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Abstract This chapter summarises recent developments on personalised medicine
in psychiatry with a focus on ADHD and depression and their associated
biomarkers and phenotypes. Several neurophysiological subtypes in ADHD
and depression and their relation to treatment outcome are reviewed. The first
important subgroup consists of the ‘impaired vigilance’ subgroup with often-
reported excess frontal theta or alpha activity. This EEG subtype explains ADHD
symptoms well based on the EEG Vigilance model, and these ADHD patients
responds well to stimulant medication. In depression this subtype might be
unresponsive to antidepressant treatments, and some studies suggest these
depressive patients might respond better to stimulant medication. Further research
should investigate whether sleep problems underlie this impaired vigilance sub-
group, thereby perhaps providing a route to more specific treatments for this
subgroup. Finally, a slow individual alpha peak frequency is an endophenotype
associated with treatment resistance in ADHD and depression. Future studies
should incorporate this endophenotype in clinical trials to investigate further the
efficacy of new treatments in this substantial subgroup of patients.
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1 Introduction

The landscape in psychiatry recently underwent a dramatic change. Large-scale
studies investigating the effects of conventional treatments for ADHD and
depression in clinical practise have demonstrated, at the group-level, limited
efficacy of antidepressant medication and cognitive behavioural therapy in
depression (STAR*D: Rush et al. 2006), an overestimation of the effects of cog-
nitive behavioural therapy for depression as a result of publication bias (Cuijpers
et al. 2010) and limited long-term effects of stimulant medication, multicomponent
behaviour therapy and multimodal treatment in ADHD (NIMH-MTA trial: Molina
et al. 2009), although latent class analysis reported a subgroup consisting of
children who demonstrated sustained effects of treatment at 2 years follow-up
(Swanson et al. 2007). Furthermore, several large pharmaceutical companies
announced that they would ‘…pull the plug on drug discovery in some areas of
neuroscience…’ (Miller 2010). This can be considered a worrying development,
since there is still much to improve in treatments for psychiatric disorders. The
conclusions about limitations in efficacy and long-term effects are all based on the
interpretation of group-averaged data, but also demonstrate that there is a per-
centage of patients responding to antidepressants (Rush et al. 2006) and there is a
subgroup of patients demonstrating long-term effects (Swanson et al. 2007).
Therefore, a move beyond data regarding the average effectiveness of treatments
to identify the best treatment for any individual (Simon and Perlis 2010) or
personalised medicine is crucial.
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The fact that only subgroups of patients respond to treatment raises important
questions about the underlying assumptions of neurobiological homogeneity
within psychiatric disorders, and is rather suggestive of neurobiological hetero-
geneity. Therefore, a move beyond data regarding the average effectiveness of
treatments, to identify the best treatment for a given individual (Simon and Perlis
2010) or personalised medicine is highly relevant. In personalised medicine it is
the goal to prescribe the right treatment, for the right person at the right time
as opposed to the current ‘trial-and-error’ approach, by using biomarkers of
endophenotypes.

From the point of view that biomarkers should be cost-effective, easy applicable
and implemented within the routine diagnostic procedure, the quantitative EEG
(QEEG) seems to be appropriate. Still the question is whether it should be con-
sidered a diagnostic or prognostic technique? Although several EEG-biomarkers
have shown robust discriminative power regarding neuropsychiatric conditions
(for depression also see: Olbrich and Arns 2013) it seems not within reach that
biomarkers will replace the clinical diagnosis (Savitz et al. 2013). As another
illustration, consider any psychiatric disorder as defined according to the DSM-IV
or DSM-V (DSM). Besides a list of behavioural symptoms, there is always the
final criterion that the complaints result in ‘impairments in daily life’. Specifically,
this criterion makes it almost impossible to devise any neurobiological test to
replace diagnosis based on the DSM, since for one person the same level of
impulsivity and inattention is considered a blessing (i.e. artist or CEO), whereas
for another person the same levels of impulsivity and inattention is considered a
curse, and hence results in a diagnosis only for the latter subject.

Given the recent development of personalised medicine (in line with the NIMH
Strategic Plan on Research Domain Criteria or RdoC, and termed Precision
Medicine) and the above limitations of current psychiatric diagnosis and treat-
ments, in this chapter we will focus on the prognostic use of QEEG in psychiatry.

This prognostic use of EEG or QEEG has a long history. For example,
Satterfield et al. (1971, 1973) were the first to investigate the potential use of EEG
in predicting treatment outcome to stimulant medication (main results outlined
further on). In 1957 both Fink, Kahn and Oaks (Fink and Kahn 1957) and Roth
et al. (1957) investigated EEG predictors to ECT in depression. Fink recently
summarised these findings eloquently as: ‘Slowing of EEG rhythms was necessary
for clinical improvement in ECT’ (Fink 2010).

2 Personalised Medicine: Biomarkers
and Endophenotypes

Personalised medicine aims to provide the right treatment to the right person at the
right time as opposed to the current ‘trial-and-error’ approach. Genotypic and
phenotypic information (or ‘biomarkers’) lie at the basis of this approach. How-
ever, 2011 marked the 10th year anniversary of the completion of the Human
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Genome project, which has sparked numerous large-scale Genome Wide Asso-
ciation studies (GWA) and other genotyping studies in psychiatric disorders, only
accounting for a few percent of the genetic variance (Lander 2011). This suggests
that a strictly genetic approach to personalised medicine for psychiatry will not be
as promising as initially expected. The notion of personalised medicine suggests
heterogeneity within a given DSM-IV disorder, rather than homogeneity, at least
from a brain-function-based perspective. Therefore, a variety of ‘endophenotypes’
or ‘biomarkers’ are expected within a single DSM-IV disorder to require a dif-
ferent treatment.

