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Abstract Stress mediates the activation of a variety of systems ranging from
inflammatory to behavioral responses. In this review we focus on two neuropeptide
systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and
their roles in regulating stress responses. Both peptides have been demonstrated to
be involved in anxiogenic and depressive effects, actions mediated in part through
their regulation of the hypothalamic-pituitary-adrenal axis and the release of
adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP,
drugs modifying the stress-associated detrimental actions of CRF and AVP are
under development, particularly drugs antagonizing CRF and AVP receptors for
therapy in depression.
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1 Stress and Its Consequences on Behaviour

Although stress is now considered a common component of life in modern soci-
eties (Joels and Baram 2009), its definition remains somewhat vague. Stress is
generally considered to involve external challenges to the organism, which can
include psychogenic stressors that may be actual or potential adverse situations, as
well as physical stressors (e.g. immune challenge, hypovolemia or cold exposure)
(Dayas et al. 2001; Pacak and Palkovits 2001). Although these disparate stressors
activate different brain circuits, adaptive responses to these stressors often include
similar mediators. In the short term, the organism tends to adapt to the stress to
maintain homeostasis, for example by eliminating the challenge or by avoidance
(McEwen 1998, 2007). Over time, maintaining physiological stability becomes
more difficult. It is now well-established that exposure to extraordinary levels of
stress, chronic stress or repeated exposures to stress can markedly increase
vulnerability to serious mental illness, and cardiovascular disorders (Rosengren
et al. 2004).

This subject is a vast one with entire volumes and meeting proceedings dedi-
cated to it. Instead of trying to cover stress neurobiology in any comprehensive
manner, we focus on two neuropeptide systems, corticotropin-releasing factor
(CRF) and arginine vasopressin (AVP). Nevertheless, it is important to note that
two major systems have long been known to play prominent roles in mediating the
stress response: the hypothalamic-pituitary-adrenal (HPA) axis (Herman and
Cullinan 1997) and the sympatho-adrenal-medullary system. Thus, hypothalamic
and extra-hypothalamic CRF is the preeminent example of a stress-related neu-
ropeptide system that promotes withdrawal and attenuates appetitive behaviors,
while there is evidence that neuopeptide Y (NPY) exerts the opposite effect. CRF
is thought to mediate the acute stress response in cooperation with AVP (Gillies
et al. 1982; Jaferi and Bhatnagar 2007; Lightman 2008; Ma et al. 1997; van Gaalen
et al. 2002). The latter appears to be contributing to the long term stress response
which likely leads to depression (Dinan and Scott 2005). It is important to note in
any discussion of stress that different individuals encounter different magnitudes of
stress exposures and the perception of stress varies significantly from individual to
individual. Two divergent hypotheses have been proposed to explain the variable
outcomes of stress in different individuals (Nederhof and Schmidt 2012). The first
one states that stress exposure early in life increases the risk of vulnerability to
detrimental stress responses later in life (McEwen 1998; Heim et al. 2008). In
contrast, the second hypothesis focuses on resilience, suggesting that repeated
exposures to adverse situations during development can be beneficial by
promoting resilience even if the environment remains aversive (Schmidt 2011).
Most studies in laboratory animals have focused on vulnerability rather than
resilience (Veenema et al. 2008; Zobel et al. 2000) and have been interpreted
from the point of view that the molecular modifications that ensue in response to
stress result from changes in vulnerability. This is at least in part due to the
difficulty of distinguishing resilient animals from controls (Schmidt et al. 2010;
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Stedenfeld et al. 2011). However, resilience mechanisms are now the focus of
considerable investigation (Bilbo et al. 2008; Champagne et al. 2008) because they
represent an innovative approach to both understanding pathophysiology as well as
drug development for a range of stress-related syndromes.

Many behaviors that are assessed in rodents in response to stress have been
interpreted to resemble symptoms exhibited by patients with post-traumatic stress
disorder (PTSD) or major depressive disorder (MDD). Although emotional and
psychological stress are difficult to evaluate in rodents, a variety of stressors have
been shown to induce ‘‘depressive-like behavior’’. These behaviors include loss of
enjoyment (anhedonia), loss of motivation, sleep disturbances, deficient sociability
skills, anxiety, changes in appetitive behavior, or cognitive deficits, which have all
been associated with prolonged stress exposure. For example, anhedonia, learned
helplessness, and sociability deficiencies in animal models have been induced by a
variety of stressors, such as chronic restraint stress, in which rodents are immo-
bilized repeatedly for hours in a tube, the learned helplessness paradigm, where
rodents receive inescapable footshock, the chronic social defeat paradigm, where
rodents are repeatedly exposed to aggression by dominant animals, or chronic
unpredictable stress, where rodents receive different (heterotypic) stressors every
day. A number of neurobiological consequences of chronic stress have been
observed including dysregulation of the HPA axis, reduced hippocampal neuro-
genesis and reduction of brain-derived neurotrophic factor (BDNF), which is
required for synaptogenesis (Maras and Baram 2012). The composition of the
microbiota of the gut is also affected by the HPA axis through the release of stress
hormones and the sympatho-adrenal medullary system (Collins et al. 2012; Dinan
and Cryan 2012). The microbiota is a major regulator of the immune system and
the immune system has now been unequivocally shown to be altered in patients
with mood disorders. Indeed, administration of a low dose of the inflammatory
stimulant lipopolysaccharide (LPS) is sufficient to induce sickness behavior, which
shares many characteristics with human major depressive behavior. We review
here the involvement of the HPA and the sympatho-adrenal system in stress related
disorders.

