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Abstract The precise neural substrates of major depressive disorder (MDD)
remain elusive, and FDA-approved antidepressants fail at least one-third of
treatment-seeking patients. It is imperative, therefore, to identify novel research
strategies to tackle the factors impeding progress. In this chapter we propose that
the knowledge derived from computational investigations of associative learning
might offer new insights into the neurobiology of MDD.
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1 Introduction

The origins of depressive illness have been the subject of documented
intellectual inquiry since Hippocrates wrote about melancholic disorders in
approximately 400 BC (Hippocrates 1849). Since the serendipitous discovery in
1951, that a drug developed to treat tuberculosis appeared to induce improve-
ments in mood, basic scientists and clinicians have been continuously engaged in
investigations of the biological correlates of depression, employing a range of
techniques at multiple levels of analysis, such as behavior, genetics, neuronal
etc. Here we focus on the neural systems underlying cognitive process in
depression (see Tables 1 and 3).

Despite the efforts of so many, current antidepressant interventions fail at least
one-third of treatment-seeking patients (Rush et al. 2006). Moreover, the precise
neural substrates of major depressive disorder (MDD) remain elusive. Those
individuals who continue to suffer from the illness are both burdened by their own
pain and can constitute a burden to their families and society. MDD is a leading
cause of worldwide disability and is estimated to cost the United States alone over
80 billion dollars annually in workplace, medical and suicide-related mortality
expenditures (Greenberg et al. 1990; World Health Organization 2012).

In this chapter we propose that studies of associative learning constitute one
important untapped resource available to depression researchers. We begin by
highlighting the characteristics of MDD that make it an illness so difficult to
understand. We then describe how insights from fear and reward learning research
can facilitate the interpretation of abnormal neural activity patterns in depressed
patients, and inform the design and hypotheses of future investigations. Our aim is
to encourage interdisciplinary collaboration that can accelerate the application of
new insights about the pathophysiology of MDD in clinical settings.

2 Why do the Neural Mechanisms of Depression
Remain Elusive?

In 1937 Papez proposed that, “the hypothalamus, the anterior thalamic nuclei, the
gyrus cinguli, the hippocampus, and their interconnections constitute a harmonious
mechanism which may elaborate the functions of central emotion, as well as
participate in emotional expression” (Papez 1937). By offering evidence that affect
is generated in the brain and is not a “magic product”, Papez and his contem-
poraries set the stage for modern researchers to study mood disorders as a bio-
logical phenomenon. In the subsequent decades, scientists have tested several
theories of depression’s etiology (Table 1) and identified countless behavioral,
neural, molecular, and genetic correlates of the illness. Given the bulk of data
acquired, why do the precise neural mechanisms of depression remain elusive?
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Table 1 Major Theories of Depression’s Pathophysiology

Hypothesis Example of supporting evidence

1. Monoamine: Deficits in monoamine Drugs that modulate monoamine
neurotransmission can cause depression neurotransmission have antidepressant
(Lehmann et al. 1958; Bunney and Davis effects (Schildkraut 1967)

1965)

2. Cognitive: Automatic negative thoughts Depression patients reliably report more
about the self, the world, and the future can automatic negative thoughts than healthy
cause depression (Blackburn 1986) volunteers (Hollon 1965; Beck et al. 1963)

3. Neurotrophic: Decreased expression of Stress exposure decreases, but antidepressants
neurotrophic factors including BDNF can increase, hippocampal BDNF levels in
cause depression (Smith et al. 1995; animals (Duman and Monteggia 2006;
Nibuya et al. 1995) Duman et al. 1997)

4. Glutamatergic: Dysfunction of the NMDA antagonists function as antidepressants
glutamatergic system can cause depression (Sanacora et al. 2012)

(Trullas and Skolnick 1990)

MDD’s complexity is one barrier to progress. The diagnostic criteria for MDD
(Table 2) (American Psychiatric Association 2000) were developed in order to
achieve reliability across clinicians and are not grounded in biology. They are so
broad as to encompass a diverse set of patients. One patient may describe sadness,
insomnia, weight loss, fatigue, and feelings of worthlessness. Another will report
hyper-phagia, agitation, poor concentration, and suicidal ideation, complaining
that she no longer enjoys any of her activities. A single individual, in addition, may
describe different constellations of symptoms during different episodes of
depression.