The National Institutes of Health declared a biomarker as ‘A characteristic that
is objectively measured and evaluated as an indicator of normal biologic processes,
pathogenic processes or pharmacologic responses to a therapeutic intervention’
(De Gruttola et al. 2001). However, the idea behind an endophenotype is that it is
the intermediate step between genotype and behaviour and thus is more closely
related to genotype than behaviour alone. Therefore, endophenotypes can be
investigated to yield more information on the underlying genotype. Given the
interest in the last couple of years for genetic linkage studies, this term has become
more topical again. In parallel, there have also been many studies using the term
biological marker, trait, biomarker etc. Here it is important that, in line with
Gottesman and Gould (2003), an ‘endophenotype’ refers to a marker when also
certain heritability indicators are fulfilled, whereas a ‘biomarker’ simply refers to
differences between patient groups, which do not necessarily have a hereditary
basis.

Older studies attempting to aid the prescription process with more objective
knowledge have studied biological (e.g. neurotransmitter metabolites), psycho-
metric (personality questionnaires), neuropsychological (cognitive function) and
psychophysiological (EEG, ERP) techniques (Joyce and Paykel 1989). Biological
techniques (such as neurotransmitter metabolites) have to date shown little
promise as reliable predictors of treatment response and are not yet recommended
for routine clinical practise (Joyce and Paykel 1989; Bruder et al. 1999). Similarly,
the clinical utility of ‘behavioural phenotypes’ remains poor and, at this moment,
none of these predictors have clinical use in predicting treatment outcome to
various anti-depressive treatments (Simon and Perlis 2010; Cuijpers et al. 2012;
Bagby et al. 2002).

However, there has been renewed interest in the use of other measures such as
pharmacogenomics (Frieling and Tadić 2013) and pharmacometabolomics (Hefner
et al. 2013), which are speculated to show promise in the use of personalised
medicine. However to date pharmacogenomics have not shown promising results in
predicting treatment outcome in psychiatric disorders (Johnson and Gonzalez 2012;
Ji et al. 2011; Menke 2013) and pharmacometabolomics is considered potentially
promising at most at this moment, with few reports on its role in personalised
medicine (Johnson and Gonzalez 2012; Quinones and Kaddurah-Daouk 2009).

Recent studies suggest that more direct measures of brain function, such as
psychophysiology and neuropsychology, may be more reliable in predicting
treatment response in depression (Olbrich and Arns 2013). The underlying idea
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behind this concept is that for example neurophysiological data from EEG capture
ongoing neuronal activity at the timescale it takes place, outpassing any other
modality such as neuroimaging techniques like fMRI or PET. Further, the EEG is
not a surrogate marker of neuronal activity (such as the blood desoxygenation level
dependent signal in fMRI or the glucose utilisation in PET) but gives insight into
the actual cortical activity. Therefore, the EEG can help to define stable endo-
phenotypes incorporating both the effects of nature and nurture. This potentially
makes the EEG an ideal candidate biomarker, which has the potential to predict
treatment outcome.

3 EEG as an Endophenotype?

Many studies have investigated the heritability of the EEG in twin studies and
family studies (Vogel 1970), and found that many aspects of the EEG are heritable.
In a meta-analysis van Beijsterveldt and van Baal (2002) demonstrated high
heritability for measures such as the alpha peak frequency (81 %), alpha EEG
power (79 %), P300 amplitude (60 %) and P300 latency (51 %), all suggesting
that EEG and ERP parameters fulfil the definition of an endophenotype. Below
two examples of EEG Phenotypes are discussed in more detail.

3.1 Low-Voltage (Alpha) EEG (LVA) and Alpha Power

LVA is the most well-described EEG phenotype to date and was first described by
Adrian and Matthews (1934). The latter author exhibited an EEG in which alpha
rhythm ‘…may not appear at all at the beginning of an examination, and seldom
persists for long without intermission…’. The LVA EEG has been known to be
heritable (autosomal dominant) and the heritability of alpha power is estimated at
79–93 % (Smit et al. 2005, 2010; Anokhin et al. 1992). Low-voltage EEG is a
well-described endophenotype in anxiety and alcoholism (Enoch et al. 2003;
Ehlers et al. 1999; Bierut et al. 2002). Alpha power and LVA have been suc-
cessfully associated with a few chromosome loci (Ehlers et al. 1999; Enoch et al.
2008) but also with single genes: a serotonin receptor gene (HTR3B) (Ducci et al.
2009), corticotrophin-releasing binding hormone CRH-BP (Enoch et al. 2008), a
gamma-amino butyric acid (GABA)-B receptor gene (Winterer et al. 2003) and
with the BDNF Val66Met polymorphism (Gatt et al. 2008; Zoon et al. 2013).

3.2 Alpha Peak Frequency (APF)

The APF has been shown to be the most reproducible and heritable EEG char-
acteristic (van Beijsterveldt and van Baal 2002; Smit et al. 2005; Posthuma et al.
2001) and has been associated with the COMT gene, with the Val/Val genotype
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marked by a 1.4 Hz slower APF as compared to the Met/Met group (Bodenmann
et al. 2009) which could not be replicated in two large independent samples in our
lab (Veth et al. submitted), casting doubt on this specific linkage and requiring
further studies to unravel the genetic underpinnings of this measure.

In summary, the EEG has a long history in identifying biomarkers or
endophenotypes aiding the prediction of treatment outcome and the EEG can be
considered a stable, reproducible measure of brain activity with high heritability.

