evidence that they can be associated with one another (Landgraf
and Neumann 2004), this does not always appear to be the case (Amico et al. 1990;
Rosenblum et al. 2002; Winslow et al. 2003; Leng and Ludwig 2015).

5.1.2 Vasopressin and Social Cognition in Humans

The role of Avp in the regulation of social behavior in humans has not been studied
as extensively as Oxt, though it is often associated with antisocial rather than
prosocial behaviors. In males, intranasal Avp increases electromyogram
(EMG) activity to socially neutral facial expressions (Thompson et al. 2004), as
well as the memory for happy and angry faces (Guastella et al. 2010b). This
suggests that Avp acts to bias an individual to perceive a neutral stimulus as an
aggressive or threatening stimulus or enhances the encoding of negative social cues
(Thompson et al. 2004; Guastella et al. 2010b). In females, Avp decreases EMG
responses to happy and angry faces, suggesting that Avp acts to increase the per-
ception of friendliness (Thompson et al. 2006). These sex-specific responses to Avp
are supported by other studies as well (Feng et al. 2014; Rilling et al. 2014;
Thompson et al. 2006) and may reflect sex differences in Avp neurochemistry and
in the types of behavioral strategies employed during social interactions. Other
effects include decreases in emotional recognition in men (Uzefovsky et al. 2012)
and increases in empathy concern in individuals who received more “parental
warmth” in their early family life (Tabak et al. 2015). It should be noted that the
same issues that plague intranasal Oxt studies, such as the separation of central and
peripheral Avp, are issues with the aforementioned studies as well.

5.2 Oxytocin, Vasopressin, and the Mesolimbic Dopamine
System

Studies employing nasally administered Oxt and Avp have found numerous
examples where these peptides alter the activity in various structures of the
mesolimbic DA system. For example, Oxt augments the ventral striatum response
to viewing the faces of romantic partners and to reciprocated cooperation from
human partners (Rilling et al. 2012; Scheele et al. 2013). In women, Oxt increases
activity in the VTA in response to both positive and negative facial expressions, but
reduces the VTA response to reciprocated cooperation (Groppe et al. 2013; Chen
et al. 2015a). While it is clear that Oxt and Avp can significantly alter activity in
several structures in the mesolimbic DA system, the functional significance of these
responses is not known. It is also possible that these neuropeptides alter social
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motivation without engaging DA neurons. For example, recent data suggests that
Oxt enhances the attractiveness of female faces and correlates with increased
activity in the striatum, while having no measureable impact on DA signaling
(Striepens et al. 2014). However, more sensitive methods may be needed to detect
subtle changes in behaviorally evoked DA release.

6 Implications for Neuropsychiatric Disorders

Oxt and Avp have also been implicated in a variety of neuropsychiatric disorders,
particularly those characterized by aberrant social interactions and/or heightened
aggression, such as ASD, personality disorder, schizophrenia, and posttraumatic
stress disorder (PTSD). Further, many of these neuropsychiatric disorders are also
characterized by dysfunctions of the mesolimbic DA system (for review, see
Dichter et al. 2012). As many of these disorders are complex and have multiple
etiologies, it becomes even more important not only to understand the potential
contributions of Oxt and Avp, as well as their therapeutic effects, but also to
determine how these systems interact with the DA system.

