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Abstract Neurochemical imaging is frequently applied to measure markers of
pathological change so as to understand mechanisms that create symptoms of major
depressive disorder. For example, indices of greater monoamine oxidase A(MAO-
A) level, particularly in the prefrontal and anterior cingulate cortex, are associated
with depressed mood states, and high-risk states for onset of major depressive
episodes. MAO-A metabolises monoamines, and greater metabolism of monoam-
ines occurs when MAO-A is elevated in brain. Lower extracellular serotonin is
associated with greater pessimism in humans and chronic serotonin deficiency is
associated with upregulation of 5-HT2A (serotonin2A) receptors in cortex. During
major depressive episodes when pessimism is more severe, greater 5-HT2A BPND,
an index of density occurs in prefrontal and anterior cingulate cortex. These results
argue for a mechanism of lowering extracellular serotonin in the prefrontal and
anterior cingulate cortex, consequent to elevated MAO-A level. The relationship
between elevated 5-HTT BPND and greater pessimism during major depressive
episodes suggests that greater 5-HTT density in the context of elevated MAO-A
level further contributes to serotonin deficiency in these brain regions. A similar
mechanism may explain the association between neuroimaging indices of greater
dorsal striatal D2 density, DAT density and symptoms of motor retardation: Greater
MAO-A level and relatively greater DAT density lower extracellular dopamine in
the dorsal striatum, leading to motor retardation. Indices of greater 5-HT1A density,
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particularly in the cingulate cortex, have been associated with major depressive
disorder, and well as anxiety disorders, suggesting that this abnormality is mech-
anistically related to presence of anxiety symptoms. To date, abnormalities of Glx a
measure reflecting glutamate and glutamine levels have been most strongly asso-
ciated with presence of major depressive episodes, with greater levels in occipital
cortex, and reduced levels in prefrontal cortex. Ultimately, the future for neuro-
chemical imaging is to better understand the mechanisms that predispose toward
onset of MDE so as to create biologically informed, novel, methods of prevention,
and superior, more symptom-targeted treatments.
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1 Introduction

Major depressive disorder affects 2–5 % of the population at any time and is the
third leading cause of death and disability, according to the world health organi-
sation (World Health Organization 2008). Given its high prevalence an important
issue is to better understand the aetiology of symptoms so as to develop new
strategies for prevention and more targeted approach for treatment.

Neurochemical imaging techniques offer an opportunity to measure markers of
neurophysiological change to better understand mechanisms that contribute toward
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onset of symptoms during major depressive disorder. By identifying neurochemical
abnormalities of MAO-A level, 5-HT2A (serotonin2A), 5-HTT (serotonin transporter),
5-HT1A (serotonin1A), D2, DAT as well as glutamate levels in functionally important
regions, then relating these findings to symptoms, and illness state, neuroimaging
investigations are making important contributions toward understanding the patho-
physiology of major depressive disorder.

2 Monoamine Oxidase A and Depressed Mood

2.1 Monoamine Oxidase A, Monoamines and Mood

Monoamine oxidase-A (MAO-A) is an enzyme with diverse functions in the brain,
some of which have important roles for influencing mood; for most brain tissues,
MAO-A activity is the main route for serotonin metabolism, and a significant route
of metabolism for other monoamines, including norepinephrine and dopamine
(Youdim et al. 2006). MAO-A is detectable in cells that release these monoamines,
with the highest levels in norepinephrine releasing neurons (Konradi et al. 1988,
1989; Luque et al. 1995; Moll et al. 1990; Saura et al. 1996); however, MAO-A is
also present in cells that do not release monoamines, such as astrocytes and glia
(Youdim et al. 2006). Within cells, MAO-A is mainly located on outer mito-
chondria membranes. MAO-A has a high density in brain regions that influence
mood (Saura et al. 1992): While MAO-A density is highest in brainstem (within the
locus coeruleus), it is moderately high in the cortex, hippocampus, striatum, much
lower in cerebellar cortex and minimal in white matter tissue. In addition, MAO-A
has pro-oxidant effect, via the production of hydrogen peroxide, and is functionally
linked to apoptosis. The latter is based on the observations that MAO-A inhibitors
reduce apoptosis and MAO-A expression is increased in cell lines that are in a pro-
apoptotic state (Ou et al. 2006). Among these roles, it is the effect of MAO-A upon
monoamine metabolism that is highly implicated in influencing mood state.

