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Abstract Communication across the brain networks is dependent on neuronal
oscillations. Detection of the synchronous activation of neurons can be used to
determine the well-being of the connectivity in the human brain networks. Well-
connected highly synchronous activity can be measured by MEG, EEG, fMRI, and
PET and then analyzed with several types of mathematical algorithms. Coherence is
one mathematical method that can detect how well 2 or more sensors or brain
regions have similar oscillatory activity with each other. Phase synchrony can be
used to determine if these oscillatory activities are in sync or out of sync with each
other. Correlation is used to determine the strength of interaction between two
locations or signals. Granger causality can be used to determine the direction of
the information flow in the neuronal brain networks. Statistical analysis can be
performed on the connectivity results to verify evidence of normal or abnormal
network activity in a patient.
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1 Introduction

The interest in detecting and imaging the functional properties of the brain’s net-
works is driving the development of advance mathematical imaging techniques and
analysis. This in turn guides the need to understand the different techniques for
measuring and for analyzing the location and strengths of these functional brain
networks (Cabral et al. 2014). Brain connectivity networks can be subdivided into 3
main categories: neuroanatomical, functional and effective connectivity (Friston
et al. 1993; Sakkalis 2011; Greenblatt et al. 2012).

Neuroanatomical connectivity or structural connectivity is based on detection of
the fiber tracts that physically connect the regions of the brain. Figure 1 is a
representative image of how the fiber tracts in the human brain appear (Kubicki
et al. 2005). These fiber tracts are detected using Diffusion magnetic resonance
imaging (MRI). Diffusion MRI measures the water anisotropy in the white matter of
the brain. Diffusion tensor imaging (DTI) (Le Bihan et al. 2001) estimates the
direction and strength of anisotropic diffusion in each voxel while diffusion spec-
trum imaging (DSI) explores the strength of anisotropy in all directions, allowing
the detection of the crossing of multiple fibers in a single voxel (Wedeen et al.
2008). To date, several DTI studies support the notion that frontal-temporal con-
nectivity in the brain is likely disrupted in schizophrenia along with reduced
organization of the cortico-cortical connections (Kubicki et al. 2005; Rotarska-
Jagiela et al. 2008; White et al. 2011). DTI is a method to determine local fiber tract
orientation which can be used to identify and analyze fiber tract pathways. The
Human Connectome Project is compiling a neural connectivity database of diffu-
sion MRI studies (Van Essen et al. 2013). More information can be found at their
website: www.humanconnectomeproject.org.

Fig. 1 Fiber traces from a human brain are colored such that fibers with similar endpoints are
assigned similar colors. Slices from a T2-weighted volume add additional understanding of the
anatomy. The view of the fiber traces on the left is coronal, while the view on the right is sagittal.
(Kubicki et al. 2005)
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Functional connectivity is established by identifying correlations of activity
between multiple regions of the brain involved in basal brain/body function or
higher order information processing that is required for sensory responses, motor
responses, and intellectual or emotional processing. During cognitive and sensory
processing, brain activity is characterized by bursts of information flow and cor-
related network activity. These bursts of regional brain activity are called nodes,
and the links to other nodes are called edges (the fiber pathways). These regions
(nodes) may only be active for a short period of time which emphasizes the
dynamic fluctuation of information flowing around the brain during cognitive or
sensory processing, or they may be active for minutes, hours, or even days as in the
case of the epileptic network (Towle et al. 2007). Further, brain networks have
frequency-dependent characteristics that differ with the scale of brain region that is
measured. Recent studies of functional connectivity in patients with schizophrenia
have shown beta- and gamma-band activity is abnormal (Hinkley et al. 2011). The
dysfunctional oscillations in these frequencies may be due to abnormalities in the
rhythm generating networks of GABA interneurons and cortico-cortical connec-
tions (Uhlhaas and Singer 2010). Coherence and phase synchrony are common
mathematical methods for quantifying frequency-dependent coordination of brain
activity. Figure 2 is an example of power distribution verses frequency graphs,
frequency verses time as well as sensor space topography map of the phase syn-
chrony differences between groups in the lower panel (Uhlhaas and Singer 2010).
Functional connectivity does not determine the specific direction of information
flow in the brain or an underlying structural model. It just shows that these regions
are connected.

