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Abstract Autism Spectrum Disorder encompasses a range of neurodevelopmental
disorders characterized by early deficits in social communication in addition to
restricted and repetitive behaviors. Symptoms are increasingly understood to be
associated with abnormalities in the coordination of neuronal assemblies respon-
sible for processing information essential for early adaptive behaviors. Pharma-
cologic treatments carry evidence for clinically significant benefit of multiple
impairing symptoms of ASD, yet these benefits are limited and range across a
broad spectrum of medication classes, making it difficult to characterize associated
neurochemical impairments. Increasing prevalence of both ASD and its pharma-
cologic management calls for greater understanding of the neurophysiologic basis
of the disorder. This paper reviews underlying alterations in local brain regions
and coordination of brain activation patterns during both resting state and task-
related processes. We propose that new pharmacologic treatments may focus on
realigning trajectories of network specialization across development by working in
combination with behavioral treatments to enhance social and emotional learning
by bolstering the impact of experience-induced plasticity on neuronal network
connectivity.
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1 Introduction

Children with ASD exhibit characteristic behavioral and functional abnormalities,
including core deficits in interpersonal functioning (e.g., social-emotional reci-
procity, nonverbal communication, adjustment of behavior to suit context) and
stereotypic repetitive behaviors (e.g., abnormal repetitive movements, inflexible
adherence to routine, abnormal sensory reactivity)(APA 2013). Impairments man-
ifest early in development, by age 3, yet can range significantly across the lifespan
within the individual and across individuals, highlighting the multifaceted nature of
the disorder. ASD is also associated with several comorbid conditions including
sleep disorders, seizure disorders, inflammatory disorders, anxiety disorders, and
attention-deficit hyperactivity disorder (ADHD). Prevalence rates of autism spec-
trum disorder are estimated at 1/88, with a male prevalence reaching 1/54
(CDC 2012).

ASD is now widely accepted as a disorder of brain development. Recent utili-
zation of neurophysiological and neuroimaging methods have begun to elucidate
the neural mechanisms that may underlie the course and presentation of autism
behaviors. Electroencephalography (EEG) measures characteristic brain waveform
patterns, and analyses of event-related potentials (ERP) reveal changes in EEG wave
patterns as a function of cognitive or motor operations, or states of alertness. These
neurophysiological methods provide information about neural pathways at multiple
levels of the neuroaxis and within selected aspects of sensory, motor, cognitive, and
social function. Neural oscillations reflect the synchronous firing of large popula-
tions of neurons mediated by excitatory and inhibitory interactions. Fluctuations in
various EEG frequency bands are thought to represent abnormalities in network
organization, and can further characterize the timing of processing abnormalities.
Neuroimaging techniques, including single-photon emission computed tomography
(SPECT), diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), and
functional MRI (fMRI) further enable detection of anatomical changes and altera-
tions in the functional utilization of brain regions during resting states and under task
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demands. Recent efforts and advanced statistical methods have fostered cross-uti-
lization of these techniques to detect patterns of regional synchrony and coactiva-
tion, allowing further characterization of functional connectivity of brain networks.

This paper aims to review both the medication treatments for ASD and the
emerging patterns of neurophysiologic and neuroanatomic alterations in networks
associated with ASD. The goal is to integrate these disparate literatures, high-
lighting important new targets of treatment that can be derived from and assessed
by neurophysiological measures.

2 Pharmacologic Treatment

The clinical impairments associated with ASD are often difficult to alleviate, and
are increasingly managed using pharmacologic interventions. While core symp-
toms of communication deficits and circumscribed interests are difficult to address
with medication, other clinical impairments are often targets of treatment, including
comorbid anxiety, difficulty with sustained attention, aggressive behaviors, sleep
disturbances, and stereotypic movements.