6.1 Autism Spectrum Disorder

ASD is characterized by repetitive behaviors, communication difficulties, and
abnormal sociability (Matson and Nebel-Schwalm 2007a, b). In preclinical models
of ASD, specifically Oxt −/− and Oxtr −/− mice, behavioral deficits are observed
that are consistent with some of the symptoms of ASD (Crawley et al. 2007; Lee
et al. 2008a, b; Macbeth et al. 2009; Wersinger et al. 2008; Winslow and Insel
2002; Ferguson et al. 2000, 2001). Evidence that Oxt may have a role in ASD
comes from several sources. There are reports of reduced concentrations of Oxt in
the cerebral spinal fluid (CSF) of autistic children, and reduced CSF Oxt is cor-
related with impairments in social functioning (Modahl et al. 1998). There are also
increases in the amount of the Oxt prohormone in the blood of autistic children,
which is indicative of incomplete processing of Oxt into its biologically active form
(Green et al. 2001). Oxt treatment in adults with ASD results in the reduction of
repetitive behaviors and improvements in emotional recognition (Hollander et al.
2003, 2007) and can increase eye gazing, a behavior important to social commu-
nication (Auyeung et al. 2015). In youth and adults with ASD, intranasal Oxt
enhances emotion recognition (Domes et al. 2013, 2014; Guastella et al. 2010a) and
increases social interactions (Andari et al. 2010). Further, in adults with Asperger’s
syndrome, Oxt-mediated increases in emotional recognition are associated with an
increase in activity in the left amygdala (as measured in fMRI) (Domes et al. 2014).

There are also some genetic and epigenetic links between the Oxt system
and ASD. There are data in the Chinese Han population, in Finnish families,
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in Caucasian children, and in individuals with “high-functioning” ASD, suggesting
that portions of the OXTR gene may contain susceptibility loci for ASD (Wu et al.
2005; Ylisaukko-oja et al. 2006; Jacob et al. 2007; Wermter et al. 2010; Nyffeler
et al. 2014). Epigenetic modifications of the OXTR gene have also been reported,
with hypermethylation of the OXTR promoter found in ASD subjects and subse-
quent reductions in OXTR mRNA (Gregory et al. 2009). A more recent study
focused on whether the levels of DNA methylation of the OXTR could predict
individual variability in social perception found that there are significant associa-
tions between the degree of OXTR methylation and social perception (Jack et al.
2012). Though the sample sizes in these latter two epigenetic studies are small, the
data are provocative and will likely facilitate more research in this area.

Data implicating Avp in the etiology of ASD are sparse, but there have been
studies suggesting that polymorphisms of the AVPR1A may contribute to ASD
(Kim et al. 2002; Wassink et al. 2004; Yirmiya et al. 2006; Kantojarvi et al. 2015;
Tansey et al. 2011). Further, two of the polymorphisms, RS3 and RS1, have been
linked to differential activation of the amygdala (Meyer-Lindenberg et al. 2009),
providing a possible neural substrate with which the Avp system may interact to
mediate a genetic risk for ASD.

6.2 Personality Disorder

Personality disorder is characterized by disconnect between an individual’s
behavior and cultural norms. Those diagnosed with personality disorder have
impairments in at least two of the following areas: (1) cognition, (2) affectivity,
(3) interpersonal functioning, and (4) impulse control (American Psychiatric
Association 2013). To date, only a handful of studies have examined how exoge-
nous Oxt treatment affects individuals diagnosed with personality disorder, and they
have been performed primarily in individuals diagnosed with borderline personality
disorder (BPD). Females diagnosed with BPD and treated with intranasal Oxt have
reductions in stress reactivity (Simeon et al. 2011), decreases in hypersensitivity to
threat, and decreases in amygdala activation in response to angry faces compared to
controls; suggesting that Oxt in these individuals may decrease their reaction to a
perceived social threat (Bertsch et al. 2013; Brune et al. 2013). This same research
group also reports that females with BPD have reduced plasma Oxt concentrations
(Bertsch et al. 2012). There are also data that suggest that intranasal Oxt can worsen
trust in BPD and that this worsening is correlated with the patients’ history of
childhood trauma (Ebert et al. 2013). One issue with all of the aforementioned
studies is that BPD patients were not used as controls, only healthy individuals,
making it more difficult to parse out what is going on specifically within BPD
patients. However, these data do reinforce the importance of past history and social
context.
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One study has measured Oxt in the CSF of individuals with personality disorder,
which includes individuals diagnosed with intermittent explosive disorder, as well
as BPD. This study found that while CSF Oxt concentrations are not correlated with
having a personality disorder, a life history of suicidal behavior is inversely cor-
related with Oxt (Lee et al. 2009b). The authors suggest that these data are con-
sistent with the previous work in animal models demonstrating that Oxt can reduce
aggressive behaviors (Consiglio and Lucion 1996; Giovenardi et al. 1998; Harmon
et al. 2002a; Bales and Carter 2003).