Effective connectivity takes functional connectivity one step further and deter-
mines the direct or indirect influence that one neural system may have over another,
more specifically the direction of the dynamic information flow in the brain (Cabral
et al. 2014; Horwitz 2003). Using mathematical techniques such as Granger cau-
sality, Hilbert transform, transfer entropy, and correlation, locations in the brain can
be identified as a sender or receiver of the information flowing in the brain. Flow of
information in the brain networks during a finger-tapping task is displayed in Fig. 3,
where functional connectivity is seen in yellow and the effective connectivity is
depicted by the arrows (Gross et al. 2002).

Analytical techniques for estimating functional or effective connectivity of the
brain to determine if or how 2 or more sensors or locations are connected/coupled
fall under these main categories linear and nonlinear, bivariate, and multivariate.
Bivariate techniques are mathematical algorithms that determine how activity at 2
brain locations or electrodes is related to each other based on the evaluation of the
frequencies and patterns of neuronal oscillations. After performing the connectivity
analysis, then the results can be put into graph or matrix format for further analysis.
Figure 4 represents modes of brain connectivity in the macaque cortex along with
their corresponding matrices (Honey et al. 2007). Weighted undirected functional
connectivity forms a full symmetric matrix, with each of the elements encoding
statistical dependence or proximity between two nodes (recording sites, regions). A
threshold may be applied to yield binary undirected graphs. Effective connectivity
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< Fig. 2 Neural oscillations and synchrony in schizophrenia. a Auditory steady state responses in
patients with schizophrenia (ScZ) show lower power to stimulation at 40 Hz than control subjects.
b Sensory evoked oscillations during a visual oddball task in patients with schizophrenia indicate
the phase-locking factor of oscillations in the 20-100 Hz frequency range in the occipital cortex
for healthy controls and patients with schizophrenia. ¢ Dysfunctional phase synchrony during
Gestalt perception in schizophrenia was significantly reduced relative to controls. In addition,
patients with schizophrenia showed a desynchronization in the gamma band (30-55 Hz) in the
200-280 ms interval. The bottom panel shows differences in the topography of phase synchrony in
the 20-30 Hz frequency range between groups. Red lines indicate less synchrony between two
electrodes in patients with schizophrenia than in controls. Green lines indicate greater synchrony
for patients with schizophrenia (Uhlhaas and Singer 2010)

Fig. 3 The map represents spatial distribution of coherence (in the 6-9 Hz range). Dynamic
imaging of coherent sources were applied to MEG data. The dominant coupling direction is
indicated by arrows. Note that left thalamus and right cerebellum are projected to the left surface
for easier visualization (Gross et al. 2002)

yields a full non-symmetric matrix. Applying a threshold to these matrices yields
binary directed graphs.

Brain signals are usually recorded by electroencephalography (EEG), magne-
toencephalography (MEG), functional magnetic resonance imaging (fMRI), and
positron emission tomography (PET). Recent developments have advanced the
ability for connectivity to image directly into the specific regions of the brain (called
source space, Fig. 3); in past years, connectivity was seen by connecting lines
between electrodes or coils that had similar frequency profiles on the brain surface
(called sensor space, bottom of Fig. 2). Figures 2 and 3 depict these 2 different types
of images. In this review, we will discuss how brain connectivity can be detected
and recorded and the different measures of connectivity used to display the brain
networks. We will also include various studies of connectivity where the results
may be clinically applicable.
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Fig. 4 Modes of brain connectivity. Sketches at the rop illustrate structural connectivity (fiber
pathways), functional connectivity (correlations), and effective connectivity (information flow)
among four brain regions in macaque cortex. Matrices at the bottom show binary structural
connections (left), symmetric mutual information (middle), and non-symmetric transfer entropy
(right) (Sporns 2007). Data were obtained from a large-scale simulation of cortical dynamics
(Honey et al. 2007)