The diversity of depressive phenotypes makes it difficult to create a laboratory
model of depression. Laboratory manipulations do not provoke a syndrome as
durable and multifaceted as MDD. In the Velten Mood Induction Procedure, for
instance, participants read self-referential statements that describe emotional
(“I am worthless”) and/or physical states (“I am listless”) associated with MDD
(Emmett 1968; Riskind et al. 1982). After completion, subjects not only report
feeling more depressed, they also evince mild psychomotor retardation and find it
easier to recall negative versus positive autobiographical memories (David 1983).
These effects are transient, however, and participants do not describe changes in
neurovegetative symptoms such as sleep, appetite, or energy.

Pharmacological models of depression have similar limitations. Acute trypto-
phan depletion is a procedure originally used in humans to test the hypothesis that
abnormally low levels of serotonin trigger depression (Table 1) (Reilly et al.
1997). In this protocol, a nutritional supplement is used to temporarily reduce the
bioavailability of tryptophan, serotonin’s amino-acid precursor (Reilly et al. 1997).
Tryptophan depletion changes sleep architecture in healthy volunteers so that it
more closely resembles that observed in depression patients (Zimmermann et al.
1993; Voderholzer et al. 1998; Arnulf et al. 2002). It does not, however, reliably
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Table 2 Major Depressive Disorder: Diagnostic Criteria

*History of at least one major depressive episode in the absence of a separate psychotic disorder

*No history of manic, hypomanic, or mixed episodes

Major Depressive Episode: Diagnostic Criteria
*Prevasive depressed mood and/or anhedonia lasting at least two weeks
*At least 4 of the following symptoms:
*Change in appetite or weight
*Insomnia or hypersomnia
*Psychomotor agitation or retardation
*Fatigue or loss of energy
*Feelings of worthlessness or excessive/inappropriate guilt
*Impaired concentration or indecisiveness
*Suicidal ideation
* All symptoms are pervasive
*Symptoms cause clinically significant distress or impairment
*Symptoms are not associated with substance use, a medical condition, or bereavement

influence mood in healthy volunteers (Ruhe et al. 2007) and any impact is short-
lived (Reilly et al. 1997).

More intense psychological or pharmacological challenges might induce a
quorum of persistent MDD symptoms. Yet such experimental conditions would
likely be unethical. Hence, it remains impossible to dissociate the neural states that
precipitate depression from those that are secondary or caused by the illness, using
laboratory experiments in healthy volunteers.

Scientists have developed several animal models of depression in an effort to
compensate for the weaknesses inherent in human models (Table 3). Researchers
can subject animals to extreme stressors in order to produce lasting behavioral
change and use invasive techniques to probe depression’s neurobiology. Unfor-
tunately, the utility of these protocols is still undermined by the internal nature of
MDD symptoms. Phenomena such as depressed mood, anhedonia, suicidal idea-
tion, and feelings of worthlessness or helplessness lack reliable physiological or
behavioral signatures (Meaney 2001). It is impossible to confirm the presence of
parallel “symptoms” in animals. Instead, models and measures of animal
“depression” are primarily selected because traditionally, their effects can be
reversed by acute administration of monoaminergic antidepressants (Porsolt 1978).
In the forced swim test, for instance, animals are placed in a cylinder of water. The
time that passes before they stop struggling and become immobile is the mea-
surement used to quantify “depression” severity. Animals who struggle the least
are considered the most “depressed” because antidepressants such as imipramine
and fluoxetine increase latency to immobility (Porsolt 1978).

In recent years, clinical research confirmed that monoaminergic medications
rarely elicit meaningful improvement in patients until after one week to several
months of treatment (Rush et al. 2006). This understanding triggered a surge of
more complex models of MDD, which involve more chronic sources of stress.
In the social defeat model, for instance, male mice repeatedly confront larger
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aggressor mice (Berton et al. 2006). In the chronic mild stress model, animals
endure innocuous stressors daily for three weeks (Steru et al. 1985; Dulawa and
Hen 2005) and in maternal deprivation young pups are separated from their
mothers during the first three weeks of life (Seligman 1972).