Despite the lack of extensive evidence base, examination of prescribing patterns
for youth with ASD reveals that pharmacotherapy is very common (e.g., Hsia et al.
2013; Mire et al. 2013; Schubart et al. 2013). The Mire et al. study examined over
1,600 North American youth with Autism, and found that 41.7 % of parents
reported that their child or adolescent had used psychotropic medications, with
ADHD medications most commonly used. Correlational analyses indicated that
the likelihood for medication use in this sample was higher for children who had
social impairment and for those with low cognitive function. Similarly, a large
longitudinal study of U.S. Medicaid claims for patients with ASD showed that
over a 4-year period, 65 % were prescribed psychiatric medication. In contrast to
the primary use of stimulants in the Mire study, antipsychotics were the most
frequently prescribed in this sample, and the use of more than one medication was
very common (Schubart et al. 2013). An international study of prescribing prac-
tices showed that North American youth with ASD received the highest percentage
of prescriptions for psychotropic medication compared to European, South
American, and Asian countries. Risperidone was the most commonly prescribed
medication in North America for ASD, in contrast to methylphenidate being most
commonly prescribed in the UK, and haloperidol being most commonly prescribed
in Japan (Hsia et al. 2013).

2.1 Antipsychotic Medications

Risperidone and aripiprazole are now approved by the United States Food and
Drug Administration (USDA) to address irritability associated with autism. Their
effectiveness is supported by seven randomized controlled trials (RCTs) showing
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significant differences between risperidone and placebo (Hellings et al. 2006;
Nagaraj 2006; Pandina et al. 2007; McCracken et al. 2002; Aman et al. 2005; Troost
et al. 2005; Shea et al. 2004) and two for aripiprazole (Owen et al. 2009; Marcus et al.
2009), with most studies measuring improvement on the irritability subscale of the
Aberrant Behavior Checklist. Although two trials of risperidone did not achieve
statistical significance in comparison with placebo (Luby et al. 2006; Miral et al.
2008), several articles reviewing this literature all conclude that the data supporting
effectiveness is strong, while cautioning that behavioral intervention should be tried
first and that side effects including metabolic abnormalities, weight gain, and
potential for extrapyramidal side effects warrant caution in their use (Elbe and Lalani
2012; Parikh et al. 2008; Pringsheim and Gorman 2012; Sharma and Shaw 2012).

2.2 Stimulants

A review of relevant studies concluded that 41–78 % of youth with autism meet
criteria for attention deficit hyperactivity disorder (ADHD) (Murray 2010).
A recent review of randomized and nonrandomized trials concluded that, after
careful symptom assessment, treatment of comorbid ADHD symptoms with
stimulant medication is indicated for youth with ASD (Mahajan et al. 2012). In
addition, there is some evidence for effectiveness of non-stimulant ADHD
medications in youth with ASD, with one randomized controlled trial each for
atomoxetine and guanfacine having shown superiority over placebo (Arnold et al.
2006; Handen et al. 2008), and further studies underway.

2.3 SSRIs

Providers also often consider the use of selective serotonin reuptake inhibitors
(SSRIs), targeting impairing symptoms of anxiety, including obsessive thoughts,
and compulsive behaviors frequently associated with ASD. However, data to
support their effectiveness in ASD populations is mixed, and reviews highlight a
positive publication bias, making the literature difficult to accurately interpret
(Williams et al. 2013; Carrasco et al. 2012; Kolevzon et al. 2006). RCTs exam-
ining the impact of SSRIs on compulsive behaviors failed to show improvements
beyond placebo, although several open-label studies have demonstrated effec-
tiveness of SSRIs for anxiety. A subsequent Cochrane Review concluded that there
was no systematic evidence in support of the use of SSRIs to treat ASD (Williams
et al. 2013). Despite this, prescribing practices in populations of youth with ASD
indicates that the use of SSRIs is relatively common (e.g., Lopata et al. 2013).
Older medication classes such as tricyclic antidepressants are not recommended
due to the lack of evidence supporting their use, as well as significant side effects
(Hurwitz et al. 2012).
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2.4 Other Agents

Because of its relevance to social behaviors, oxytocin has also received attention
as a potential treatment for ASD. Although no RCTs have been completed, an
open label study of oxytocin treatment showed improved performance on tasks of
emotion recognition compared to placebo (Guastella et al. 2010). Furthermore,
initial findings from oxytocin treatment in ASD reveal enhanced regional activa-
tion during social tasks in several distributed brain areas relevant to social pro-
cessing (Gordon et al. 2013). Despite these positive preliminary findings, a recent
editorial cautioned against premature clinical use as treatment modality until
research focused on long-term implications and potential side effects or problems
can be completed (Harris and Carter 2013).