2 Measures

When we investigate how the human brain functions, we tend to compare it to a
computer’s circuit board. There are locations in the brain that perform certain tasks
such as feeling, tasting, smelling, hearing, and seeing. These last two are similar to
the computer’s ability to produce sounds and display images. Connectivity mea-
sures of the brain are performed to try to map out the communication networks
(cortical circuits) needed for the brain to function. These networks are made up of
neurons that function in unison to send signals to other parts of the brain. There are
several properties of the neuron that play an important role in generating membrane
potential oscillations that can be detected by neuroimaging devices. Neurons
communicate with other neurons by releasing one of over 50 different types of
neurotransmitters in the brain some of which are excitatory (stimulate the brain) and
some are inhibitory (calm the brain) (Chana et al. 2013). Voltage-gated ion chan-
nels generate action potentials and periodic spiking membrane potentials which
produces oscillatory activity and facilitates synchronous activity in neighboring
neurons (Llinas 1988; Llinas et al. 1991). Coherent neuronal communications are
based on neurotransmission dynamics dictated by major neurotransmitters such as
the amino acids glutamate and GABA. Other important neurotransmitters include
acetylcholine, dopamine, adrenaline, histamine, serotonin, and melatonin (Stephan
et al. 2009; Haenschel and Linden 2011; Wang 2010). There is growing evidence
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that glutamatergic dysregulation may underlie schizophrenia and psychosis (Chana
et al. 2013).

Synchronized activity of large numbers of neurons can give rise to large
magnetic field and electric field oscillations, which are detected by EEG/MEG
(Hamalainen et al. 1993) and the secondary metabolic responses are detected by
fMRI/PET (Ogawa et al. 1990). Coherent activity within the whole brain is evi-
dence for a network of dynamic links (edges) between different brain regions
(nodes) that distribute information (Varela et al. 2001). Detection of normal or
abnormal networks can provide information on the underlying developmental and/
or neurological disorder.

EEG uses electrodes pasted or glued to specific locations on the scalp that record
the electric potential at the skin surface. MEG on the other hand uses coils sus-
pended in a helmet placed around the head to detect the changing magnetic fields
just outside the head. Both EEG and MEG signals come from the activation of
neurons. EEG measures voltage potentials determined by electrical impedance
boundaries of head structures that shape volume currents (return currents) where as
MEG measures the magnetic field of primary or intracellular current flow. For a
review of mathematical equations of connectivity measures used in EEG and MEG
for neurologic disorders see Sakkalis (2011) or Greenblatt et al. (2012).

PET and FMRI measure the secondary or metabolic response from neuronal
activation. They are both indirect measures of neuronal activation with low tem-
poral resolution on the order of seconds. PET uses a radioactive-labeled tracer,
tagged to glucose (blood sugar) that is injected into the subject to detect the parts of
the brain that require energy to function (the glucose response). FMRI uses a strong
magnetic field and radio waves to look at blood flow in the brain to detect areas of
activity that need more oxygen to function (the hemodynamic response). The
translation from the hemodynamic response or the glucose response back to the
actual synaptic neuronal function is still not fully understood (Goense and Logo-
thetis 2008; Logothetis and Pfeuffer 2004) For a review of connectivity measures of
fMRI and PET for neurologic disorders see Rowe (2010).

Functional and effective connectivity techniques are dependent on calculating
the communication of active neural signals that are oscillating over short and long
periods of time. Techniques such as EEG and MEG, with their excellent temporal
resolution, are optimal for calculating connectivity (Sakkalis 2011; Greenblatt et al.
2012). Traditionally to determine connectivity in the EEG or MEG, a frequency
analysis was performed to convert the original EEG or MEG data into its frequency
content; then, coherence analysis was used to obtain information about the temporal
relationships of frequency components at different recording sites (electrode or
coil). The results of the coherence analysis were typically displayed in sensor space
using a template of the head with lines connecting the electrodes or coils that are
coherent with each other. These results can now be displayed in source space due to
improve analytical techniques.