4 ADHD

Considerable research has been carried out for investigating the neurophysiology
of ADHD. The first report describing EEG findings in ‘behavior problem children’
stems from 1938 (Jasper et al. 1938) when the authors described a distinct EEG
pattern: ‘…There were occasionally two or three waves also in the central or
frontal regions at frequencies below what is considered the normal alpha range,
that is, at frequencies of 5–6/s…’ (Jasper et al. 1938, p. 644), which we now know
to be frontal theta, although the term theta was not introduced until 1944 by Walter
and Dovey (1944). In this group of ‘behavior problem children’ they described a
‘Class 1’ as ‘hyperactive, impulsive and highly variable’ which closely resembles
the current diagnosis of ADHD. The most predominant features in this group were
the occurrence of slow waves above one or more regions and an ‘abnormal EEG’
in 83 % of the cases. Within ‘Class 1’ they also reported a subgroup which they
termed as ‘sub-alpha rhythm’ with slow frontal regular activity which occurred in
a similar way as the posterior alpha (‘…In other cases a 5–6/s rhythm would
predominate in the anterior head regions simultaneous with an 8–10/s rhythm
from the posterior regions…’), thus already hinting at the heterogeneity of EEG
findings that has continued to date and will be explained further below. Satterfield
and colleagues (1971, 1973) were the first to investigate the potential use of EEG
in predicting treatment outcome to stimulant medication. They found that children
with excess slow wave activity and large amplitude evoked potentials were more
likely to respond to stimulant medication (Satterfield et al. 1971) or, more gen-
erally, that abnormal EEG findings could be considered as predictor for positive
treatment outcome (Satterfield et al. 1973). Below, the literature on ADHD will be
reviewed in more detail focusing on some main subtypes for which at least rep-
lication studies have been published.

4.1 ‘Excess Theta’ and ‘Theta/Beta Ratio’: Impaired
Vigilance Regulation

The most consistent findings reported in the literature on ADHD since the intro-
duction of quantitative EEG are those of increased absolute power in theta and
increased theta/beta ratio (TBR). The clearest demonstration of the ‘diagnostic
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utility’ of this measure is from Monastra et al. (1999), who showed in a multi-
centre study of 482 subjects that using a single electrode location (Cz) they could
classify with an accuracy of 88 % children with ADHD based on the TBR. Note
that most of these studies focused on the EEG as a diagnostic tool for ADHD,
which is not automatically compatible with the notion of using the EEG for
predictive purposes (as part of personalised medicine) as these two aims have
conflicting implications, where the diagnostic use of EEG assumes homogeneity
among patients with ADHD, while the predictive approach assumes heterogeneity
(‘A predictive biomarker is a baseline characteristic that categorises patients by
their likelihood for response to a particular treatment’ (Savitz et al. 2013)).

Three meta-analyses have investigated the diagnostic value of theta power and
the TBR in ADHD compared to healthy controls. Boutros and colleagues ( 2005)
concluded that increased theta power in ADHD is a sufficiently robust finding to
warrant further development as a diagnostic test for ADHD, with data suggesting
that relative theta power is an even stronger discriminator than absolute theta
power. In 2006, Snyder and Hall conducted a meta-analysis specifically investi-
gating the TBR, theta and beta and concluded that an elevated TBR is ‘…a
commonly observed trait in ADHD relative to controls… by statistical extrapo-
lation, the effect size of 3.08 predicts a sensitivity and specificity of 94 %…’
(Snyder and Hall 2006, p. 453)). However, there is a problem with this extrapo-
lation from an effect sizes (ES) to a sensitivity and specificity measure [see: (Arns
et al. 2013a, b) for details] and hence these extrapolated values from Snyder and
Hall (2006) should not be considered accurate. A recent meta-analysis incorpo-
rating more recent studies refines these findings further and shows a clear ‘time
effect’ of studies, where earlier studies demonstrated the largest ES and more
recent studies found the lowest ES between ADHD and non-ADHD groups (Arns
et al. 2013a). This chronological effect in the findings was mostly related to the
TBR being increased in the non-ADHD control groups which was interpreted by
the authors as possibly being related to a decreasing sleep duration observed for
non-ADHD children over time (Arns et al. 2013a, b; Iglowstein et al. 2003;
Dollman et al. 2007) also found in a meta-analysis covering the last 100 years
(Matricciani et al. 2011). Reduced sleep duration can result in prolonged sleep
restriction, which results in increased fatigue and increased theta [see Arns and
Kenemans (2012) for a review]. However, it was concluded that a substantial
subgroup of ADHD patients (estimated between 26–38 %) are characterised by an
increased TBR, even in recent studies (Arns et al. 2013a, b). Excess theta and
elevated TBR are also favourable predictors for treatment outcome to stimulant
medication (Arns et al. 2008; Clarke et al. 2002; Suffin and Emory 1995) and
neurofeedback (Arns et al. 2012a; Monastra et al. 2002), thereby demonstrating
the predictive value of this measure.

Conceptually, the EEG subtype with excess theta and/or enhanced TBR in
ADHD are consistent with the EEG Vigilance model originally developed by
Bente (1964) and further developed by Hegerl et al. (2012), which also overlaps
with what is sometimes referred to as ‘underarousal’ and also with the EEG cluster
described as ‘cortical hypoarousal’ (Clarke et al. 2011).
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The EEG Vigilance framework can be regarded as an extension of the sleep
stage model with a focus on eyes-closed resting period with transitions from
relaxed wakefulness through drowsiness to sleep onset, which is seen in stage N2.
The EEG allows classifying different functional brain stages at a time scale of, e.g.
1-s epochs, which reflect decreasing levels of vigilance from W to A1, A2, A3, B1,
B2 and B3. W stage reflects a desynchronized low amplitude EEG which occurs,
e.g. during arithmetic. The three A stages reflect stages where alpha activity is
dominant posteriorly (A1), equally distributed (A2), followed by alpha anteriori-
sation (A3), whereas B stages are reflective of the lowest vigilance stages, which
are characterised by an alpha drop-out or low-voltage EEG with slow horizontal
eye movements (B1) followed by increased frontal theta and delta activity (B2/3).
These vigilance stages are followed by sleep onset with the occurrence of
K-complexes and sleep spindles, which mark the transition to stage C in the
vigilance model, or classically to stage N2 sleep.