Disrupted sleep is also a frequent problem for youth with autism, and often
impacts sleep quality of the entire family. A meta-analysis (Rossignol and Frye
2013) and a controlled trial (Wright et al. 2011) of melatonin in autism found
consistent positive effects. In addition, one open-label study supported the use of
clonidine to address insomnia in youth with autism (Ming et al. 2008). However,
given the limited data available, a recent review suggested that the most prudent
initial course is to formally evaluate patients for sleep disorders, without clear
support for any one particular sleep medication (Malow et al. 2012).

Other novel agents have also been used in the treatment of ASD symptoms, with
some evidence for positive effectiveness. Amantadine, which impacts the
N-methyl-D-aspartate (NMDA) receptor, may act by limiting excitotoxicity of the
glutamatergic neurotransimitter system. This receptor class is thought to be
essential for modulating synaptic plasticity and represents a new class of phar-
macologic targets with the potential to impact neurophysiologic and cognitive
functioning. One RCT of amantadine treatment in youth with ASD found improved
control of irritability and hyperactivity (King et al. 2001), and another reported
beneficial effects for ADHD (Aman and Langworthy 2000). Although amantadine
is not commonly used, it may be considered when other treatments do not provide
adequate symptom control, particularly for distractibility, and hyperactivity.

3 Neuroanatomic Alterations Through Development

Macrocephaly is common in infants with ASD, and neuroanatomic studies have
demonstrated larger brain sizes in children with ASD during early development
(e.g., Aylward et al. 2002; Sparks et al. 2002). MRI studies indicate that brain
enlargement is partially due to an increase in gray matter. For example, toddlers
subsequently diagnosed with autism exhibit significant early increases in overall
gray matter, distributed across frontal and temporal regions (Schumann et al. 2010),
with evidence for the greatest enlargement in the frontal cortex (Carper and
Courchesne 2005). Postmortem studies further suggest that these changes represent
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significant increases in neuronal number (Courchesne et al. 2011) and dendritic
spine density (Hutsler and Zhang 2010).

Increased synaptic connectivity in ASD is also paralleled by an increase in the
number of cortical minicolumns (Casanova et al. 2006), vertical clusters of inter-
connected neurons thought to represent fundamental processing units of cortical
architecture (Silberberg et al. 2002). These units are each devoted to processing a
specific type of information, such as a specific orientation of lines in visual space,or
in animals a specific input from an individual whisker. Each is composed of a core
excitatory assembly wrapped by an inhibitory network to provide intercolumnar
dampening and heightened specificity of response. More synapses, neurons,
and minicolumn assemblies suggest an overelaboration of sensory units in ASD,
creating greater processing demands. As brain regions coordinate information at
progressive levels of integration, particularly in prefrontal regions,these heightened
processing demands become even more magnified.

The normative trajectory of gray matter development involves dramatic syn-
aptic overproduction during prenatal and early neurodevelopment, with subsequent
elimination of less adaptive neuronal circuits and their connections through syn-
aptic pruning (Huttenlocher and Dabholkar 1997). While autism is associated with
excessive early over proliferation of synaptic connectivity and gray matter in
multiple brain regions, this overgrowth trajectory isthen thought to reverse during
later childhood, with more advanced synaptic atrophy and neuronal loss leading to
total brain volumes similar to typical development (Redcay and Courchesne 2005).
Consistent with this notion of abnormal pruning trajectories, youth 8–12-years old
with ASD exhibited faster rates of gray matter loss in several cortical regions over
a 30-month interval compared to age-matched typically developing youth (Hardan
et al. 2009), suggesting more dramatic rates of both synaptic overproduction and
their subsequent elimination across development in ASD.