There is a considerable amount of data linking loss of extracellular serotonin,
norepinephrine and dopamine in humans with onset of depressed mood and/or
major depressive episodes. Overall, two temporal mechanisms have been
observed, one acute and one chronic. For example, acute monoamine depletion,
through either tryptophan depletion to lower brain serotonin or alpha-methyl-para-
tyrosine to lower brain dopamine and norepinephrine, is associated with depressed
mood (Freis 1954; Hasler et al. 2008; Neumeister et al. 2004b; Verhoeff et al.
2001; Young et al. 1985). The second type of mechanism observed is that long
periods of monoamine depletion are associated with onset of MDE in humans as
demonstrated by chronic reserpine administration (Freis 1954).

In brain tissue, the density of MAO-A correlates highly with the level of its
metabolic activity. Thus, given the functional link between monoamine loss and low
mood and/or MDE, and the role of MAO-A in metabolising multiple monoamines,
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states that raise of MAO-A level in affect modulating brain regions would be
expected to influence overall mood toward a depression. Additional evidence for a
relationship between MAO-A and mood has been that one longstanding class of
antidepressants, MAO inhibitors, has been effective treatments; this provides
another reason to investigate this target in depressed mood states (Youdim et al.
2006). The relationship between MAO-A density and depressed mood may now be
tested: recent advances in positron emission tomography (PET) neuroimaging such
as [11C]harmine PET enable optimal quantitation of MAO-A VT, a measurement
proportional to MAO-A density.

2.2 Prefrontal and Anterior Cingulate Cortex
Monoamine Oxidase A Binding, Depressed Mood
and Major Depressive Disorder

A key advantage of neuroimaging for investigating major depressive episodes
(MDE) is that the in vivo measurement of MAO-A VT may be conducted in
medication free subjects and in the specific grouping of early onset MDD. Most
MDD is related to early onset, and it vital to differentiate early from late onset for
investigations of MDD, because late onset MDD is associated with neurodegen-
erative disease such as Parkinson’s disease or Alzheimer’s disease, which can be
viewed as different pathologies. The issue of selecting early onset medication free
subjects was not readily addressable in the first three postmortem studies of MAO-
A levels and/or activity, hence prior to 2006 it was unknown whether MAO-A
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between groups were highly significant in each region: * p=0.001, ** p\0.0001, *** p\0.00001.
Reprinted from Meyer et al. (2006a)
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density or activity was increased in early onset major depressive disorder. In 2006,
MAO-A VS, an index of MAO-A density, was measured using [11C] harmine PET
in medication free MDE secondary to early onset MDD (Meyer et al. 2006a).
Subjects with MDE were drug free for at least 5 months and most were antide-
pressant naive. All MDE subjects and controls were otherwise healthy. The MAO-
A VS was highly significantly elevated (p \ 0.001 each region, average magnitude
34 % (or two standard deviations)) during MDE (see Fig. 1). This was the first
definitive study of MAO-A binding in MDE because the clinical sample was
carefully defined to focus upon MDD, the effect size was large and the PET radi-
otracer [11C] harmine has outstanding qualities for measuring MAO-A binding.

Later studies have been highly consistent in support of this finding: Barton et al.
(2008) reported elevated brain serotonin turnover in unmedicated depressed patients,
a phenomenon which could be explained by greater brain MAO-A level (Barton et al.
2008). In 2009, the finding of greater MAO-A binding in MDE was replicated with
[11C] harmine PET in the same laboratory, and in 2011 the finding was replicated in
antidepressant free MDE subjects in postmortem study of orbitofrontal cortex in a
different laboratory applying Western blot (Johnson et al. 2011; Meyer et al. 2009).