The sequence of EEG vigilance stages that can be assessed in an individual
reflect the ability of relaxing or falling asleep. Due to its high temporal resolution
of 1-s epochs it is sensitive to short drops of vigilance in contrast to traditional
sleep medicine measures. Using a clustering method, three types of EEG vigilance
regulation have been defined in a group of healthy subjects: a stable type, a slowly
declining type and an unstable type (Olbrich et al. 2012). A stable or rigid EEG
Vigilance regulation means that an individual remains in higher vigilance stages
for an extended time and does not exhibit lower vigilance stages. This would be
seen as rigid parietal/occipital alpha (stage A1), which is often seen in depression
(Olbrich et al. 2012; Ulrich et al. 1990; Hegerl et al. 2012). On the other hand,
unstable EEG Vigilance regulation suggests that an individual very quickly drops
to lower EEG Vigilance stages, displaying the characteristic drowsiness EEG
patterns such as frontal theta (stage B2/3), and they switch more often between
EEG Vigilance stages. This labile or unstable pattern is often seen in ADHD
(Sander et al. 2010). The often-reported ‘excess theta’ in ADHD mentioned above
should thus be viewed as a predominance of the low B2/3 vigilance stages.

A summary of this model is depicted in Fig. 1. An unstable vigilance regulation
explains the cognitive deficits that characterise ADHD and Attention Deficit
Disorder (ADD), such as impaired sustained attention. Vigilance stabilisation
behaviour explains the hyperactivity aspect of ADHD as an attempt to upregulate
vigilance.

To summarise, in the majority of ADHD patients an EEG pattern is observed
illustrative of a reduced and unstable vigilance regulation (i.e. the same EEG
signature a healthy, but fatigued person would possibly demonstrate at the end of
the day). The interpretation of increased theta activity as patterns of decreased
tonic arousal suggests that the hyperactive behaviour of ADHD patients can
be seen as a counter mechanism to auto-stabilisation via externalising behaviour
that increases vigilance by riskful and sensation-seeking behaviour. Further, a
decreased vigilance in a subgroup of patients with ADHD explains the positive
effects of stimulant medication: vigilance is shifted to a high and stable level
without the need for externalising behaviour. Interestingly, a similar pattern of
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reduced EEG vigilance can be found in manic patients, which sometimes also
show patterns of reduced vigilance (Small et al. 1997) along with sensation-
seeking behaviour. Again, this subtype with reduced vigilance seems responsive to
stimulant medication (Schoenknecht et al. 2010).

Recent reviews are increasingly focusing on the role of sleep problems as the
underlying aetiology of ADHD, in at least a subgroup of patients (Arns and
Kenemans 2012; Miano et al. 2012). A majority of ADHD patients can be char-
acterised by sleep onset insomnia, caused by a delayed circadian phase (van der
Heijden et al. 2005; Van Veen et al. 2010). Although this cannot be considered a
full-blown sleep disorder, chronic sleep onset insomnia can result in chronic sleep
restriction which is known to result in impaired vigilance, attention and cognition
(Van Dongen et al. 2003; Axelsson et al. 2008; Belenky et al. 2003). This is further
evidenced by a recent meta-analysis incorporating data from 35,936 healthy
children, reporting that sleep duration is positively correlated with school per-
formance, executive function, and negatively correlated with internalising and
externalising behaviour problems (Astill et al. 2012). Furthermore, it is known that
symptoms associated with ADHD can be induced in healthy children by sleep
restriction (Fallone et al. 2001; Golan et al. 2004), which also resulted in increased
theta EEG power after a week of sleep restriction (effect size=0.53; Beebe et al.
(2010)). These studies demonstrate that sustained sleep restriction results in
impaired vigilance regulation (excess theta) as well as impaired attention, sug-
gesting an overlap between ADHD symptoms and sleep disruptions. Chronobio-
logical treatments normalising this delayed circadian phase, e.g. early morning

Fig. 1 Overview of the relation between an unstable vigilance regulation and behavioural
symptoms of ADHD. Circadian phase delay can be considered one cause for the unstable
vigilance regulation, but more in general sleep disorders are known to result in unstable vigilance
regulation

Personalized Medicine in ADHD and Depression: Use of Pharmaco-EEG 353



bright light (Rybak et al. 2006) and sustained melatonin treatment (Hoebert et al.
2009) have been shown to normalise this sleep onset insomnia and also result in
clinical improvement on ADHD symptoms. Therefore, this subgroup of ADHD
patients with excess theta and elevated TBR is considered a group with impaired
vigilance regulation caused by a delayed circadian phase (also see Fig. 1 and Arns
and Kenemans (2012) for a review and Arns et al. (2013a, b)). Thereby it is
understandable that vigilance stabilising treatments such as stimulant medication
have been shown to be particularly effective in this subgroup (Arns et al. 2008;
Clarke et al. 2002; Suffin and Emory 1995), whereas chronobiological treatments
with sustained treatment (resulting in long-term normalisation) as well as neuro-
feedback treatment are also expected to be efficacious (Arns and Kenemans 2012).

Thus, conceptually, this excess theta subgroup can be interpreted as a subgroup
with impaired vigilance regulation, likely caused by sleep restriction and/or other
factors systematically influencing sleep duration.