Functional connectivity further relies on the anatomical integrity of axonal
tracts within neural networks, and several lines of evidence point to white matter
(WM) abnormalities in ASD. While typical WM development linearly increases
over time, MRI studies of individuals with ASD reveal accelerated early over-
growth of frontal WM followed by reductions in adolescence and adulthood
(Herbert et al. 2004; Courchesne et al. 2001, 2004).Compromised interhemispheric
WM connectivity is also revealed by modest reductions in overall corpus callosum
size (e.g., Vidal et al. 2006), a finding also associated with underconnectivity in the
prefrontal cortex(Lo et al. 2011). Callosal fiber reductions may further contribute
to laterality differences seen in fMRI studies, which show that individuals with
ASD tend to excessively utilize networks within the right hemisphere, including
those underlying executive functioning (Cardinale et al. 2013; Gilbert et al. 2008).
Even during sleep, rightward asymmetry is exhibited in 1-year-old infants affected
by ASD, indicating abnormal lateralization is an early feature of neurodevelop-
ment that predates language acquisition (Eyler et al. 2012).

Differences in axonal patterning are also seen early in development, high-
lighting altered early connectivity driven by both white and gray matter changes.
In studies of WM development, high-risk infants who were eventually diagnosed
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with ASD exhibited greater fractional anisotropy, a measure of unidirectional
patterning of axonal tracts, in comparison with high risk infants who did not
develop ASD. This advanced spatial organization was suggestive of precocious
development and heightened early network patterning (Wolff et al. 2012). Despite
this heightened early specialization of WM tracts in ASD, infants subsequently
exhibited slower changes in WM patterning, so that by 24 months of age, infants
with ASD exhibited lower FA values than unaffected infants.

Local trajectories of synaptic overelaboration and subsequent pruning vary in
step with developmental expectancies and regional specialization (Greenough
et al. 1987). While primary sensory regions exhibit pruning refinements in early
childhood, more highly integrative areas have a more protracted course (Gogtay
and Thompson 2010). Synaptic pruning serves to drive specialization of circuitry,
with a developmental sequence toward increasingly integrative regions culmi-
nating with those involved in complex thought, self-awareness, and cognitive
flexibility. In contrast, ASD has been described by some authors as a disorder of
mistimed critical periods driven by early imbalances in excitatory and inhibitory
inputs, resulting in abnormal unfolding of developmental processes (Leblanc and
Fagiolini 2011). Each iteration of regional specialization may therefore be
increasingly affected at successive levels of cortical elaboration and network
complexity. Aberrant early development may also contribute to downstream
effects, impairing connectivity normally supported by coactivation of distributed
neuronal assemblies, thus preventing the formation of stable networks, leading to
further alterations in functional specialization and integration.

Similar to neocortical regions, amygdala sizes are also abnormally large in ASD
during early development (Nordahl et al. 2012), yet are thought to gradually
normalize into adolescence, with variable findings in older subjects (Ecker et al.
2012). Perceptual and attention networks that coordinate with amygdala nuclei
may therefore receive heightened input during early periods of network patterning,
and result in emotional networks more highly tuned to features of lower order
sensory input that become specialized early in development. However, these
highly connected early systems may restrict subsequent integration with higher
order networks that typically foster specialized attunement to social and emotional
functions.

4 Neurophysiology of Resting State and Social Processing

ASD is associated with neurophysiological differences in regional activation, such
that examination of patterns of fMRI or EEG activation reveals different responses
to task-related cognitive demands and differences during resting state compared to
control subjects. Atypicalities in the ‘‘default mode network,’’ neuronal circuits
engaged during resting state conditions, have been found in studies of ASD. This
resting state network is thought to involve distributed regions, including those also
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involved in complex tasks, suggesting a baseline level of impaired executive
functioning even during rest (Uddin et al. 2013).