Since individuals diagnosed with a personality disorder often have more
impulsive behaviors, which can result in increased aggression, it is not surprising
that Avp has been examined in these individuals. However, the data appear to be
contradictory. A study by Coccaro et al. (1998) found a positive correlation
between Avp in the CSF of personality-disordered individuals that have a life
history of aggressive behavior. However, an earlier study found no differences in
CSF Avp between violent offenders and controls (Virkkunen et al. 1994). It may be
that differences in the populations studied account for the inconsistency in the
findings, but it seems that more work in this area is warranted.

6.3 Schizophrenia

There are three broad categories of symptoms that characterize schizophrenia:
(1) positive (e.g., hallucinations and delusion), (2) negative (e.g., anhedonia,
impaired social behavior), and (3) cognitive/attentional (e.g., impaired memory and
executive function) (American Psychiatric Association 2013). However, in humans,
while its role has remained controversial, Oxt has been linked to schizophrenia
since the 1970s when it was used as an antipsychotic (Bujanow 1974, 1972; for a
recent review, see Rich and Caldwell 2015). Altered CSF concentrations of Oxt are
reported in patients diagnosed with schizophrenia (Beckmann et al. 1985;
Linkowski et al. 1984). However, the data are conflicting with some studies
reporting an increase in Oxt and the Oxt carrier protein neurophysin I (Linkowski
et al. 1984; Beckmann et al. 1985) and another reporting no change in CSF Oxt
concentrations (Glovinsky et al. 1994). However, patients with higher plasma levels
of Oxt have less severe positive symptoms and exhibit fewer social deficits (Rubin
et al. 2010, 2011).

There are also reports of SNPs in the promotor regions of the OXT and OXTR
genes that may contribute to symptom severity and treatment efficacy in schizo-
phrenic patients (Teltsh et al. 2012; Watanabe et al. 2012; Montag et al. 2013).
SNPs of the OXTR gene are associated with the severity of symptoms and the
improvement of the positive symptoms of schizophrenia following treatment with
antipsychotics (Souza et al. 2010a, b). Additionally, postmortem analysis of brain
tissue from unmedicated schizophrenia patients has altered immunoreactivity of the
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Oxt carrier protein, neurophysin I, in the PVN, internal palladium, and substantia
nigra (Mai et al. 1993). Most recently, in patients with schizophrenia and poly-
dipsia, decreases in plasma Oxt were found to correlate with the ability to correctly
identify facial emotions (Goldman et al. 2008). Thus, it appears that alterations in
the Oxt system underlie all three symptom domains. Given the dysregulation of the
Oxt system in patients with schizophrenia, Oxt has been studied as a candidate for
use as a therapeutic.

Some studies suggest that Oxt may have antipsychotic properties (for review, see
Macdonald and Feifel 2012; Bakermans-Kranenburg and van Jzendoorn 2013).
Previous work found that injections of Oxt can reduce the symptoms of psychosis
and anhedonia in patients with schizophrenia (McEwen 2004; Churchland and
Winkielman 2012). In healthy patients, intranasal Oxt increases holistic processing,
divergent thinking, and creative cognition (De Dreu et al. 2013), and studies in
schizophrenic patients report that intranasal Oxt can be beneficial. Specifically,
intranasal Oxt can facilitate social cognition (Davis et al. 2013; Feifel et al. 2010;
Pedersen et al. 2011; Averbeck et al. 2012) and alleviate some of the cognitive
deficits and positive symptoms (Pedersen et al. 2011). Yet, intranasal Oxt may be
most effective as an adjunctive therapy to already prescribed antipsychotics, where
chronic Oxt treatment is able to ameliorate some of the negative symptoms and the
cognitive deficits, as well as the positive symptoms (Feifel et al. 2010, 2012;
Modabbernia et al. 2013). While this research suggests that Oxt treatment has the
potential to improve symptoms in all three domains, where in the brain and how
these effects are mediated remains unknown.