4.2 The ‘Slow Individual Alpha Peak Frequency’ Subgroup

As pointed out above from the old Jasper et al. (1938) study in behavioural
problem children, a cluster was identified which most closely resembles what we
would now refer to as ADHD. In this ‘Class 1’ cluster they also reported an
additional subgroup, which they termed a ‘sub-alpha rhythm’ with slow frontal
regular activity, which occurred in a similar way as the posterior alpha (‘…In other
cases a 5–6/s rhythm would predominate in the anterior head regions simulta-
neous with an 8–10/s rhythm from the posterior regions…’). Nowadays, we would
consider this a slowed Alpha Peak Frequency or slowed APF. Interestingly since
the introduction of quantitative EEG in the 1960s, almost no studies have reported
on the APF in ADHD whereas older studies have consistently reported on this
measure (Arns 2012). Since it has been shown that ADHD children with a slow
APF do not respond well to stimulant medication (Arns et al. 2008), whereas
ADHD children with excess theta do (Clarke et al. 2002; Suffin and Emory 1995),
it is crucial to dissociate these two different EEG subtypes, which tend to overlap
in the EEG frequency domain. As pointed out by Arns et al. (2008) and further
demonstrated in Lansbergen et al. (2011), the often-reported increased TBR in
ADHD actually combines both the excess frontal theta group (interpreted as the
‘impaired vigilance regulation subgroup’) as well as a slow APF subgroup, due to
the alpha frequency slowing to such a degree that it overlaps with the theta
frequency band (4–8 Hz). Therefore, in addition to the limited validity of TBR
presented above, this is a further reason why the TBR is probably not a specific
measure since it incorporates different subtypes of ADHD. From a personalised
medicine perspective this is not optimal, since these subtypes respond differen-
tially to medication and are hypothesised to have a different underlying
pathophysiology.
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Several studies have now demonstrated that a slow APF is associated with
non-response to several treatments such as stimulant medication in ADHD (Arns
et al. 2008), rTMS in depression (Arns et al. 2010; Arns 2012), antidepressant
medication (Ulrich et al. 1984), comorbid depressive symptoms in ADHD after
neurofeedback (Arns et al. 2012a) and antipsychotic medication (Itil et al. 1975).
Since alpha peak frequency is associated with a heritability of 81 % (van
Beijsterveldt and van Baal 2002), this suggests that a slow APF might be con-
sidered a non-specific predictor or even endophenotype for non-response to
treatments across a range of disorders. This subgroup comprises a substantial
proportion of patients (28 % in ADHD: Arns et al. (2008), 17 % in depression:
Arns et al. (2012b)) for whom currently no known treatment exists [see: Arns
(2012) for a review].

4.3 Paroxysmal EEG Abnormalities and Epileptiform
Discharges

Older studies preceding the era of quantitative EEG have mainly employed visual
inspection of the EEG such as identification of epileptiform or paroxysmal
activity, estimating the incidences of paroxysmal patterns in ADHD (or former
diagnostic classes of ADHD) to be from between 12–15 % (Satterfield et al. 1973;
Capute et al. 1968; Hemmer et al. 2001) to approximately 30 % (Hughes et al.
2000), which is high compared to 1–2 % in normal populations (Goodwin 1947;
Richter et al. 1971). Note that these individuals did not present with convulsions
and thus did not have a clinical diagnosis of epilepsy, but simply exhibited a
paroxysmal EEG without a history of seizures. In autism, a prevalence of 46–86 %
for paroxysmal EEG activity or epileptiform EEG abnormalities has been reported
(Parmeggiani et al. 2010; Yasuhara 2010), hence the findings in the old research on
‘abnormal’ EEG might have been partly confounded by a subgroup with autism,
since autism was not included as a diagnostic entity in the DSM until 1980 when
the DSM-III was released.

The exact implications of this paroxysmal and epileptiform EEG activity in
subjects without a history of clinical signs of seizures are not very well understood
and it is good clinical practise not to treat these subjects with anticonvulsive
medication (‘Treat the patient, not the EEG’). In a very large study among healthy
jet fighter pilots, Lennox-Buchthal et al. (1960) classified 6.4 % as ‘marked and
paroxysmally abnormal’. Moreover, they found that pilots with such EEGs were
three times more likely to be involved in a plane crash due to pilot error, indicating
that even though these people are not ‘epileptic’ their brains are ‘not normal’ and
hence the presence of paroxysmal EEG continues to be an exclusion criterion for
becoming a pilot to this day. It is interesting to note that several studies found that
ADHD patients (Itil and Rizzo 1967; Davids et al. 2006; Silva et al. 1996) and
patients with autism (Yasuhara 2010) do respond to anticonvulsant medication.
The reported effect size for carbamazepine in the treatment of ADHD was 1.01,

Personalized Medicine in ADHD and Depression: Use of Pharmaco-EEG 355



which is quite similar to the effect size for stimulant medication (Wood et al.
2007). Furthermore, some studies have demonstrated that interictal and/or sub-
clinical spike activity has detrimental effects on neuropsychological, neurobeha-
vioural, neurodevelopmental, learning and/or autonomic functions and some of
these children with subclinical spike patterns do respond to anticonvulsant
medication both with a reduction of spikes measured in the EEG and with
improvements on memory and attention (Mintz et al. 2009). Like in other psy-
chiatric disorders such as panic disorders (Adamaszek et al. 2011) these findings
suggest the existence of a subgroup with paroxysmal EEG, who might better
respond to anticonvulsant medication; however further research is required to
substantiate this.

4.4 Excess Beta Subgroup

There is clear evidence for a subgroup of ADHD patients that are characterised by
excess beta or beta-spindles, and make up 13–20 % (Chabot and Serfontein 1996;
Clarke et al. 2001a). Several studies demonstrated that these patients do respond to
stimulant medication (Clarke et al. 2003; Chabot et al. 1999; Hermens et al. 2005).
Relatively little is known about this excess beta group and about the occurrence of
beta-spindles. The latter are generally observed as a grapho-element that indicate
sleep onset (AASM Manual) and can also be found in patients with mania (Small
et al. 1997). Further, they occur as medication effect due to vigilance decreasing
agents like benzodiazepines (Blume 2006) or barbiturates (Schwartz et al. 1971).
Furthermore, Clarke et al. (2001b) reported this ADHD subgroup was more prone
to moody behaviour and temper tantrums and Barry et al. (2009) reported that the
ERP’s of this subgroup differed substantially from ADHD children without excess
beta, suggesting a different dysfunctional network explaining their complaints.
Interestingly the ERP’s of the excess beta subgroup appear more normal than those
of the ADHD subgroup without excess beta.