Animals subjected to these protocols indeed evince lasting behavioral and
physiological changes that are reversed only with chronic antidepressant treatment
(Yan et al. 2010; Dulawa and Hen 2005; Ruedi-Bettschen et al. 2004). Yet the
translational value of these “symptoms” is still unclear. Animals who have
completed either the chronic stress (Willner et al. 1987) or social defeat (Berton
et al. 2006) paradigm, for example, consume less sugar-water than controls when
given free access to both pure water and sugar-water. Attenuated sucrose prefer-
ence is conceptualized as evidence of anhedonia because the animals show a lack
of motivation to seek out an innately rewarding sensation. While this interpretation
seems reasonable, there is still no evidence that reduced consumption of sweet
foods is associated with anhedonia or depression severity in humans (Amsterdam
et al. 1987).

As a group, animal models of MDD have limited face validity. While useful in
drug screening and in illuminating the neural mechanisms of antidepressant action,
it remains unclear how much insight they offer into the pathophysiology of human
depression.

3 The Neurocircuitry of Depression

Neuroimaging studies of MDD patients find abnormalities in brain regions
involved in evaluating the salience of stimuli, executive function (control of
cognition), encoding and storing complex mental representations of contextual
information, and value representation. Although different theories of MDD
emphasize the importance of different brain structures (Murray et al. 2011;
Mayberg et al. 1997; Mayberg 2003; Hamani et al. 2011), there is a consensus that
these highly interconnected regions interact in an affective network, and that
persistent dysfunction in its hubs may cause MDD (Fig. 1).

Mayberg and colleagues (Mayberg 2003; Hamani et al. 2011) proposed the
“Limbic-Cortical Dysregulation Model”, which posits that persistent imbalance
between subcortical and cortical regions, influencing mood and arousal, results in
MDD. A key correlate of pathology in this model is hyperactivity in the subgenual
anterior cingulate cortex, a prefrontal region residing under the genu of corpus
callosum. Drevets, Price, and Murray (Price and Drevets 2010; Murray et al. 2011)
proposed an alternative model whereby abnormal signaling in the amygdala and a
set of interacting prefrontal networks could produce depressive illness. These
models do make some predictions about relationships between structure and
symptoms, but they lack specificity. Drevets and peers, for instance, discuss how
orbitofrontal dysfunction could contribute both to feelings of worthlessness/help-
lessness (self-concept) and anhedonia (Price and Drevets 2010; Murray et al. 2011).
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Key Brain Regions Implicated in Depression, Fear Learning, & Reward Learning

(a) Depression (b) Fear Learning (C) Reward Learning

dIPFC

Dopamine

Neurons

Key: Am=amygdala; BS= brainstem; dACC= dorsal anterior cingulate cortex; dIPFC= dorsolateral prefrontal cortex; HF= hippocampal formation;
Hy= hypothalamus; OFC= orbitofrontal cortex; pgACC= perigenual anterior cingulate cortex; sJACC= subgenual anterior cingulate cortex; vmPFC= ventrolateral
prefrontal cortex : DIPFC is on the lateral surface of the brain

Fig. 1 Key brain areas implicated in depression, fear and reward learning. Note the substantial
overlap

Below we describe knowledge hitherto of the neural mechanisms underlying core
symptoms of MDD.

3.1 Salience Evaluation

Depressed individuals display excessive reactions to negative stimuli (e.g., sad
faces) in the amygdala, insula, and dorsal anterior cingulate cortex (dACC)
(Sheline et al. 2001; Siegle et al. 2002; Fu et al. 2004; Suslow et al. 2010; Victor
et al. 2010; Hamilton et al. 2012). This triad is implicated in detection of salient
events in the environment (Rangel and Hare 2010). In this framework, the
amygdala orients the learner towards biologically relevant stimuli (Schoenbaum
et al. 2011). The dACC activates the sympathetic nervous system in preparation
for action (O’Doherty 2011). The insula mediates conscious awareness of changes
in arousal and contributes to the intensity of the emotional experience (Schiller
et al. 2008). With hyperactivity in these three regions, MDD patients may be more
likely than healthy individuals to overestimate the salience of negative cues. They
may also experience more robust physiological responses to aversive experiences.
Network hypersensitivity to negative stimuli could underlie a bias towards per-
ception and processing of negative information.