MEG and EEG data are usually filtered and have noise artifacts removed prior to
advanced analysis. In some cases, it maybe helpful to first decompose a signal in
temporal and spatial modes using techniques such as principle component analysis
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(PCA) or independent component analysis (ICA). These techniques can be used to
extract a particular signal of interest (i.e., an epileptic seizure) or an artifact signal
such as cardiac activity to be removed from all the data channels.

3 Network Connectivity Measurement

Network connectivity measurements can be measured in the frequency domain with
methods such as coherence and phase synchrony and in the time domain with
methods such as correlation and Granger causality.

4 Coherence and Phase Synchrony

First, we look at the frequency domain methods for calculating neuronal networks;
these tend to be symmetrical providing no information on directionality.

4.1 Coherence

Coherence is used to determine if different areas of the brain are generating signals
that are significantly correlated (coherent) or not significantly correlated (not
coherent), using a scale of 0—1. coherence is a measure of the synchronicity of the
neuronal patterns of oscillator activity. The coherence analysis is a technique that
can be applied to study functional relationships between spatially separated scalp
electrodes or coils and to estimate the similarities of waveform components gen-
erated by the neurons in the underlying cortical regions (French and Beaumont
1984). Transients and oscillations of brain electric activity are found in MEG and
EEG recordings of spontaneous brain activity. Coherence differs from correlation
because the assessment of brain synchrony is done for very narrow frequency bands
where the band activity is quantified by an amplitude and phase. These transient
waveform oscillations can be quantified by first applying a time—frequency
decomposition technique such as the fast Fourier transform (FFT), of a contiguous
or slightly overlapping sequence of short data segments. This generates a sequence
of amplitude/phase components for each narrow frequency bin of the FFT that
spans the frequency content of the data. After transformation to a time—frequency
representation, the strength of network interactions can be estimated by calculation
of coherence, which is a measure of synchrony between signals from different brain
regions for each FFT frequency component. This is the most common measure to
describe how two or more time series are related. Strictly speaking, coherence is a
statistic that is used to determine the relationship between 2 data sets. It is used to
determine if the signal content of 2 inputs is the same or different. If the signals
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measured by 2 electrodes or coils are identical, then they have a coherence value of 1;
depending on how dissimilar they are, the coherent value will approach 0. It is
commonly used to estimate the spectral densities of two signals and so is equivalent to
a correlation coefficient in the frequency domain. Unlike correlation, coherence has a
range of 0-1, and since each FFT yields one pair of FFT components, multiple
independent segments of data are needed for evaluation (Kelly et al. 1997).

As mentioned earlier, this technique can be applied to the MEG and EEG
waveforms in sensor space, or it can be applied to the localized MEG solutions in
source space. coherence has been widely used in studying epileptiform activity to
determine seizure onset zones. In sensor space, Song et al. showed that EEG
coherence can be used to characterize a pattern of strong coherence centered on
temporal lobe structures in several patients with epilepsy (Song et al. 2013). In
source space, Elisevich et al. showed that MEG coherence source imaging in the
brain can provide targets for successful surgical resections in patients with epilepsy
(Elisevich et al. 2011). Hinkley et al. used source space MEG to detect decreased
and increased connectivity differences between patients with schizophrenia and
control subjects that may prove to be important target areas for treatment (Hinkley
et al. 2011).