Support for a potential role for Avp in schizophrenia comes from studies indicating
that treatment with neuroleptics improves psychiatric symptoms and reduces (or
normalizes) Avp in blood plasma (Peskind et al. 1987; Raskind et al. 1987). In studies
using an animalmodel that lacksAvp, theBrattleboro rat, there are reports of deficits in
behaviors associated with schizophrenia, specifically social discrimination and pre-
pulse inhibition of the startle reflex; these deficits can be rescued following treatment
with antipsychotics (Feifel and Priebe 2001, 2007; Feifel et al. 2004, 2007, 2009).

Given that schizophrenia is a complicated multiple etiology neuropsychiatric
disorder, it may be that Oxt and Avp only contribute to certain types of
schizophrenia. Further, it is likely that their action within specific parts of the brain
is particularly important. Thus, the use of preclinical models continues to be critical
to help improve our understanding of the specific neural substrates where these
neuropeptides may act to contribute to the symptoms associated with schizophrenia
as well as to determine their therapeutic efficacy (for review, see Rich and Caldwell
2015; Feifel 2011, 2012; Rosenfeld et al. 2010).

6.4 Posttraumatic Stress Disorder

Work examining Oxt and Avp in the context of PTSD has only recently begun, but
PTSD is characterized by some symptoms related to Oxt and Avp function.
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Specifically dysregulation of stress reactivity and problems with intimate rela-
tionship interactions, which relies on normal social cognition (American Psychiatric
Association 2013; Monson et al. 2009). While there have been no clinical studies
looking at Oxt, intranasal Oxt has been proposed to be used as an adjunctive
treatment to help enhance psychotherapy, as it may help ultimately reduce the fear
response at the level of the amygdala and diminish the hormonal stress response
(Koch et al. 2014). In regard to Avp, there has been one clinical study. Intranasal
Avp administered to men, but not women, diagnosed with PTSD results in
improved social cognition with their heterosexual partner. Further, men’s urinary
Avp is negatively correlated with the severity of their PTSD (Marshall 2013). While
these data are limited in scope, they do suggest that understanding the role of Avp
in modulating social cognition may have clinical relevance in some psychiatric
conditions.

7 Conclusions and Future Directions

Oxt and Avp are key neurochemical signals that act throughout the brain to
influence socially motivated behaviors, having powerful effects on both cooperative
and competitive behaviors mediated by their actions within the SBNN. There is also
a substantial body of evidence that the mesolimbic DA system is involved in
regulating cooperative and competitive behaviors. More recently, these two net-
works have been combined into a larger social decision-making network. However,
there is a lack of understanding about the neurochemical linkages between the
“social” and “motivational” elements within these networks. We propose that the
Oxt and Avp systems represent a bridge between the social and motivational ele-
ments. More specifically, we propose that Oxt and Avp provide the critical links
between specific elements of the SBNN and DA within the motivational network
that produce the forces that drive social behaviors. While there is little direct
support for this hypothesis, there is ample evidence that Oxt and Avp can act within
structures comprising the mesolimbic DA system and that manipulations of DA can
influence the same social behaviors as Oxt and Avp.

These interactions also have important implications for neuropsychiatric disor-
ders characterized by aberrant social behaviors, particularly those with known
disruptions in Oxt and Avp signaling. Rigorous testing of preclinical models
continues to be the best way to uncover the specific mechanisms (i.e., neuro-
chemistry, substrates, and circuits) that are important to socially motivated
behaviors. Thus, it is crucial that a variety of species be studied to help determine
both the conserved and unique mechanisms of Oxt and Avp actions across
development, sexes, and behaviors. Overall, this is an exciting time in the field of
socially motivated behaviors, with the advent of new experimental tools and an
improvement in our ability to examine entire circuits we are now on the brink of
making significant leaps in our understanding of these systems.
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