2 HPA Axis

Activation of the HPA axis in response to stress results in widespread hormonal,
neurochemical and physiological alterations (Herman and Cullinan 1997). Acti-
vation of the HPA axis is mediated by the release of neuropeptides, including CRF
and vasopressin into the hypothalamo-hypophyseal portal system, which stimu-
lates the release from the anterior pituitary of adrenocorticotropic hormone
(ACTH). ACTH in turn promotes the synthesis and secretion of glucocorticoids
from the adrenal cortex (Aguilera 1994; Antoni 1986a). Thus, glucocorticoids
(cortisol in humans, and corticosterone in most rodents) are released upon acti-
vation of the HPA axis. Glucocorticoid receptors or mineralocorticoid receptors,

Interaction of Stress, Corticotropin-Releasing Factor 69



both of which are activated by glucocorticoids, are expressed in several brain
regions (e.g. prefrontal cortex, amygdala, hippocampus and other limbic and
midbrain structures). They are steroid receptors that function as transcription
factors that regulate cell function even after acute stress is terminated. The mag-
nitude, type, and duration of the stress are important in determining the HPA axis
response. The HPA axis has been most scrutinized in PTSD and MDD. Thus,
elevated plasma glucocorticoid concentrations have been observed in patients with
MDD, particularly those with more severe and/or psychotic symptoms; in contrast
a small population of MDD patients show reduced levels of glucocorticoids, which
seems to be associated with milder symptoms (Stetler and Miller 2011). In PTSD,
in contrast, a tendency for lower levels of glucocorticoids has been reported, but
these findings are also mixed (Meewisse et al. 2007). These discordant findings are
undoubtedly in part due to the confounding effects of child abuse and neglect on
HPA axis activity in adulthood (Heim et al. 2008). This concatenation of findings
renders difficult a comprehensive understanding of the role of glucocorticoids in
the development of stress-related disorders. It is important to note the broad effects
on the brain of glucocorticoids, which are released peripherally in response to
stress, which contrasts with the local release of neurotransmitters and neuropep-
tides that provide a more restricted synaptic modulation. Thus, increased cere-
brospinal fluid (CSF) levels of the neuropeptide CRF seem to correlate more
closely than do glucocorticoid levels with stress-related disorders (Heim et al.
2000, 2008; Yehuda et al. 2005).

2.1 Corticotropin-Releasing Factor System

Corticotropin-Releasing Factor (CRF), a 41 amino acids peptide was discovered in
1981, and since then three related ligands and two receptors have been identified.
The canonical role of CRF is to initiate the endocrine response to stress by
releasing ACTH from the anterior pituitary. This neuropeptide is released from
cell bodies within the hypothalamic paraventricular nucleus (PVN) to activate the
HPA axis (Korosi and Baram 2008), but neurons express CRF in several extra-
hypothalamic brain regions (amygdala, cerebrocortical areas, septum, hippocam-
pus) where they play a key role in the autonomic, immune and behavioral effects
of stress (Chen et al. 2000, 2001, 2004; Korosi and Baram 2008; Sawchenko et al.
1993). CRF is also expressed in the periphery (blood vessels, skin, lung, testes,
ovaries or placenta). Its three related ligands, urocortin 1, urocortin 2 (stresscopin-
related peptide) and urocortin 3 (stresscopin) are also expressed both in the
periphery and in the brain. Although urocortin 1 and urocortin 2 share a hypo-
thalamic distribution with CRF, urocortin 3 seems to have minimal overlapping
expression with CRF (Hauger et al. 2003). CRF and urocortin 1 both bind pref-
erentially to CRF-R1 receptors, whereas urocortins 1, 2 and 3 bind to CRF-R2
receptors with a high affinity. CRF-R1 is expressed mainly in the brain (Swanson
et al. 1983), while CRF-R2 is expressed mainly in the periphery. CRF-R1 and
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CRF-R2 have 70 % amino-acid sequence homology, but diverge greatly in their
N-terminal sequences and belong to the class B1 of 7-transmembrane G-protein
coupled receptors. CRF receptors also regulate a diverse group of other intracel-
lular signaling pathways that involve intracellular effectors such as cAMP and an
array of protein kinases. This allows them to exert unique roles in the integration
of homeostatic mechanisms. It is thought that CRF-R1 principally mediates the
stress response. The CRF system is also regulated by a CRF-binding protein
(CRFBP), which is highly conserved and present in the circulation as a 37 kDa
glycoprotein that binds CRF and related peptides, reducing their availability.