Directionality of network interaction cannot be determined from coherence, and
the exact amplitudes of the network interaction are not equal to region-to-region
coherence amplitudes. Coherence does provide a global estimate of all important
regions of network activity regardless of source amplitudes. Because of the need to
minimize bias by increasing the number of data segments in calculations, coherence
is not well suited for quantifying rapid temporal changes in synchronized activity.
Rather, it is best when used for long time series of data to identify sources of brain
network activity that persist for long durations. However, it is desirable that the
individual FFT components follow temporal changes in network connectivity.
Therefore, the length of segments of data used in the FFT transform should be
selected in the same way as recommended for correlation calculations. For MEG
data, we have found approximately 0.5 s of data to be near optimal for data filtered
3-50 Hz. When applied to very low-frequency band data, the FFT data segment
length needs to be increased. An F-statistic can be used to test statistical signifi-
cance relative to the hypothesis of true coherence (Kelly et al. 1997).

Coherence is best when used for long time series of data to identify sources of
brain activity that are part of the same network. Coherence analysis supplies
information on the degree of synchrony of brain activity at different locations for
each frequency, independent of power. However, individual time points with large
amplitudes are more highly weighted in the FFT transform and subsequently in
coherence calculations. This is in contrast to phase synchrony which utilizes
instantaneous measurements of only the phase differences between signals. As
mentioned earlier, coherence analysis can be applied to the MEG and EEG
waveforms in sensor space, or it can be applied to the localized MEG solutions in
source space.
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4.2 Phase Synchrony

The phase relationship is a way to estimate the synchrony of oscillations in EEG/
MEG data. This is the process by which two or more cyclic signals tend to have
oscillator activity that are at the same frequency (in phase) or out of synchrony (out
of phase) by a relative phase angle. Phase synchrony is used to investigate whether
two waveforms with the same narrow frequency band have relatively stable phase
differences independent of their amplitude behavior. This is used to determine if
the phases are coupled across the brain and to see if they are phase-locked to an
external stimuli or event.

One example of phase synchronization of neuronal activity can be seen in the
pattern of the oscillatory activity. If the oscillations are all in synchrony and positive
at the same time, then the phase is 0°; if they were opposite (one positive and one
negative) to each other, they would have a phase angle of 180°, See Fig. 5 (Uhlhaas
and Singer 2010). Phase synchrony measures how stable the phase difference (small
or large) varies over a short period of time. Phase relationships can be examined by
testing the stability of the signals’ phase differences across trials (phase-locking)
over a single electrode or between pairs of electrodes (Lachaux et al. 1999). This
approach can yield estimates of the precision of local and long-range synchrony.
Importantly, measures of phase-locking provide estimates of synchrony indepen-
dent of the amplitude of oscillations. This is in contrast to measures of coherence
where phase and amplitude are intertwined (Uhlhaas et al. 2009). Phase synchrony
reflects the exact timing of communication between distant neural populations that
are related functionally, the exchange of information between global and local
neuronal networks, and the sequential temporal activity of neural processes in
response to incoming sensory stimuli (Sauseng and Klimesch 2008).

In the extensive study by Gaillard et al., significant long-distance phase syn-
chrony in the beta range was observed after presented words; this increase was the
only significant correlate with conscious access to the stimuli (Gaillard et al. 2009).
In advance of the stimuli, attentional and working memory functions, in part, were
correlated with phase-coupling of prefrontal and posterior brain areas. Gross et al.
(2004) found frontal, parietal, and temporal beta coherence was relevant for the
processing of stimuli in working memory. In the field of schizophrenia, Uhlhaas
and Singer 2010 provided an in-depth review of abnormal neural oscillations and
synchrony in this patient group. They review several studies that indicated that
patients with schizophrenia have a reduced phase synchrony in the beta and gamma
bands. (Uhlhaas and Singer 2010).