Monoamine lowering processes may lead to lowered mood, hence, in recovery
from MDD, it might be expected that MAO-A levels would normalise with euthymic
mood. However, the recovered state of MDD is also a state of high risk for another
MDE. The risk for a recurrent MDE over 2 years is 20–50 % depending upon
treatment conditions. Elevated MAO-A binding may be considered an index of a
monoamine lowering process and in the 1950s during treatment with reserpine-
based antihypertensives, it was discovered that chronic monoamine lowering is
associated with subsequent onset of MDEs which typically occurred 2 weeks to
4 months later (Meyer et al. 2009). The in vivo nature of neuroimaging enabled
measurement of MAO-A VT, an index of MAO-A density, in a study of recovered
MDD. In this study, MAO-A binding was significantly elevated in prefrontal cortex,
anterior cingulate cortex, striatum, hippocampus, thalamus and midbrain in a sample
of 18 medication free recovered MDD subjects compared to 28 healthy controls
(Meyer et al. 2009). Recovered MDD subjects who had recurrence of their MDE in
the subsequent 6 months had the highest levels of MAO-A binding in the prefrontal
and anterior cingulate cortex at the time of scanning (Meyer et al. 2009). The
prefrontal cortex and anterior cingulate cortex were prioritised because these regions
(and/or subregions of these structures) are often activated in mood induction studies
(reflecting processes that generate sad mood) (Liotti et al. 2002) and these regions
participate in cognitive functions like pessimism which create sad mood (Sharot
et al. 2007; Tom et al. 2007). In this MDD sample (Meyer et al. 2009), other factors
related to recurrence were accounted for: Subjects were medication free for at least 1
year, had no cognitive behavioural therapy within 3 years, were currently asymp-
tomatic, and had no comorbid medical, psychiatric or substance abuse illnesses.
Given the link between elevated MAO-A binding in prefrontal and anterior cingu-
late cortex and subsequent MDE, a stronger case can be made that new therapeutics
are needed to decrease MAO-A levels in these brain regions, ideally with persistence
beyond the duration of administration of the therapeutic to prevent recurrence.
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2.3 Monoamine Oxidase A and Depressed Mood During
Postpartum

Depressed mood is common during early postpartum and can be categorised into
three different syndromes. One common syndrome, occurring up to 75 % of the
time, and considered within the healthy range of experience, is the ‘‘baby blues’’ or
maternity blues. This consists of sad mood typically peaking on day 5 and ending
with the first week postpartum accompanied by some irritability, desire to be
alone, insomnia and trouble concentrating (O’Hara and Swain 1996). The second
syndrome, which is also common with a prevalence rate of 13 %, is a full, clinical
level MDE occurring within the first 1–3 months after delivery (O’Hara and Swain
1996; American Psychiatric Association 1994). The third syndrome, postpartum
psychosis, is relatively rare with a prevalence rate of 0.1–0.2 %, and includes a
combination of a MDE with hallucinations or delusions (Brockington et al. 1981;
Kendell et al. 1987).

The first investigation of MAO-A in the postpartum period occurred in 2010:
A [11C] harmine PET study measured MAO-A VT during postpartum blues (with
scanning done between days 4 and 6 postpartum). A highly significant elevation of
MAO-A binding was found, which, on average, was 43 % greater across the brain
regions assayed (prefrontal cortex, anterior cingulate cortex, striatum, thalamus,
hippocampus and midbrain) as compared to women not recently pregnant (Sacher
et al. 2010). A voxel-based analysis demonstrated that the elevation in MAO-A
binding was present throughout the grey matter of the brain (see Fig. 2) (Sacher
et al. 2010).

Fig. 2 Regional distribution of p-values reflecting elevated MAO-A binding in immediate
postpartum period. Parametric maps of elevated monoamine oxidase A binding in the postpartum
group vs the control group. Maps are superimposed on a T1-weighted magnetic resonance image
that is normalized to the T1-weighted template (SPM2; Department of Cognitive Neurology,
Wellcome Trust Centre for Neuroimaging, London, UK). a Transverse. b Sagittal. c Coronal.
Individual voxel threshold was set at P\0.05; 86 412 voxels comprised a single cluster, which
had a cluster-corrected significance of P=0.03. Mean regional difference was 43%
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This discovery led to a new neurobiological explanation for postpartum blues,
involving a rapid decline in estrogen, followed by a rapid rise in MAO-A levels in
affect-modulating brain regions, and finally subsequent sad mood with postpartum
blues. During pregnancy, estradiol and estriol levels rise more than 100-fold and
during the first week postpartum, with loss of the placenta, there is an enormous
reduction in 17b-estradiol and estriol levels (O’Hara et al. 1991). Most of the
decline in estrogens occur in the first 4 days followed by a more modest decline
thereafter (O’Hara et al. 1991). Although MAO-A had never been previously
investigated in the postpartum, it is known that estrogen decline is associated with
a rise in either MAO-A density, activity or mRNA (see review (Sacher et al.
2010)). The 43 % elevation in MAO-A VT in early postpartum confirms that this
inverse relationship is applicable to the early postpartum period, after the early
estrogen decline. MAO-A VT can be viewed as an index of MAO-A levels and
MAO-A levels correlate highly with MAO-A activity in brain tissue (Saura et al.
1992). Hence, the acute rise in MAO-A VT in the early postpartum period rep-
resents a monoamine-lowering process and acute monoamine lowering processes
are associated with sad mood (Ruhe et al. 2007).