Originally Gibbs & Gibbs in 1950 (see: Niedermeyer and Lopes da Silva 1993)
distinguished two types of predominantly fast EEG, a moderate increased beta,
which they termed ‘F1’ and a marked increased beta, which they termed ‘F2’.
Records of the F1 type were initially considered as ‘abnormal’ until the 1940s,
whereas since that time Gibbs & Gibbs only considered the F2 type as ‘abnormal’.
However, currently electroencephalographers have shown a more lenient philos-
ophy towards the interpretation of fast tracings (Niedermeyer and Lopes da Silva
1993, p. 161). At this moment, the only EEG pattern in the beta range considered
abnormal is the ‘paroxysmal fast activity’ or ‘beta band seizure pattern’, which
most often occurs during non-REM sleep, but also during waking (Stern and Engel
2004). This pattern is quite rare (4 in 3,000) and is most often seen in Lennox–
Gastaut syndrome (Halasz et al. 2004). Vogel (1970) also described an EEG
pattern of ‘occipital slow beta waves’ or also termed ‘quick alpha variants 16–19/
s’ which responds in the same way as alpha to eyes opening and also has a similar
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topographic distribution. This pattern was only found in 0.6 % of a large popu-
lation of healthy air force applicants and given its very low prevalence and
occipital dominance, this subtype is unlikely the explanation of the ‘excess beta’ or
‘beta spindling’ subtype observed in ADHD. Therefore, the ADHD subgroup with
excess beta or beta spindling (assuming the paroxysmal fast activity has been
excluded) can neurologically be considered a ‘normal variant’. However, neuro-
physiologically this can be considered a separate subgroup of ADHD, which does
respond to stimulant medication (Chabot et al. 1999; Hermens et al. 2005).
Probably, the ‘beta-spindle’ group also represents a subgroup with impaired
vigilance ‘(see above), as beta-spindles are common signs for sleep onset. More
research is required to investigate the exact underlying neurophysiology of this
subtype and if other treatments could more specifically target this excess beta or
beta spindling.

5 Depression

Lemere published the first description of EEG findings related to depression in
1936 (Lemere 1936). After inspecting the EEG of healthy people and several
psychiatric patients he concluded: ‘…The ability to produce ‘‘good’’ alpha waves
seems to be a neurophysiological characteristic which is related in some way to
the affective capacity of the individual…’. This increased alpha power is to date
still considered a hallmark of depression (e.g. see Itil (1983)) and recent studies
suggest this endophenotype to be the mediator between the BDNF Val66Met
polymorphism and trait depression (Gatt et al. 2008; Zoon et al. 2013).

One of the first attempts at using the EEG as a prognostic tool in depression
stems from 1957. Roth et al. (1957) investigated barbiturate-induced EEG changes
(delta increase) and found this predicted to some degree the long-term outcome
(3–6 months) of ECT in depression. Many subsequent studies have demonstrated
that greater ‘induced’ delta EEG power predicts favourable outcome to ECT (Ictal
EEG power (Nobler et al. 2000); ECT-induced delta (Fink and Kahn 1957; Fink
2010; Volavka et al. 1972) and barbiturate-induced delta (Roth et al. 1957)). Or, as
Max Fink concluded in a recent review, ‘slowing of EEG rhythms was necessary
for clinical improvement in ECT’ (Fink 2010).

5.1 Metabolic Activity in the Anterior Cingulate (ACC)
and Other Structures

In 1997 Mayberg et al. [see: Mayberg et al. (1997)] reported that pre-treatment
increased resting glucose metabolism of the rostral anterior cingulate (BA 24a/b)
and predicted favourable treatment response to antidepressants. Two earlier studies
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already demonstrated a similar finding for the relation between increased ACC
metabolism and response to sleep deprivation (Ebert et al. 1994; Wu et al. 1992),
which was also confirmed in later studies (Smith et al. 1999; Wu et al. 1999). Since
then this has sparked a huge research interest into the link between the ACC and
treatment response in depression, and to date this is the most well-investigated
finding in treatment prediction in depression. In order to integrate all these findings
recently a meta-analysis was performed that included 23 studies (Pizzagalli 2011).
Nineteen studies reported that responders to antidepressant treatments demon-
strated increased ACC activity pre-treatment whereas the remaining four studies
found the opposite. The overall effect size (ES) was a large effect size (ES=0.918).
The relationship between increased ACC activity and favourable antidepressant
response was found consistently across treatments (SSRI, TCA, ketamine, rTMS
and sleep deprivation) and imaging modalities, and did not depend upon medi-
cation status at baseline (Pizzagalli 2011). No clear relationship between activity
in the anterior cingulate and specific neurotransmitter systems has been reported
(Mulert et al. 2007) and treatment-resistant depressive patients have also been
shown to respond to deep brain stimulation of ACC areas (see: Hamani et al.
(2011) for a review) suggesting that ACC activity reflects a reliable biomarker for
antidepressant treatment response in general.

Most studies have used PET, SPECT and fMRI for assessing activity in the
ACC. However with LORETA (low resolution brain electromagnetic tomography)
as an algorithm for computation of intracortical EEG source estimates it is also
possible to assess activity in the ACC using scalp-EEG time series (Pascual-
Marqui et al. 1994). Increased theta in the ACC assessed with LORETA has been
shown to reflect increased metabolism in the ACC (Pizzagalli et al. 2003).
Furthermore, several studies have used this technique to probe ACC activity
successfully [reviewed in Pizzagalli (2011)].