Phase synchrony is better used for short-duration events such as in an evoked
event. Phase is used to determine how much the two locations (recording sites) are
interacting within a very narrow time window (milliseconds). A great analogy for
understanding the difference between when to use coherence or phase synchrony is
soldiers marching in a parade: Phase synchrony is used to determine how syn-
chronized their feet are marching in unison in a few steps, while coherence is used
to see how synchronous their feet were marching in unison over the entire parade
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Fig. 5 Measuring neural synchrony in EEG/MEG signals. Measuring phase synchrony in brain
signals: The synchrony of oscillations in EEG/MEG data can be estimated by analyzing phase
relationships. The top panel shows oscillatory brain signals recorded by two different groups of
sensors (red and blue) placed in the positions shown in the bottom panel. The middle panel shows the
difference in oscillatory phase between the red and blue signals. Phase difference values around zero
indicate phase synchrony. The bottom panel illustrates patterns of synchrony between distant sensor
sites at different time points. The black lines link synchronous sensors (Uhlhaas and Singer 2010)

route. On a side note, it is possible to determine information flow with a Hilbert
transform on the data (to obtain the instantaneous phases). Two measures can be
computed from the phases. The first one is the synchronization index, which
quantifies the degree of coupling of the phases of two signals [0 (no coupling) to 1
(strongest coupling)]. The second measure is a directionality index which quantifies
the direction of coupling between two oscillators [-1 and 1 correspond to unidi-
rectional coupling (away and toward the reference area, respectively), and O cor-
responds to symmetric bidirectional coupling]. The results from the analysis of
phase synchronization can be used for the quantification of coupling strength and
direction because these measures are more sensitive and robust than coherence and
phase difference and independent of amplitude dynamics. This is usually applied to
a narrow frequency band, usually less then 5 Hz as opposed to a larger frequency
range that desynchronizes rapidly due to many varied frequencies mixed in.

5 Granger Causality and Correlation

Now, we turn to the time domain methods. Long-range connections between dif-
ferent brain structures involve time delays due to the finite conduction velocity of
axons. Since most connections in the brain are reciprocal, they form feedback loops
that support oscillatory activity. Neuronal activity recorded from multiple cortical
areas around the brain can become synchronized and form a large-scale network.
The effective connectivity (direction of information) of a brain network can be
studied using a Granger causality measure (Brovelli et al. 2004; Gross et al. 2002),
while the strength of the connection can be assessed using a correlation measure
between two sites.
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5.1 Correlation

Correlations is a mathematical technique to measure the similarity of 2 signals on a
scale of —1 to +1. Correlation is one of the most commonly used methods to
determine the strength of an interaction between two locations or signals. When two
areas of the brain are active at the same time, they are most likely talking or
communicating with each other. A correlation between one specific region in the
brain and the entire brain can be analyzed; this can also be extended to all possible
correlations within the brain. Correlations can be determined in several different
ways: The Pearson product moment correlation, the Spearman rank order correla-
tion, the Kendall rank order correlation, or by mutual information methods. The
Pearson product moment correlation quantifies the linear correlations between two
signals or locations, where the Spearman rank order correlation is a nonparametric
measure of correlation between two signals based on the rank (i.e., the similarity of
the orderings of the data when ranked by each individual quantity) and the Kendall
tau (7) coefficient which is a non parametric test that uses the relative ordering of
ranks. The mutual information of two time series is a measure of their mutual
dependence where the unit of measure is a bit. These measures have been widely
used to quantify correlations between EEG or MEG recordings from healthy par-
ticipants (Bonita et al. 2014) or patients with neurologic disorders such as traumatic
brain injury (Castellanos et al. 2011), Alzheimer’s (Stam et al. 2007), epilepsy
(Ponten et al. 2007), and with schizophrenia (Rubinov et al. 2009).

One advantage of computing correlation matrices is that these correlations can
be further studied using graph theory to evaluate the topological properties of the
functional networks or wavelet analysis applied to the temporal signals to compute
frequency-dependent correlation matrices. Graph theory is used to create models of
the complex functional brain networks that can be further studied (Stam et al. 2007;
Stam and Reijneveld 2007; Bassett and Bullmore 2006). Graphs are composed of
vertices (corresponding to neurons or brain regions) and edges (corresponding to
synapses or pathways, or statistical dependencies between neural elements). Graphs
of brain networks can be quantitatively examined for vertex degrees and strengths,
degree correlations, clustering coefficients, path lengths (distances), and vertex and
edge centrality, among other characteristics. Graph theory provides models of
complex networks in the brain and allows one to better understand the relations
between network structure and the processes taking place on those networks.