3.2 Executive Dysfunction

The dorsolateral prefrontal cortex (dIPFC) is involved in “executive” control of
cognition, enabling deliberate regulation of attention. The dIPFC is recruited
during activities that require working memory, planning, inhibition, mental flex-
ibility, initiating action, and monitoring action (Ridderinkhof et al. 2004).
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MDD patients evince less dIPFC activity than healthy controls when exposed to
negative stimuli (e.g., sad faces), during working memory tasks, and when asked to
deliberately modify their thoughts to attenuate or enhance an emotional reaction to
a specific stimulus (Siegle et al. 2007; Johnstone et al. 2007; Joormann et al.
2011). dIPFC hypoactivity in depression might reflect an inability to control
thought content (e.g., avoid focusing on aversive cues). dIPFC dysfunction would
thus prevent patients from successfully employing a wide range of coping skills
ranging from distraction to reframing (interpreting a situation in a new way in
order to change related affect) (Delgado et al. 2008a, b; Schiller and Delgado
2010; Ochsner et al. 2002, 2004; Ochsner and Gross 2005; Kanske et al. 2010).

3.3 Representation of Context

The hippocampus is essential for contextual learning and encoding of episodic
memories. MDD patients who have endured multiple episodes have significantly
smaller hippocampi (Neumeister et al. 2005). MDD diagnosis is also associated
with abnormal hippocampal recruitment during autobiographical memory recall
(Young 2011). Specifically, depressed patients exhibit less activity in the left
hippocampus and right parahippocampal gryus during memory recall while
healthy volunteers display the opposite pattern. Such aberrations may underlie
autobiographical memory impairment in depression. MDD patients tend to over-
generalize their autobiographical memories, recalling fewer specific memories and
fewer positive memories (Dalgleish et al. 2007; van Vreeswijk and de Wilde 2004;
Sumner et al. 2010). Deficits in hippocampal function might impair the capacity to
use historical and contextual information and to implement adaptive emotional
responses.

3.4 Valuation and Choice

In response to rewards and stimuli that predict them, MDD patients evince
hypoactivity in the striatum and orbitofrontal cortex (OFC) (Epstein et al. 2006;
Pizzagalli et al. 2009; Smoski et al. 2009; Forbes et al. 2009; Robinson et al. 2011)
regions that are also typically smaller in size in depressed versus healthy popu-
lations (Koolschijn et al. 2009; Kempton et al. 2011; Arnone et al. 2012). The
medial portion of the OFC is a subdivision of the ventromedial prefrontal cor-
tex(vmPFC), as are the subgenual and perigenual anterior cingulate cortices. In
these cingulate vmPFC regions, individuals with MDD display smaller volumes
but enhanced basal activity (see for review Drevets et al. 2008; Pizzagalli 2011)
MDD patients who exhibit the greatest degree of elevation in baseline sub/peri-
genual activity are more likely than their peers to respond to a variety of antide-
pressant therapies (Mayberg 2003; Pizzagalli 2011). The striatum is involved in
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value prediction; the OFC and vmPFC, in value representation. Their dysfunction
may relate to the anhedonia commonly experienced by MDD patients.