2.4 Cigarette Withdrawal, Depressed Mood and MAO-A

Sad mood is an important problem for people who smoke cigarettes. First, during
early withdrawal, sad mood frequently occurs, and when sad mood is prominent
during withdrawal, it is associated with greater likelihood of relapse during quit
attempts (Carey et al. 1993; Kenford et al. 2002). Second, cigarette smoking
predisposes to MDD and vice versa; consequently, there is a very high comorbidity
between cigarette smoking and major depressive disorder with 50 % of people
with MDD also smoking cigarettes (Anda et al. 1990; Breslau et al. 1998).

The initial impression of the neuroimaging field was that MAO-A binding is
reduced in those who smoke cigarettes in the active smoking state (Fowler et al.
1996). Given that, the plasma half-life of the key MAO-A binding substances found
in cigarette smoke (harman and norharman) is only an hour (Rommelspacher et al.
2002), there was reason to specifically assess MAO-A VT during both active
smoking and withdrawal conditions. When MAO-A VT was assessed in both
conditions, it was discovered that prefrontal and anterior cingulate cortex MAO-A
VT rose during withdrawal in those who smoke heavily, that is, more than one pack
of cigarettes per day, but not in those who smoke more moderately at less than one
pack per day (see Fig. 3 from Bacher et al. (2011)). Interestingly, it is the heavy
cigarette smoking group who are known to be at much greater risk for MDD (Pratt
and Brody 2010), and it was this group that had 25 % elevated MAO-A VT in the
prefrontal and anterior cingulate cortex during withdrawal as compared to healthy
controls, arguing for a process of elevated MAO-A level during withdrawal as a
mechanism to create risk for MDD. Hence repeated exposure of elevated MAO-A
level, in the prefrontal and anterior cingulate cortex, a mechanism associated MDD,
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occurring after a short period of 8 h withdrawal could explain the predisposition to
MDD in people who smoke cigarettes heavily.

As mentioned earlier, a second problem with mood in people who smoke
cigarettes is the depressed mood of acute withdrawal (Carey et al. 1993; Kenford
et al. 2002). In the imaging study of MAO-A during cigarette withdrawal, those
who smoked heavily, the magnitude of rise in MAO-A VT in prefrontal and
anterior cingulate cortex during withdrawal was significantly correlated with the
shift in visual analogue scales toward depressed mood (Bacher et al. 2011).
This rise in MAO-A VT also correlated with the decline in the MAO-A binding
substance harman in those who smoke heavily. These results have significant
implications for quitting heavy smoking. They suggest that rapid removal of
harman from occupying MAO-A sites leaves a high level of available MAO-A for
metabolising monoamines in prefrontal and anterior cingulate cortex resulting in
depressed mood. This argues for testing of MAO-A inhibitor treatments in people
who experience sad mood during early cigarette withdrawal as a strategy to assist

MAO-A Binding in Cigarette Smoking Subjects During Intoxication and Withdrawal
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in quitting, an important issue since 50 % of people tend to relapse in the first few
days of trying to quit cigarette smoking (Garvey et al. 1992; Law and Tang 1995).

In conclusion, greater MAO-A VT occurs, particularly in the prefrontal and
anterior cingulate cortex, in a number of low mood states that are also associated
with predisposition to major depressive disorder (Bacher et al. 2011; Meyer et al.
2009; Sacher et al. 2010). This data has major implications for preventing major
depressive disorder as it suggests that better understanding and regulation of
MAO-A may be helpful in avoiding the onset of major depressive episodes.

3 Pessimistic Perspective, 5-HT2A Receptor and 5-HTT
Receptor Imaging

3.1 5-HT2A Receptor Imaging in Prefrontal and Anterior
Cingulate Cortex

Negativistic thinking often occurs during major depressive episodes and it is
important because high levels of hopelessness, a key component of pessimism, are
associated with greater risk of suicide. Pessimism during major depressive
episodes has also been captured by the concept of ‘dysfunctional attitudes’. While
a modest level of dysfunctional attitude can viewed as adaptive, dysfunctional
attitudes increase significantly during major depressive episodes (Simons et al.
1986; Weissman 1979). Greater pessimism during major depressive episodes
contributes to negative thoughts, and subsequent sad mood and this underlying
pessimism is targeted by cognitive therapy (Simons et al. 1986; Weissman 1979).
Dysfunctional attitudes may be measured with the dysfunctional attitudes scale
(DAS), a measure that is sensitive for detecting negativistic thinking during major
depressive episodes (Simons et al. 1986; Weissman 1979), and also demonstrates
very good internal consistency (Cronbach alpha = 0.85–0.87) (Cane et al. 1986;
Oliver and Baumgart 1985) and has high test–retest reliability (Oliver and
Baumgart 1985; Weissman 1979).