Resting state EEG and magnetoencephalography (MEG), a technique for
detecting magnetic fields produced by electrical brain activity, have been used to
quantify the (absolute or relative) amount of power at a given oscillatory fre-
quency. A number of studies suggest an overall pattern of differential power
profiles in ASD, with excess power at low frequency (delta, theta) and high fre-
quency (beta, gamma) bands, but reduced power in middle frequency (alpha)bands
(for review, see Webb et al. 2009).This pattern appears to be relatively consistent
through development and is exhibited across multiple brain regions during resting
state conditions. ASD has also been associated with reduced long-range coherence
patterns during the resting condition, most commonly with reductions between
frontal regions and more posterior primary sensory regions (Barttfeld et al. 2011;
Ghanbari et al. 2013; Murias et al. 2007; Duffy and Als 2012).

Some resting state fMRI studies of adolescents and adults with ASD also reveal
decreased functional connectivity(Kennedy and Courchesne 2008; Monk et al.
2009; Weng et al. 2011), with some findings of disconnect specific to integrative
regions of prefrontal cortex (Assaf et al. 2010). However, in contrast to distributed
underconnectivity, Keown et al. (2013) found increased local connectivity in teens
with ASD during resting state conditions. This overconnectivity was primarily
found in visual and extrastriate cortex, as well as temporal lobe; and functional
hyperconnectivity was more marked in those with higher symptom severity.
Interestingly, underconnectivity was seen in anterior regions, which tend to exhibit
specialized pruning refinements later in development. This pattern of hypercon-
nectivity in posterior regions and hypoconnectivity in anterior may reflect
impaired anterior progression of regional synaptic refinements that typically drives
functional specialization seen across normative development(Gogtay and
Thompson 2010). Moreover, in a younger sample of children with ASD (aged
7–13 years), hyperconnectivity was found at both long and short ranges (Supekar
et al. 2013), with increased overconnectivity associated with increased social
deficits. The authors suggest that hyperconnectivity may be a feature of early
neurodevelopment in ASD which limits flexibility in the allocation of coordinated
activity required to enable functioning of adaptive distributed networks. Neuro-
developmental shifts from early overelaboration of synaptic connectivity to later
under elaboration may be responsible for developmental shifts in network acti-
vation and specialization (Uddin et al. 2013).

Neurophysiological alterations associated with ASD are also revealed during
tasks designed to activate networks thought to support social functioning. The
superior temporal region specifically recruited during attention tasks involving face
processing is known as the Face Fusiform Area (FFA). Social processing requires
attention to facial expressions and identification of subtle contextual visual cues to
appreciate others’ intentions and emotions. Highlighting the relationship between
social and emotional processing, the FFA is further regulated by inputs from
emotional networks, including amygdala nuclei (e.g., Geschwind et al. 2012).
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When assessing basic face perception and identification, a number of studies
show FFA hypoactivation in high functioning teens and adults with ASD com-
parison to controls (e.g., for review see Schultz 2005), although other studies have
found no differences (e.g., Hadjikhani et al. 2004; Kleinhans et al. 2008). Varia-
tions in FFA activation may be due to individual differences in attention to eye
regions (Dalton et al. 2005) or to additional task requirements (Koshino et al.
2008). It has also been suggested that attention modulation in face specific regions
in ASD is impaired for social but not nonsocial information, which could account
for task-related difference in performance (Bird et al. 2006; also see Dichter and
Belger 2007). Perception and identification of emotional facial expressions is also
altered in ASD, with decreased amygdala responses in some studies (e.g., Ashwin
et al. 2007; see Baron-Cohen et al. 2000). Consistent with impaired attunement to
emotional cues, highly emotional expressions failed to modulate FFA activation
among subjects with ASD (Lauvin et al. 2012). During emotion processing tasks,
SPECT imaging also revealed hypoactivity in frontal regions extending to the
amygdala bodies, and the degree of hypoactvity correlated with symptom severity
(Ohnishi et al. 2000). These findings together suggest that ASD is associated with
a deficit in FFA activation and connectivity between frontal networks, evident
in situations requiring social processing.