5.2 EEG Markers in Depression

In QEEG research, various pre-treatment differences in EEG measures have been
reported to be associated with improved antidepressant treatment outcomes. The
following summarises findings that have been replicated in at least one study and
relate to baseline measures predicting treatment outcome. It should be the goal to
identify biomarkers that not only yield valid and effective prediction of treatment
response but also can be linked to the underlying pathomechanisms of depression.
Only a marker that can be integrated into the prevailing view of pathogenesis or
even widens the scope of our understanding will be trusted in the field of clinical
routine diagnostic. Therefore EEG research on prediction biomarkers has to bridge
the gap between the mere analyses of electrophysiological time series on the one
side and psychopathology, behaviour and clinical picture on the other side.

Decreased theta has consistently been reported to be related to a favourable
treatment outcome to different antidepressant treatments (Arns et al. 2012b;
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Iosifescu et al. 2009; Olbrich and Arns 2013) (with the exception of (Cook et al.
1999)) as well as lower delta power (Knott et al. 2000). Given that most LORETA
studies found an association between increased theta in the ACC and treatment
response, these findings appear contradictory. However, Knott et al. (2000) and
Arns et al. (2012b) analysed the EEG activity across all sites and Iosifescu et al.
(2009) only looked at Fp1, Fpz and Fp2. Given that frontal-midline theta has been
localised to the medial pre-frontal cortex and anterior cingulate (Ishii et al. 1999;
Asada et al. 1999), one would thus expect that only frontal-midline sites would
reflect the increased theta, which was indeed reported by Spronk and colleagues
who found increased theta at Fz to be associated with favourable treatment out-
come (Spronk et al. 2011). Hence these findings have to be interpreted in that
increased generalised slow EEG power is a predictor for non-response, whereas
increased ACC theta or frontal-midline theta is a positive predictor for response.
These reflect different types of theta activity: ACC theta, also referred to as phasic
theta, reflective of frontal-midline theta related to information processing versus
tonic theta, reflective of widespread frontal theta and related to drowsiness or
unstable vigilance regulation (for a review of the different roles of tonic and phasic
theta refer to [Klimesch 1999]).

Hegerl et al. (2012) and Olbrich et al. (2012) demonstrated a clear difference in
EEG vigilance regulation in patients with depression compared to matched con-
trols. Depressed patients exhibited a hyperstable vigilance regulation expressed by
increased A1 stages (parietal alpha) and decreased B2/3 and C stages (frontal
theta) which is consistent with a study by Ulrich and Fürstenberg (1999) and other
studies demonstrating increased parietal alpha (Itil 1983; Pollock and Schneider
1990), as first observed by Lemere (1936). Vogel (1970) described a pattern of
‘Monotonous High Alpha Waves’, with a simple autosomal dominance of inher-
itance. The description of this EEG pattern found by Vogel (‘Kontinuität’) is very
similar to the ‘hyperrigid’ or ‘hyperstable’ EEG vigilance found by Hegerl and
Hensch (2012) and hence suggests this indeed reflects a ‘trait’ like EEG vigilance
regulation.

Furthermore, increased pre-treatment alpha has been associated with improved
treatment outcome to antidepressant medication (Ulrich et al. 1984; Bruder et al.
2001; Tenke et al. 2011) and most antidepressants also result in a decrease of alpha
activity [see: Itil (1983) for an overview]. Therefore, the subgroup of non-
responders characterised by frontal theta might be interpreted as a subgroup
characterised by a decreased EEG vigilance regulation (Hegerl and Hensch 2012;
Olbrich and Arns 2013), as opposed to the typically reported increased or
hyperstable vigilance regulation (‘hyperstable’ parietal alpha). Given that patients
with a decreased EEG vigilance regulation respond better to stimulant medication
(manic depression: Hegerl et al. 2010; Bschor et al. 2001; Schoenknecht et al. 2010;
ADHD: Arns et al. 2008; Sander et al. 2010), it is tempting to speculate whether this
subgroup of non-responders might respond better to stimulant medication or other
vigilance stabilising treatments. Although a recent Cochrane review did report
significant improvements of depressive and fatigue symptoms for short-term
stimulant medication as add on therapy in depressed patients (Candy et al. 2008),
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the clinical significance remained unclear and there were very few controlled
studies which could be included, thus limiting the generality of this finding (Candy
et al. 2008). However, stimulant medication has been applied successfully in a
subgroup of depression with excess theta by Suffin and Emory (1995), which was
replicated in a prospective randomised controlled trial (Debattista et al. 2010).
Therefore, along the same lines as discussed above in relation to sleep problems as
the core pathophysiology of ADHD, future research should focus on investigating
EEG vigilance regulation and the existence of sleep problems in this subgroup of
non-responders in order to develop an appropriate treatment for these patients, who
are found to be non-responders to gold-standard antidepressant treatments.

In summary, responders to antidepressant treatments such as antidepressants
and rTMS are generally characterised by increased parieto-occipital alpha (or a
‘hyperstable’ vigilance regulation) and increased theta in the rostral anterior
cingulate (Pizzagalli 2011) reflected as frontal-midline theta. A subgroup of
non-responders to antidepressant treatments are characterised by generalised
increased frontal theta reflective of decreased EEG vigilance regulation. It is
hypothesised that this latter group might be better responders to vigilance stabil-
ising treatments such as psychostimulants or chronobiological treatments such as
melatonin or early morning bright light.

5.3 Alpha Peak Frequency in Depression

In one of the earliest studies investigating EEG predictors of treatment response
in depression, Ulrich et al. (1984) found that non-responders to a tricyclic anti-
depressant (TCA), specifically amitryptiline, and pirlindole (a tetracyclic com-
pound) demonstrated slower APF (8 Hz) as compared to responders (9.5 Hz).
Furthermore, they also found that after 4 weeks of treatment only responders
demonstrated an increase of 0.5 Hz in their APF, whereas the non-responders did
not. More recently, it has also been shown that depressed patients with a pre-
treatment slow APF also respond less well to rTMS (Arns et al. 2010, 2012b).
Furthermore, as discussed above, a slow APF could represent a generic biomarker
for non-response.