Two findings initially suggested a relationship between manipulations of
extracellular serotonin and dysfunctional attitudes. The first is that dysfunctional
attitudes normalise during the response to selective serotonin reuptake inhibitor
(SSRI) treatment (Fava et al. 1994; Simons et al. 1986). The second is that raising
extracellular serotonin after administration of intravenous d-fenfluramine rapidly
shifts dysfunctional attitudes toward optimism in healthy individuals (Meyer et al.
2003). These results argue that one of the roles of serotonin is to modulate
dysfunctional attitudes in humans. More recently, the rostral anterior cingulate
cortex and subregions of prefrontal cortex (dorsolateral, and medial prefrontal
cortex) have been demonstrated to participate in functions related to optimism and
pessimism (Elliott et al. 2002; Sharot et al. 2007).
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Direct evidence that serotonin is low in brain is difficult to obtain: Brain serotonin
cannot be directly measured in vivo and it is likely, based upon animal simulations of
postmortem delay, that serotonin levels are very unstable, even within 24 h of death
(Kontur et al. 1994). Moreover, postmortem investigations reviewed by Mann et al.
(1996), Stockmeier (2003) have difficultly sampling medication free subjects.

While one cannot measure extracellular serotonin directly during major
depressive episodes with neuroimaging either, one may measure an index of
regional 5-HT2A receptor density such as 5-HT2A BP or 5-HT2A BPND (an index of
specific binding relative to free and non-specific binding). 5-HT2A density has an
inverse relationship to extracellular serotonin such that binding increases when
extracellular serotonin is chronically lowered (O’Regan et al. 1987; Roth et al.
1987; Stockmeier and Kellar 1986; Todd et al. 1995). Therefore, if extracellular
serotonin loss occurred in the prefrontal and anterior cingulate cortex during MDE,
increased 5-HT2A BPND would occur in these regions. A review of the initial set of
5-HT2A imaging studies of MDE find a reduction in those with recent antide-
pressant use, and no change in those with no recent antidepressant use (see
Table 1) (Meyer 2008). One could interpret the reductions in 5-HT2A binding in
recently treated subjects as being consequent to recent antidepressant use. The
other set of findings, reflecting the medication free state of MDE, which found no
change in 5-HT2A BPND would suggest either abandoning the notion of reduced
extracellular serotonin in the prefrontal and anterior cingulate cortex during MDE
or creating an alternative hypothesis.

One alternative perspective is that monoamine loss during MDD is heterogenous
and that the loss is greatest in those with the most severe symptoms. The first
investigations of this revision began with prefrontal cortex 5-HT2A BPND mea-
surement and its relationship to dysfunctional attitudes. A strong correlation was
observed between severity of dysfunctional attitudes (pessimism) and elevation in
prefrontal and anterior cortex 5-HT2A BPND. Furthermore, cortex 5-HT2A BPND was
significantly elevated in subjects with MDE and severe pessimism (Meyer et al.
2003). For example, in the prefrontal cortex region of interest centred on Brodman’s
area 9, 5-HT2A BPND was elevated 29 % in depressed subjects with dysfunctional
attitude scores greater (more pessimistic) than the median for the group. There was
also a strong, significant correlation between severity of pessimism and prefrontal
cortex 5-HT2A BPND (see Fig. 4). A study by Bhagwagar et al. replicated this
relationship between dysfunctional attitudes severity and prefrontal cortex 5-HT2A

BPND in recovered depressed subjects(Bhagwagar et al. 2006). In another study of a
large sample of healthy subjects, two personality factors related to pessimism,
vulnerability and anxiety, also positively correlated with prefrontal cortex, temporal
cortex and left insula 5-HT2A BPND (Frokjaer et al. 2008).