4 What Can Fear and Reward Learning Tell Us
About Depression?

Having established that depression neither lives in one brain region nor results
from a deficit in a single type of information processing, how should the field
proceed in its efforts to understand MDD? We believe that observing and char-
acterizing in patients the precise patterns of neural activity during associative fear
and reward learning might offer new insights into the neurobiology of the illness.
In contrast to depression, fear and reward learning (Box 1) are emotional phe-
nomena uniquely suited to research, and are highly conserved processes that are
easy to elicit and assess in both human and non-human animals. What is more, the
brain regions that evince dysfunction in MDD overlap significantly with those
involved in fear and reward learning. By focusing our inquiry on the neural
substrates of simpler emotional experiences mediated by the same neural struc-
tures, we may be able to identify and reliably reproduce experimental evidence of
subtle abnormalities in affective information processing that contribute to
depression. Our hypothesis is buttressed by recent fMRI studies of reward learning
documenting only subtle (if any) differences in the behavior of MDD patients
versus control subjects, but significant differences in corresponding changes in
brain activity (Pizzagalli et al. 2009; Smoski et al. 2009; Robinson et al. 2011;
Kumar et al. 2008). In the subsequent sections we describe how, by conducting
additional studies of reward learning, and beginning to study fear learning in
depression, we might learn more about the role of three key brain regions in MDD:
the striatum, the amygdala, and the vmPFC.

BOX 1: Associative Learning

Basic fear and reward learning are complementary forms of associative
learning, or classical conditioning (LeDoux 2000). During conditioning, the
learner encodes a relationship between a sensory cue, such as a sound or a
visual stimulus, and a biologically significant outcome, such as pain or food.
Knowing this relationship improves the ability to predict, based on the
sensory cue, the upcoming occurrence of the biologically significant out-
come. After successful conditioning, the sensory cue alone elicits a behavior
similar to the response originally triggered by the biologically significant
outcome (e.g., preparing to escape at the sound of an alarm).
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4.1 The Striatum

Sutton and Barto developed the temporal-difference learning model to describe
reward learning (Sutton 1988; Sutton and Barto 1988) In their formulation,
learning is a self-perpetuating cycle in which the learner uses information about
past rewards to make predications about future rewards. If the reward is greater or
lesser than expected, then the learner has made a prediction error, which serves to
update the next prediction.

Dopamine cells in the ventral tegmental area and substantia nigra encode
prediction errors. Their phasic firing rate increases robustly following the delivery
of an unexpected reward (positive prediction error). After reward omission (a
negative prediction error), firing is suppressed (McClure et al. 2003; O’Doherty
et al. 2003). The striatum, which receives direct input from midbrain dopamine
neurons (Haber and Knutson 2010), exhibits the same pattern of change (Delgado
et al. 2008a, b; McClure et al. 2003; O’Doherty et al. 2003; Sutton 1988; Sutton
and Barto 1988; Schultz et al. 1997; Kishida et al. 2011; Pagnoni et al. 2002).

MDD patients evince weak prediction error signaling in the striatum during
reward learning (Kumar et al. 2008; Gradin et al. 2011), which is inversely cor-
related with anhedonia severity (Gradin et al. 2011). These findings suggest that
deficits in prediction error signaling during reward learning might cause or con-
tribute to anhedonia in depression. If weak striatal prediction error signaling
during reward learning is a genuine biomarker of depressive anhedonia, it could
become an important proxy for anhedonia in animal models of MDD. Monitoring
prediction error signal, in addition, could constitute a novel method of tracking
illness severity. Before exploring such practical applications, it is imperative that
we confirm the relationship between anhedonia and prediction error signal strength
by conducting new studies, or revisiting the data from completed studies. We must
also determine if signal strength changes in patients as their capacity to experience
pleasure fluctuates across episodes or in response to treatment.

Because the striatum also monitors prediction errors during aversive learning
(Delgado et al. 2008; Kishida et al. 2011; Li et al. 2011) it will also be important to
study fear conditioning in depression. Robinson et al. reported that depression
patients show normal neural responses to punishment, tentatively suggesting that
they will also display normal striatal prediction error signaling during fear con-
ditioning. If this is the case we can conclude that MDD is characterized by a
valence-specific, rather than generalized, deficit in associative learning.