Thus, the CRF system has a multitude of physiological functions, all related to
the orchestration of the stress response. CRF stimulates ACTH synthesis and
release in the pituitary, thus controlling the HPA axis, but also activates the
noradrenergic and sympathetic systems. Locally, CRF regulates adrenal steroi-
dogenesis and catecholamine synthesis in the adrenal gland. In addition, CRF acts
in limbic areas in modulating alertness and fear, and appetite and libido, all
dysregulated in depressive disorders. Direct regional brain-specific injections of
CRF in rodents promotes anxiety, reduces slow wave sleep, is associated with
psychomotor alterations (less time spent in the center of an open field) (Sutton
et al. 1982), increased grooming and anhedonia (Dunn et al. 1987; Heinrichs et al.
1991), enhanced novelty-suppressed feeding (Britton et al. 1982), decreased
appetite and libido, and decreased exploratory behavior (Berridge and Dunn 1989).
These effects of CRF are not mediated by HPA axis activation. This was confirmed
using transgenic mouse models where CRF was either knocked out (Muller et al.
2003; Smith et al. 1998; Timpl et al. 1998) or overexpressed, and by using
selective CRF receptor antagonists (Steckler and Holsboer 1999).

The role of the CRF system in depression has been supported by clinical studies
showing that depressed patients have higher CSF concentrations of CRF
(Nemeroff et al. 1984), and depressed patients who died by suicide exhibit
increased expression of CRF mRNA in the hypothalamus and PFC (Austin et al.
2003; Merali et al. 2004; Nemeroff et al. 1988; Raadsheer et al. 1994) as well as a
reduction in CRF receptor binding density (Owens et al. 1991) and CRF receptor
mRNA expression (Merali et al. 2004). Moreover, CSF concentrations of CRF are
reduced by electroconvulsive therapy (Nemeroff et al. 1991) and antidepressant
treatments (De Bellis et al. 1993; Heuser et al. 1998; Veith et al. 1993). Early
relapse of depression is also associated with elevated concentrations of CSF CRF
(Banki et al. 1992). Altogether, these findings as well as the neuroendocrine data
clearly suggest an overactive CRF/CRF-R1 system in depressed patients (Merali
et al. 2004; Nemeroff et al. 1988).

These findings supported the development of CRF receptor antagonists as a new
therapeutic strategy for depression (Grigoriadis 2005). Small molecule inhibitors
of CRF-R1 have been developed as potential therapies (Holsboer and Ising 2008),
because CRF has a 15 times higher affinity for CRF-R1, than CRF-R2. Some CRF-
R1 antagonists have been tested clinically, and although there is some evidence for
anti-anxiety and antidepressant effects in a few studies without evidence of adverse
effects (Ising et al. 2007; Kunzel et al. 2003; Nickel et al. 2003; Zobel et al. 2000),
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the results of the randomized controlled studies have been very disappointing (for
review Brothers et al. 2012, Koshimizu et al. 2012). Unfortunately none of the
studies enriched their studies with patients who hypersecreted CRF.

2.2 Arginine Vasopressin System

(AVP) and oxytocin are cyclic nonapeptides. There are two major AVP systems in
the brain: one responsible for AVP-dependent actions on blood pressure and water
conservation, comprising the magnocellular neurons in the paraventricular (PVN)
and supraoptic nuclei secreting AVP and oxytocin into the peripheral circulation
from the posterior pituitary. The second is responsible for the regulation of the
HPA axis via the PVN secreting AVP into the hypothalamo-hypophyseal portal
circulation (Aguilera and Rabadan-Diehl 2000; Antoni 1993). AVP-expressing
neurons in the amygdala also influence memory and behavior (Alescio-Lautier
et al. 2000; Caffe et al. 1987), and in the suprachiasmatic nucleus, AVP regulates
circadian rhythms (Arima et al. 2002; Kalsbeek et al. 2010; Li et al. 2009). The
actions of AVP are mediated through two main G-protein coupled receptors: V1
receptors (V1a and V1b) are coupled to phospholipase C, which increases intra-
cellular Ca2+ and protein kinase C activity (Jard et al. 1987), and V2 receptors are
coupled to the adenylyl cyclase/protein kinase A pathway to regulate water
homeostasis in the kidney (Frank and Landgraf 2008). The mitogen activated
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and the
phosphatidylinositol 3 kinase (PI3 K)/Akt pathways are also regulated by AVP
during neuronal development and survival, synaptic plasticity and memory for-
mation (Chen and Aguilera 2010; Chen et al. 2008, 2009; de Wied et al. 1993). In
addition to protecting neurons against apoptosis, AVP inhibits the production of
the pro-inflammatory cytokines interleukin-1 and tumor necrosis factor-a in
astrocytes, therefore providing another mechanism to protect neurons (Zhao and
Brinton 2004).