These results provide an explanation to interpret the investigations of suicide
victims which had been a key focus of the mood disorders field between the mid
1984 and 2000. At that time, the most consistent postmortem biological abnormality
in suicide victims was increased serotonin2A receptor density in the prefrontal
cortex, most commonly in Brodmann’s area 9 (Arango et al. 1990, 1992; Arora and
Meltzer 1989; Hrdina and Vu 1993; Mann et al. 1986; Pandey et al. 2002; Stanley
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and Mann 1983; Stockmeier 2003; Stockmeier et al. 1997; Turecki et al. 1999; Yates
et al. 1990). At the time the studies reported the abnormality as alterations in
serotonin2 receptor binding, but it is generally accepted that these studies investi-
gated serotonin2A receptors given that ligand binding to 5-HT2C receptors in cortex
is extremely low (Hoyer et al. 1986; Marazziti et al. 1999) and mRNA of 5-HT2B

receptors is extremely low in cortex (Schmuck et al. 1994). Although these findings
occurred in studies in which the diagnosis of the suicide victim was unrestricted,
these findings were more consistent in the subsample of studies of suicide victims
who had major depressive disorder and were medication free (Hrdina and Vu 1993;
Yates et al. 1990).

The investigations correlating severity of dysfunctional attitudes with greater
5-HT2A BPND (Meyer et al. 2003; Bhagwagar et al. 2006) explains at a diagnostic
and symptom specific level what clinical phenomenon was studied in these
postmortem studies: Fifty percent of suicide victims have major depressive dis-
order (Barraclough et al. 1974; Robins et al. 1959). The dysfunctional attitudes
scale is highly correlated with hopelessness measured with the Beck Hopelessness
Scale (Bouvard et al. 1992; Cannon et al. 1999; DeRubeis et al. 1990; Norman
et al. 1988). Given that hopelessness is a risk factor for suicide (Beck et al. 1985;
Beck et al. 1989), it is likely that investigations of suicide victims reporting
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Fig. 4 5-HT2A Binding Potential is Greater During Major Depressive Episodes (MDE) With
Highly Abnormal Dysfunctional Attitudes. (5-HT2A receptor binding potential in averaged
bilateral middle frontal gyrus (Brodmann’s area 9) is plotted against age to show the relationship
between depressed and healthy subjects. The 22 depressed patients were divided into high and
low dysfunctional attitudes scale (DAS) groups depending upon whether their DAS scores were
above or below the median DAS score for the MDE group. This median score was 166. MDE
subjects with high DAS scores had significantly higher 5-HT2A receptor binding potential as
compared to healthy subjects (ANCOVA (age covariate), diagnosis, F1,19=11, p=0.003). (Age
was an expected covariate in the model which was designed to identify a disease effect
influencing 5-HT2A receptor availability.))
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increased 5-HT2A BPND sampled depressed subjects with greater severity of
pessimism. See Fig. 5 which represents the relationship of sampling studies for
major depressive disorder, dysfunctional attitudes and suicide. Interestingly, while
these findings are consistent with postmortem study in suicide victims, they are
also consistent with a model of heterogeneous extracellular serotonin loss in
prefrontal cortex in MDD such that extracellular serotonin is lowest in major
depressive episodes with more severe pessimism.

3.2 5-HTT Imaging and Pessimism

3.2.1 5-HTT Radioligands

In 2000, the first high quality radiotracer for measuring indices of serotonin trans-
porter binding occurred with the development of [11C] DASB. The two previous
radiotracers applied for in vivo imaging had significant limitations: 2-beta-carbo-
methoxy-3-beta-(4-iodophenyl)-tropane (b-CIT) single photon emission tomogra-
phy (SPECT), the first technique developed had a specific binding signal that could
be detected in the midbrain (Brucke et al. 1993; Innis et al. 1993; Kuikka et al. 1993),
but it has almost equal affinity for the dopamine transporter as compared to the
serotonin transporter (Carroll et al. 1995; Laruelle et al. 1994). Since there is high
dopamine transporter density in the substantia nigra (Ciliax et al. 1999), the relative
contributions of specific binding to dopamine and serotonin transporters cannot be
differentiated in midbrain and it was the midbrain for which this radiotracer tech-
nique was applied as an index of serotonin transporter binding. The second applied

depression
suicide 
victims

depression
with severe 
pessimism

Often increased 5-HT2A
density in suicide  
victims7-17

Half of suicide victims
have depression 41,42

Hopelessness is a risk 
Factor for Suicide 59,60 

Dysfunctional Attitudes and Hopelessness
Are Highly Correlated in Depression55-58