4.2 The Amygdala

Amygdala reactivity to sensory cues is especially robust in two conditions: early in
fear conditioning before the learner understands its relationship to the primary
threat; and after trials in which it is not followed by the primary threat. Though this
pattern is very similar to that observed in the striatum, computational analyses
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reveal that amygdala and striatal responses to a given sensory cue during fear
learning represent different types of information (Li et al. 2011; Kishida et al.
2011; Spoormaker et al. 2011; Kumar et al. 2008; Gradin et al. 2011). As previ-
ously described, striatal activity increases when the learner receives an unexpected
reward or punishment, and decreases when an expected reward or punishment is
omitted. Amygdala activity, in contrast, always increases in response to prediction
error (Kishida et al. 2011; Kumar et al. 2008; Gradin et al. 2011; Harmer 1849)
Amygdala and striatal responses to prediction errors also differ in their temporal
pattern and magnitude.

The Pearce-Hall learning model more accurately predicts amygdala signaling
during associative learning than the temporal difference model (Pearce and Hall
1980; Roesch et al. 2010; Li et al. 2011). According to Pearce and Hall (1980),
surprise and uncertainty divert attention to novel or changing stimuli, resulting in
reallocation of perceptual and cognitive resources thus accelerating learning.
Consistent with this formulation, studies in animals (Roesch et al. 2012) and
humans (Li et al. 2011) found that amygdala activity peaks early in learning, when
the meaning of stimuli is unclear and they are not yet good predictors of reward or
threat. As learning progresses and the rewards or punishment become more and
more predictable, amygdala responses to the predictive stimuli wane, and attention
supposedly returns to other processes. The amygdala thus allocates attention to
stimuli that are uncertain in order to enhance learning.

In depression, the amygdala is hyperactive in response to aversive stimuli,
which might result in a pervasive negative information processing bias (Calu et al.
2010; Roesch et al. 2010). It is possible that the amygdalae of depressed indi-
viduals do not accurately track the surprise associated with aversive cues, but
persistently respond to negative stimuli as if uncertainty is high. Here we would
expect to observe approximately equivalent increases in amygdala BOLD signal in
response to both the primary threat and sensory cue throughout fear conditioning
(a lack of habituation). MDD patients, as a result, would endure protracted periods
of arousal whenever exposed to negative stimuli (whether the valence is innate or
learned). Over time, the allostatic load conferred by excessive activation of the
body’s stress response systems might trigger depressive symptoms.

Alternatively, it is possible that the amygdala accurately tracks the surprise
associated with aversive cues, but that the magnitude of the negative surprise signal
is excessive. Here we would expect MDD patients to display excessive increases in
amygdala activity when novel stimuli are presented early in conditioning, but a
normal pattern of signal attenuation over time. They would therefore be predis-
posed to form durable negative associations after few, or even one (potentially
stochastic) pairing of the primary threat with a novel sensory cue. The persistence
of such a state in which an individual is constantly “overreacting”, and quickly
learning to expect aversive experiences, might engender feelings of hopelessness.

Lastly, it is possible that amygdala’s sensitivity to surprise induced by threat-
ening cues is different from the one induced by rewarding cues. In this case,
perhaps a combination of hypersensitivity to negative and hyposensitivity to
positive stimuli is required for moderate or severe depression. Alternatively, the
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strength of amygdala responses to surprising aversive stimuli might correlate
specifically with severity of depressed mood.

4.3 The vmPFC

Making sense of vmPFC dysfunction in MDD is especially challenging because of
its complex cytoarchitecture and because of its complex role in many different
mental processes (see Roy et al. 2012 for review). Drevets and colleagues (Drevets
et al. 2008; Price and Drevets 2010; Murray et al. 2011) proposed that hyperac-
tivity in a subregion of the vmPFC, the perigenual ACC, is the cause for the
autonomic dysregulation observed in depressed patients. Pizzagalli, in contrast,
emphasizes vimPFC’s role during self-referential processing (Pizzagalli 2011) and
postulates that the abnormal vimPFC signaling observed in MDD might correspond
to excessive maladaptive rumination. Mayberg’s Limbic-Cortical Dysregulation
model (Mayberg 2003; Hamani et al. 2011) highlights the contribution of the
perigenual and subgenual ACC, in dysregulation of executive function and auto-
nomic and circadian systems, respectively. Studies of reward and fear learning
describe specific possible roles for the vmPFC in value representation and fear
inhibition. Below we discuss how these studies might provide insights about the
link between vmPFC function and MDD.