5.4 Treatment Emergent or Pharmacodynamic Biomarkers
in Depression

The measures discussed above all involved baseline measures, which were inves-
tigated for their capability of predicting treatment outcome. However, another
well-investigated line of research relates to ‘treatment emergent biomarkers’ or
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‘pharmacodynamic’ biomarkers (Savitz et al. 2013) which measure the EEG at
baseline and subsequently after treatment for several days, with the changes used to
predict treatment outcome. This approach has been mainly applied to antidepres-
sants as, given that this class of drugs generally takes 4–6 weeks to demonstrate its
clinical effects, knowing whether a drug is likely to prove efficacious within several
days has clinical relevance. Two of these methods will be discussed in more detail
in the following, namely EEG cordance and the Antidepressant Treatment
Response.

5.5 EEG Cordance

The EEG cordance method was initially developed by Leuchter and colleagues to
provide a measure, which had face-validity for the detection of cortical deaffer-
entation (Leuchter et al. 1994a, b). They observed that the EEG over a white-
matter lesion often exhibited decreased absolute theta power, but increased relative
theta power, which they termed ‘discordant’. Therefore, the EEG cordance method
combines both absolute and relative EEG power. Negative values of this measure
(discordance)—specifically in theta or beta—reflect low perfusion or metabolism,
whereas positive values (concordance)—specifically in alpha—reflect high per-
fusion or metabolism (Leuchter et al. 1994a, b). This has been confirmed by
comparing cordance EEG with simultaneous measuring perfusion employing PET
scans (Leuchter et al. 1999).

In a first study, it was found that depressive patients characterised by a ‘dis-
cordant’ brain state at baseline could be characterised as non-responders (Cook
et al. 1999). Subjects were classified into ‘discordant’ if [30 % of all electrodes
exhibited discordance or if fewer electrodes that are highly deviant. Furthermore,
central (Cz, FC1, FC2) theta cordance was related to treatment outcome after ECT
(Stubbeman et al. 2004). More recent studies have focused on EEG cordance in the
theta frequency band at pre-frontal electrodes (Fp1, Fp2, Fpz) and have found that
theta cordance change (decrease) across 48 h to 2 weeks of treatment predicted
longer-term treatment outcome (Cook et al. 2002, 2005). In an independent rep-
lication study, Bares et al. (2007, 2008, 2010) also found that responders were
characterised by a decrease in pre-frontal (Fp1, Fp2, Fz) theta cordance after
1 week. Furthermore, Cook et al. (2005) demonstrated that a medication wash-out
period for assessing the quantitative EEG is not critical in reliably using EEG
cordance. This further suggests that change in frontal theta cordance is a reflection
of the early beneficial effects of the treatment and is hence not dependent upon
treatment type since the same cordance effects have been observed with SSRI,
SNRI, TCA, rTMS and ECT. Across studies of depressive patients treated with
various antidepressant medications, decreases in pre-frontal theta cordance 1 week
after start of medication have consistently predicted response, with overall accu-
racy ranging from 72 to 88 % (Iosifescu et al. 2009).
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A pre-frontal theta cordance increase was found in placebo-responders
(Leuchter et al. 2002). A more recent study from this group refined this further by
examining right-medial frontal sites and found that theta cordance after 1 week
was only decreased in the medication responders but not in the placebo-responders
(Cook et al. 2009), hence demonstrating specificity of this measure to treatment
outcome and not to placebo response.

As a limitation of this measure it should be noted that the mentioned mixture of
absolute and relative EEG power values for calculation of the cordance measure
lowers the possibility for interpretation of the underlying neuronal activities (Kuo
and Tsai 2010).

5.6 Antidepressant Treatment Response

The ATR measure was also developed by Leuchter and colleagues (2009a, b) and
is commercialised by Aspect Medical Systems. The first results of this measure
were published in 2009 by Iosifescu et al. (2009), demonstrating that the ATR
measure was able to predict treatment outcome to an SSRI or Velafaxine with an
accuracy of 70 % (82 % sensitivity; 54 % specificity). Recently, the results of a
large clinical trial (BRITE-MD) investigating the ATR were published (Leuchter
et al. 2009a, b). This measure is based on EEG recorded from Fpz (FT7 and FT8)
and is the non-linear weighted combination of (1) combined relative alpha and
theta (3–12 Hz/2–20 Hz) at baseline and (2) the difference between absolute
alpha1 power (8.5–12 Hz) at baseline and absolute alpha2 power (9–11.5 Hz) after
1 week of treatment (Leuchter et al. 2009a, b). It was demonstrated that a high
ATR value predicted response to an SSRI with 74 % overall accuracy (58 %
sensitivity, 91 % specificity). Interestingly, in another study, they reported that
patients with a low ATR responded better to the atypical antidepressant bupropion
(Leuchter et al. 2009a, b) thereby demonstrating that this measure identified two
subgroups of depressive patients with subsequent implications for two types of
antidepressants.

The disadvantage of this method is that patients already need to be prescribed
the medication before any prediction can be made and this method could not be
used on 15 % of the patients due to ECG artefacts (Leuchter et al. 2009a, b), hence
also reflecting a ‘treatment emergent biomarker’.

6 Conclusion

Much research has been conducted in ADHD and depression to investigate the
potential of predicting treatment outcome using EEG as a marker, and the results
are promising. The next step would be to integrate these different metrics further,
make advantage of the different information they provide about the underlying
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neuronal activity and investigate the similarities and differences in order to further
our knowledge, so that EEG- and ERP-based data can be used in practise to predict
treatment outcome. Finally, some examples have been presented where the iden-
tification of EEG-based subgroups sheds more light on the underlying pathology of
the disease state, and can thus be used to develop more effective treatments for the
different subgroups.
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