Greater 5-HT2A BP ND

in major depressive disorder with
greater pessimism39,40

Fig. 5 Elevated prefrontal cortex 5-HT2A density in suicide mainly reflects sampling from major
depressive disorder with severe pessimism
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radiotracer, [11C](+)McN5652, had better selectivity, but also had a low ratio of
specific binding relative to free and non-specific binding. This disadvantage, in
combination with modest reversibility makes valid, reliable quantitation difficult in
regions other than the thalamus, and impossible in human cortex (Buck et al. 2000;
Ikoma et al. 2002; Kent et al. 2002; Parsey et al. 2000). Thus, the radiotracer [11C]
(DASB, 3-amino-4-(2-dimethylaminomethyl phenylsulfanyl)-benzonitrile) repre-
sented a major advance due to its high selectivity, reversibility, greater specific
binding relative to free and non-specific binding and reliability (Ginovart et al. 2001;
Houle et al. 2000; Ichise et al. 2003; Meyer et al. 2001b, 2004a, b; Praschak-Rieder
et al. 2005; Wilson et al. 2000, 2002).

3.2.2 Interpretations of 5-HTT Binding Measurement

Measurement of serotonin transporter binding can be a useful index for several
different models of disease that may affect extracellular serotonin levels. There are
at least four such models may be considered in relationship to how serotonin
transporter binding may be abnormal in a disease that lowers extracellular brain
serotonin (Meyer 2007). These are referred to subsequently as models one through
four. Abnormalities in serotonin transporter binding during major depressive
episodes may be discussed in the context of these models.

Model one is a lesion model that reduces monoamine releasing neurons. In a
lesion model, lowered 5-HTT binding measures occur. Model two is a secondary
change in serotonin transporter binding as a sequelae to serotonin lowering via a
different process. Model two is unlikely to be relevant for serotonin transporter
binding. Acute reductions in serotonin have repeatedly shown reductions in 5-HTT
mRNA (Linnet et al. 1995; Xiao et al. 1999; Yu et al. 1995). However, long-term
reductions or elevations in serotonin typically show no effect upon regional 5-HTT
density (Benmansour et al. 1999; Dewar et al. 1992; Graham et al. 1987). Model
three is increased clearance of extracellular monoamine via greater monoamine
transporter density. In model three, greater available serotonin transporter binding
leads to greater clearance of monoamines from extracellular locations.

Model four is endogenous displacement and endogenous displacement is the
property of a few radioligands to express different binding after short-term manip-
ulations of their endogenous neurotransmitter, such that greater binding occurs
during depletion of endogenous neurotransmitter and reduced binding occurs during
elevations of endogenous neurotransmitter. For [11C] DASB, endogenous dis-
placement may occur with large magnitude changes in extracellular 5-HT, but this is
unlikely to occur with extracellular 5-HT changes that are physiologically tolerable
for humans (Meyer 2007). For other PET radiotracers such as [11C]HOMADAM,
[11C] MADAM, [11C] (+) McN5652, or SPECT radiotracers [123I]-B-CIT SPECT or
[123I] ADAM SPECT, it is unknown whether endogenous levels of serotonin
influence binding levels. This fourth model is unlikely to apply to PET imaging
studies with [11C] DASB in humans, but it is unclear as to whether this model applies
to other serotonin transporter radiotracers since the question has not been tested.
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3.2.3 Dysfunctional Attitudes During Major Depressive Episodes
and 5-HTT Binding

Dysfunctional attitudes, an index of pessimism, are elevated during major
depressive disorder, and, as noted above, represent important symptoms because
they generates sad mood and are strongly related to suicide. Hopelessness (Beck
et al. 1985, 1989) and difficulty seeing positive reasons for living (Malone et al.
2000) are also significant risk factors for suicide and it has been demonstrated in
four separate samples of subjects with major depressive episodes that greater
hopelessness is highly positively correlated with greater severity of dysfunctional
attitudes as measured with the dysfunctional attitudes scale (Bouvard et al. 1992;
Cannon et al. 1999; DeRubeis et al. 1990; Norman et al. 1988).