EEG and ERP studies also reveal an association between ASD and alterations
in activation patterns triggered by aspects of face processing. Children with ASD
show larger ERP responses to direct eye gaze, perhaps accounting for behaviors
that modulate sensory input through eye contact aversion instead of more typical
modulation by prefrontal dampening (Grice et al. 2005; Kyllianinen et al. 2006).
Atypical or delayed temporal processing of social compared to nonsocial infor-
mation has been found early in the development of autism (e.g., Webb et al. 2006,
2011) and this pattern extends through childhood and into adulthood (see Webb
et al. 2009 for review). Emotional cues of face stimuli also elicit altered lower
order cortical processing during early development (Dawson et al. 2004), but this
pattern may normalize in late childhood (e.g., Wong et al. 2008).

EEG studies also show alterations in neuronal responses during observation of
manual motor actions in ASD, with less desynchronization of neuronal assemblies
(i.e., attenuation of the mu rhythm) during conditions of observation compared to
imitation or execution. Unlike typically developing subjects, who exhibited
attenuation of the mu rhythm during observation, imitation, and execution con-
ditions, ASD subject only demonstrated attenuation during conditions when they
executed or immediately imitated a manual motor action (Bernier et al. 2007;
Oberman et al. 2005); and the degree of attenuation was correlated with imitative
behaviors (Bernier et al. 2007). Because ‘‘decreased’’ power in the mu band
(attenuation) reflects increased neural activity, the failure to increase neural
resources during observation may reflect compromised integrative neurophysio-
logical processes.

Deficits in the ability to imitate other people’s actions are also commonly seen
in studies of ASD, revealing another bias toward object-oriented tasks and away
from direct action imitation (Williams et al. 2004). A number of neuroimaging
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studies have suggested that alterations inregional activation during observation and
imitation of manual motor movements in individuals with ASD are indicative of
impairments in mirror neuron systems (Williams et al. 2006; Marsh and Hamilton
2011); however, the extent to which patterns of hypoactivation are directly related
to alterations in inferior frontal gyrus and the mirror neuron system is debated (for
review, Hamilton 2013). Instead, like face processing, the pattern of responses is
more complicated, and results include features of hyperactivity (Martineau et al.
2010), hypoactivity (Dapretto et al. 2005), and equivalent activity (Grezes et al.
2009; Schulte-Rüther et al. 2007).

Overall, these neurophysiologic findings indicate that alterations in cortical
organization in ASD contribute to alterations inactivation responses to diverse
processing demands. Findings also highlight early changes in connectivity, con-
tributing to developmental shifts in activation patterns both at rest and within
regions typically associated with specialized tasks essential for social learning.
These connectivity differences are also observed within both local and distributed
networks in ASD, and are likely impacted by alterations in developmental tra-
jectories of synaptic refinements which affect regional specialization.

5 Alterations in Neuronal Network Specialization

Clinically, children with autism demonstrate an extremely high rate of idiosyncratic
sensory responsivity. Heightened reactivity to aversive sensory stimuli in ASD is
thought to be driven by hyperconnectivity of local sensory networks in conjunction
with decreased modulation from integrative frontal networks. This systems con-
nectivity deficit provides an alternate perspective on local sensory hyperactivity,
which has been proposed as a model accounting for alternate sensory processing
strategies in individuals with autism. Specifically, quicker neuronal responsivity
based on EEG is seen in some visual paradigms, highlighting earlier activation
patterns in ASD (Boeschoten et al. 2007). However, the P1 response, an event-
related EEG component thought to be generated by extrastriate activity, was
smaller in a study of PDD subjects compared to controls; as well, inferior medial
sources were also found to be weaker. Increased activity was instead observed in
the superior lateral visual area, suggesting alterations in anatomic separation and
specialization, specifically in early visual processing networks.