Using a variety of experimental approaches, it has been clearly shown that AVP
is anxiogenic (Neumann and Landgraf 2012). These approaches include central or
peripheral administration of V1 receptor antagonists, siRNA, knockout mice, and
adenoviral overexpression of V1 receptors (Landgraf 2006; Mak et al. 2012;
Pitkow et al. 2001; Ring 2005; Ryckmans 2010; Simon et al. 2008). Hyperactivity
of the AVP system shifts behavior towards hyper-anxiety and passive coping.
Indeed, some of the untoward consequences of early-life stress appear to be
mediated by AVP (Murgatroyd et al. 2010; Veenema et al. 2006).

Because of the close association of anxiety and depression, AVP has been
suggested to mediate both conditions. CNS AVP circuits also promote depressive
behavior in rats, and these effects are blocked by the administration of antide-
pressants (Keck et al. 2003). In postmortem tissue of depressed patients, an
increase in mRNA expression of AVP and V1 receptors was observed, as well as
an increase in the number of PVN neurons expressing AVP (Bao and Swaab 2010;
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Wang et al. 2008). It is also important to note that AVP augments the effects of
CRF on ACTH release from the anterior pituitary, thereby increasing HPA axis
activity (Holsboer et al. 1984). Thus, this may contribute to the hypercortisolemia
observed in depression. These anxiogenic and fear effects are thought to act upon a
specific population of neurons in the central amygdala in rats (Huber et al. 2005).
Intranasal injection of AVP modulates neurons in the prefrontal cortex-amygdala
regions, which are thought to mediate threat perception, social behavior, anxiety,
and fear processing (Zink et al. 2010).

AVP also regulates affiliative behaviors (Winslow et al. 1993), in particular
paternal behaviors in voles, such as crouching over and contacting or grooming
pups (Wang et al. 1994). AVP is important in a variety of species for partner
preference and pair bonding (Donaldson and Young 2008; Lim and Young 2004)
and is thought to influence social memory in males (Ferguson et al. 2002; Lim and
Young 2004). AVP also promotes inter-male aggression (Caldwell et al. 2008) and
maternal aggression (Bosch and Neumann 2010).

Intranasal administration of AVP has been shown in men to facilitate the
encoding of facial identification (Guastella et al. 2010), to have sex-specific
influences on social communication, in particular regarding aggression (Thompson
et al. 2006). As in animals, AVP promotes stress responses in humans, increasing
the cortisol response to social stressors (Shalev et al. 2011). However, the
mechanism whereby AVP affects human behaviors remains unknown (McCall and
Singer 2012).

Therefore, targeting the AVP system may open new therapeutic avenues. For
example, there is an antagonist of V1 receptors (SSR149415) that has shown
anxiolytic, antidepressant and anti-stress effects (Griebel et al. 2002; Hodgson
et al. 2007; Iijima and Chaki 2007; Litvin et al. 2011; Overstreet and Griebel 2005;
Shimazaki et al. 2006; Simon et al. 2008; Stemmelin et al. 2005; Urani et al.
2011). Unfortunately, the clinical trials in depression have been unsuccessful (for
review Brothers et al. 2012, Koshimizu et al. 2012). However, SSR149415 also
binds the oxytocin receptor (OXTR) (selectivity ratio of 3.2 V1b/OXTR) (Antoni
1986b; Chadio and Antoni 1989; Griffante et al. 2005; Samson and Schell 1995),
which explains certain of the effects of this antagonist; oxytocin is known to
antagonize the effects of AVP in anxiety and depression (Neumann and Landgraf
2012). Other V1b receptor antagonists are currently under study. The subjacent
strategy is to promote the oxytocin system, which has been shown to exert
opposite actions of AVP in anxiety and depression by modulating different neu-
ronal circuitry. Although in development, no lipophilic oxytocin receptor agonists
have yet to be developed.
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