Despite its usefulness for detecting linear statistical dependencies, the correlation
analysis has certain limitations. The most important relies on the fact that some
networks are not spatially independent and can overlap. In other words, the same
cortical region can belong to more than one active network (i.e., rest and memory).
Therefore, the activation pattern of that region may turn out to be a sum of several
simultaneously active networks, limiting the ability to capture the one functional
network using correlation-based approaches (Smith et al. 2012).
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5.2 Granger Causality

Granger causality as well as other methods such as directed transfer function (DTF)
and partial directed coherence (PDC) are designed to determine causality of net-
work activities (Sakkalis 2011). The basis for these techniques is a multiple linear
regression model of future activity at a given site, determined by past activity at
sites and times within the network. Granger causality is a statistical method for
determining the direction of information flow in a brain network. By looking at the
interaction between time series, information can be provided on how one signal
may affect another signal. There is no a priori information used. Granger causality
assumes that a cause precedes an event. Therefore, a signal can be predicated based
on the past information of a second signal. Simply stated X causes Y if X provides
information that predicts the future of Y better then any information already known
about Y.

Granger causality has been used to study the effective connectivity in patients
with schizophrenia using fMRI (Demirci et al. 2009) more so than with EEG or
MEG. When used with FMRI data, an independent component analysis (ICA) is
initially used to extract the time courses of spatially independent components, and
then, a Granger causality test is used to investigate causal relationships between
brain activation networks. This study found evidence that distributed networks are
organized in a fashion suggestive of hubs of activity within specific circuits that
directly or indirectly influence other neural function in normal controls but that this
connectivity is abnormal in patients with schizophrenia (Demirci et al. 2009).

Granger causality analysis for studying effective connectivity in neural systems
has a few limitations; one is that it relies heavily on sensor space analyses when
source space analysis may provide more information, also there is the use of an
unrealistically small sets of factors that make analyses vulnerable to spurious cor-
relation, and finally the failure to address the complex and chaotic nature of neural
processes.

Both directed transfer function (DTF) (Kaminski and Blinowska 1991) and partial
directed coherence (PDC) (Sameshima and Baccala 1999) have been developed
based on network model approaches such as Granger causality. DTF extends Granger
causality to multichannel MEG and EEG. It has been used to estimate functional
connectivity in neurological disorders such as epilepsy (Franaszczuk and Bergey
1998). Another more recent measure called transfer entropy (Schreiber 2000) was
designed to detect directed exchange of information between two systems by con-
sidering the effects of the state of one element on the state transition probabilities
of the other element. Seibenhuhner et al. found lower entropy, suggesting decreased
MEG signal content, but increased functional connectivity in patients with schizo-
phrenia compared to control subjects (Siebenhiihner et al. 2013).
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6 Conclusion

The basis of brain functioning is the neuronal oscillations. In this section, we
attempted to review several of the most common methods used to measure the
brain’s synchronous oscillations which make up the network of brain connectivity.
Many of these techniques are currently being used to expand clinical knowledge in
many fields with psychiatry being one of the most prominent fields. We have
highlighted some of the types of information that can be derived from the varied
techniques as well as provided some of the limitations of each technique. In the
future, a combined anatomical, functional, and effective connectivity mapping will
become the mainstay of the neurosurgeon, neurologist, and psychiatrist for
assessing and diagnosing normal and abnormal brain networks. These techniques
will not only provide biomarkers of diseases but also help to provide individualized
treatment therapies based on pre- and post-treatment connectivity imaging. With the
evolution of computers and mathematics, we expect to see more sophisticated and
powerful analytical neuroimaging methods developed and applied to the functional
neuroimaging data. The primary functional neuroimaging results will continue to be
provided from the excellent high temporal resolution of MEG and EEG, and the
high spatial resolution of fMRI and PET as well as the anatomical connectivity
maps derived from MRI-DTI imaging.
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