Alterations in the specialization of visual networks in ASD is also demonstrated
in heightened maintenance of sensitivity in peripheral visual fields with less
enhancement of foveal regions. Clinical signs of aberrant eye contact and lateral
glance behavior may therefore be related to behavioral modulation of sensory
input due to differential activation patterns at early sensory levels, which may
otherwise overwhelm processing capabilities (e.g., Mottron et al. 2007). Perceptual
modulation is normally afforded by neurodevelopmental dampening of less rele-
vant sensory input. Reduced developmental refinement of peripheral visual field
sensitivity further highlights impaired perceptual modulation in ASD.
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ASD is also marked by stereotypic behaviors, which are hypothesized to rep-
resent an effort to enhance proprioceptive processing by conveying greater con-
textual proprioceptive and visual cues. This stereotypic behavior may serve to
strengthen proprioceptive circuits, resulting in greater allocation of attention
resources to seeking and maintaining high levels of sensory stimulation, particu-
larly those related to visual and proprioceptive cues. Heightened reliance on local
sensory cortical regions is also demonstrated in behavioral enhancements,
including improved processing of elemental visual features and better auditory
tone discrimination (see Mottron et al. 2006; Dakin and Frith 2005). However, as
perceptual processing tasks begin to involve more complex visual features or noise
with high variability, performance on these tasks may start to show impairments
(Simmons et al. 2009).

Clinically, ASD is also associated with rigid behavioral routines and difficulties
adapting to shifting environmental demands. Anterior cingulate cortex (ACC), a
region involved in monitoring and set-shifting to adapt to new conditions and
demands, is thought to assist in cognitive flexibility. Subjects with ASD exhibited
deficits in performance of tasks requiring cognitive flexibility, and the tasks
elicited less activation than controls in ACC and other frontal regions (Shafritz
et al. 2008). Hypoactivity was also seen in basal ganglia and parietal regions, but
decreased activation in ACC was specifically associated with clinical severity of
repetitive behavior.

Further, ASD has been associated with impairments in top-down regulation,
affecting how cognitions and expectancies influence even basic perceptions. Top-
down modulation is also required for shaping perceptual processes to accord with
beliefs and appreciation of contextual cues. Consistent with impaired top-down
modulation, individuals with ASD exhibit differences in illusory perceptions and
their impact on modulating behavior. For example, the rubber-hand illusion, when
individuals are exposed to visual information of a rubber hand being touched while
their true hand is also touched simultaneously, typically elicits a sense that touch is
indeed felt on the rubber hand, and a heightened sense of ownership of the rubber
hand. This requires cross modal integration of visual, tactile, and proprioceptive
information, which can be influenced by perceptual beliefs relevant to the context.
Even when individuals with ASD cognitively appreciate the illusory effect, they
subsequently maintain more accurate proprioception than individuals without ASD
traits, as their motor responses are less impacted by these higher order perceptual
shifts (Palmer et al. 2013). This increased reliance on lower level sensory estimates
may serve to strengthen these local systems over time and may further perpetuate
deficits in higher order contextual processing (Mottron et al. 2006; Dakin and Frith
2005; Simmons et al. 2009).

Other perceptual tasks that require more abstract social and emotional
reasoning have also highlighted a lack of higher order integration in ASD. For
example, among individuals with ASD, regional fMRI activation was not appro-
priately affected by modulating videos to depict good versus bad intentions of
actors (Pinkham et al. 2008), nor by ironic content (Wang et al. 2007). Appreci-
ation of these more nuanced aspects of others’ behavior requires integration of
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diverse networks, including those thought to underlie empathy and one’s sense of
self. Altered utilization of these networks may thus contribute to the conceptual-
ization of ASD as a deficiency in Theory of Mind and contribute to idiosyncratic
alterations in social repertoires.