4.3.1 Reward Learning and Value

As previously mentioned in Sect. 3.4, the vimPFC is engaged during value rep-
resentation. In order to understand the role of the vmPFC in this process, it is
necessary to revisit the temporal-difference learning model as discussed in Sect.
4.1 (The Striatum). There we described how this model conceptualizes reward
learning as a self-perpetuating cycle with two components: generation of outcome
predictions, and comparison of expected with actual outcomes. We described how
midbrain dopaminergic projections to the striatum enable outcome comparison by
encoding prediction errors. Studies of reward learning suggest that the vmPFC
participates in generation of outcome predictions, representing and updating the
value of the rewarding or aversive stimuli (Roy et al. 2012 for review; Maier et al.
2006; Schiller and Delgado 2010; Hare et al. 2009).

In this context, vmPFC dysfunction would not only impair associative learning,
but also result in maladaptive decision-making. If MDD patients were unable to
update the value of positive stimuli, they would struggle to recover from negative
experiences. Experiencing rejection when applying for a job, for instance, might
cause anyone to feel inadequate. Healthy individuals, however, would regain their
confidence after being offered a position by another employer. An MDD patient, in
contrast, might fail to recover even after receiving another job offer because of
inability to generate updated predictions. Future studies of reward learning in
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MDD should explore the pattern of vimPFC activity while manipulating the value
of conditioned stimuli. It will also be necessary to study vmPFC function during
fear conditioning to understand the effect of valence on value encodings. Such
investigations will permit careful exploration of vmPFC value representation and
updating in depression. If meaningful data emerges, they will also demonstrate
how probing simple cognitive processes might resolve unique components of
prefrontal dysfunction in MDD.

4.3.2 Fear Learning and Inhibition

One way to diminish fear is through extinction learning, when a fear conditioned
stimulus is presented repeatedly without the negative outcome. This results in a
new safety association, which the vmPFC could then retrieve in the appropriate
context (Milad and Quirk 2002; Quirk et al. 2006; Delgado et al. 2008a, b; Sey-
mour et al. 2004) Animal studies show that the vmPFC projection onto the
amygdala can control its output and prevents the expression of conditioned fear
during extinction (Milad and Quirk 2002; Quirk et al. 2003; Quirk and Beer 2006).
Viewed in this light, the vmPFC hyperactivity documented in MDD might be
understood as compensatory. It might reflect vimPFC’s persistent effort to regulate
excessive amygdala activation and the constant generation of negative emotions. It
could also reflect inadequate structural or functional connectivity between the
vmPFC and amygdala. Interrogating extinction learning in MDD patients might
help narrow down the possible interpretations of vmPFC’s role in depression.

5 Conclusions and Future Directions

In this chapter we propose that studies of associative learning in depressed patients
could offer novel insight into MDD’s pathophysiology. We argue that weak striatal
prediction error signaling during reward learning could be a biomarker of
depressive anhedonia; we draw attention to amygdala’s role in allocating atten-
tional resources to uncertain stimuli as a possible explanation for the bias toward
negative information in depression; finally, we describe how the vmPFC’s role in
generation and representation of reward value and vmPFC-amygdala interactions
in fear extinction might explain MDD patients’ inability to modify negative
learning and update future predictions based on novel information.

By considering what studies of associative learning in healthy volunteers have
taught us about the roles of the striatum, amygdala, and vmPFC, we highlight the
potential utility of conducting similar studies in depression. Understanding the role
of these brain regions in associative learning provides an excellent reference as for
what goes awry in depression. Examination across domains is an efficient way to
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distill the basic function of a brain region, with which we can begin to predict the
manifestation of this function across disorders.

We believe that collaboration between scientists who investigate associative
learning and clinical researchers will advance scientific knowledge of depression’s
neural substrates. Given that currently available treatments fail one-third of
patients, it will be important to take advantage of this untapped resource.
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