6 Conclusions and Treatment Implications

Studies examining the neurophysiology of ASD describe distributed alterations in
activation patterns of regional networks, highlighting impacts on perceptual pro-
cessing in basic sensory tasks as well as modulation from higher order regions
typically involved in complex social and emotional processing. Despite evidence
for underutilization and hypoconnectivity of regions important for social pro-
cessing in ASD, earlier in neurodevelopment ASD appears to be associated with
heightened anatomic and functional connectivity. This developmental trajectory
may place greater demands on primary sensory systems, enhancing hypercon-
nectivity of localized networks and shifting developmental specialization away
from more integrative networks. This shift in network specialization may con-
tribute to alterations in processing strategies, behaviorally expressed as idiosyn-
cratic patterns that favor proprioceptive and other lower order sensory cues.
Behavioral stereotypies manipulating sounds, smells or movement often seen in
children with ASD likely serve to enrich and bind this sensory input, similar to
how slight head movement allows visual perception to become richer and more
seamless, even when looking through a mesh screen. Emotional networks may also
shift to become integrated into sensory experiences apart from interpersonal
relatedness, contributing to alterations in communication, and social reactivity.

This conceptualization suggests that treatments should be focused on reestab-
lishing specialization of networks underlying higher order contextual and social
processing. This type of behavioral intervention often initially requires increasing
environmental structure to provide a more restricted context for learning, thereby
allowing more attentional resources to be paid to other cognitive demands, such as
social interactions or academic performance. Evidence also points to enhanced
neurophysiologic functioning when attention is restricted to cues that are highly
relevant for social perception, such as by improving eye contact and actively
attending to the perspective of others. These experiences may enable temporal
coordination of networks to become increasingly specialized and attuned to
effectively process relevant information and enhance behavioral functioning.

The refinement of networks underlying clinical benefit in ASD may further be
fostered by pharmacologic approaches, particularly those that can drive adaptive
specialization. Some EEG studies of pharmacotherapy for ADHD suggest enhanced
coherence of distributed cortical regions following treatment (Dupuy et al. 2010),
suggesting medication-mediated changes in neurophysiologic patterns may cause
or contribute to clinical improvement. Increasing evidence for plasticity induced
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changes associated with SSRIs suggests they may alter normative developmental
timing, which highlights the role that medications may play in enhancing the
influence of experience on neuroanatomy and neurophysiology (Castren 2013).

One caveat to neurophysiological findings in ASD is that high medication rates
may confound studies, as many include subjects already on psychotropic medi-
cations, of which several commonly prescribed are known to affect neural oscil-
lations (e.g., Blume 2006; Dumont et al. 2005; Loo et al. 1999). Additionally,
while there is a scarcity of knowledge about the effects of medication on EEG and
fMRI measures, even less is known about short and long-term effects of medi-
cation on neural anatomy.

Medication treatments for ASD have nevertheless increasingly been focused on
targeting alterations in synaptic connectivity (Won et al. 2013). Little is known
about the direct effects of atypical antipsychotics on brain activity; however in
adult clinical trials, risperidone was found to normalize EEG findings in autistic
subjects by increasing EEG theta power (Liem-Moolenaar et al. 2011). Aripip-
razole treatment initially increased delta frequency power (Kim et al. 2006), but
resulted in decreased delta after 8 weeks (Canive et al. 1998). The Early Start
Denver comprehensive behavioral treatment for ASD also reveal evidence of
clinical improvements and normalization of EEG profiles, suggesting both phar-
macologic and behavioral treatments may address features of neurophysiological
alterations (Dawson et al. 2012).

Individuals with ASD may benefit from medication interventions that enable
more adaptive functioning of social and emotional processing networks through
enhancements in neuronal plasticity and regional specialization. These treatments
should be maximized through coordination with ongoing behavioral supports, and
integrative research approaches to study early intervention strategies are important
to determine mediators of clinical response. Studies of ASD must also be viewed
within a shifting neurodevelopmental landscape, and longitudinal characterization
of neurophysiological functioning and patterns of regional specialization are
needed. These markers of network connectivity can offer insights into the clinical
impairments associated with ASD, and more importantly, reveal the impact of
important treatment interventions on brain functioning.
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