In the two postmortem investigations of 5-HTT density in subjects with recent
symptoms of depressive episodes no changes in 5-HTT density in the dorsal raphe
or the locus coeruleus were found (Bligh-Glover et al. 2000; Klimek et al. 2003).
Other postmortem investigations of 5-HTT density sampled subjects with a history
of a depressive episode and these investigations usually studied the prefrontal
cortex and/or dorsal raphe nucleus. Findings ranged from decreased 5-HTT density
(Arango et al. 2001, Austin et al. 2002; Crow et al. 1984; Mann et al. 2000; Perry
et al. 1983) to no difference in 5-HTT density (Hendricksen et al. 2004; Hrdina
et al. 1990; Lawrence et al. 1990; Leake et al. 1991; Little et al. 1997). In several
of these studies, subjects were medication free (Hrdina et al. 1990; Lawrence et al.
1990; Mann et al. 2000) and for many of these investigations, average postmortem
delay was less than 1 day (Austin et al. 2002; Bligh-Glover et al. 2000; Klimek
et al. 2003; Little et al. 1997; Mann et al. 2000; Perry et al. 1983). Further detail
may be found in the review of Stockmeier (2003). Other sampling issues that
influence postmortem investigations are inclusion of subjects with bipolar disorder
and lack of differentiation between early versus late onset MDD. None of the
postmortem studies investigated the relationship between 5-HTT binding and
hopelessness or pessimism.

The first investigation of [11C]DASB PET imaging of major depressive disorder
examined the relationship of 5-HTT BPND to severity of dysfunctional attitudes
and presence of a major depressive episode. Meyer et al., sampled 20 subjects with
major depressive episodes (from early onset major depressive disorder) and 20
healthy controls (Meyer et al. 2004a). Subjects were medication free for at least
3 months, had no other comorbid axis I illnesses, were nonsmoking, and had early
onset major depressive disorder. There was no difference in 5-HTT BPND in either
cortical or subcortical regions (including medial prefrontal cortex, dorsolateral
prefrontal cortex and anterior cingulate cortex) between the group with major
depressive episodes and healthy controls. However, subjects with severely pessi-
mistic dysfunctional attitudes who were in the midst of major depressive episodes
had significantly higher 5-HTT BPND, compared to healthy in brain regions
sampling serotonin nerve terminals (dorsolateral and medial prefrontal cortex,
anterior cingulated cortex, thalamus, bilateral caudate and bilateral putamen). On
average, 5-HTT BPND was 21 % greater in these regions in subjects who were in
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the midst of major depressive episodes with severely pessimistic dysfunctional
attitudes. Moreover, within the major depressive episode group, greater 5-HTT
BPND was highly correlated with more negativistic dysfunctional attitudes in the
same brain regions (see Fig. 6). The interpretation was that given serotonin
transporters have an important role in influencing extracellular serotonin, greater
regional 5-HTT levels provide greater vulnerability to low extracellular 5-HT and
symptoms of extremely negativistic dysfunctional attitudes. This interpretation, in
subjects with high levels of pessimism during MDE, corresponds to the third
model discussed earlier under ‘‘Interpretations of 5-HTT Binding Measurement’’.

Neuroimaging investigations, sampling subjects with early onset MDD who are
medication free for greater than 2 months, are non-smoking and do not have
comorbid axis I disorders, and also apply better quality radiotracer technology, tend
to find either no change in regional 5-HTT binding or an increase in regional 5-HTT
binding (Cannon et al. 2007; Herold et al. 2006; Ichimiya et al. 2002; Meyer et al.
2004a). Investigations which include sampling of subjects with late onset MDD,
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comorbid axis I psychiatric disorders, recent antidepressant use, current cigarette
smoking and do not apply a selective radiotracer are more likely to report a reduction
in regional 5-HTT binding (Joensuu et al. 2007; Malison et al. 1998; Newberg et al.
2005; Parsey et al. 2006a; Selvaraj et al. 2009). Only the first study of [11C] DASB
PET concurrently investigated a measure of pessimism or hopelessness.

3.2.4 Serotonin Transporter Binding and Seasonal Behaviour

Seasonal affective disorder is an important problem for countries with regions
located at greater extremes of latitude. Rates of SAD typically range from 1 to 6 %
in regions of 400 latitude or greater (Magnusson 2000). Furthermore, at these
latitudes, 25 % of healthy individuals experience lower mood, less energy, greater
appetite and increased sleep in the winter (Kasper et al. 1989; Rosen et al. 1990).

There is significant evidence for seasonal variations in markers of serotonin
physiology. In postmortem study of serotonin concentrations, Carlsson et al.
reported a seasonal variation of serotonin levels in human hypothalamus with
lower levels in late winter and higher levels in late summer (Carlsson et al. 1980).
More recently, Lambert et al. found seasonal fluctuations in whole brain serotonin
turnover in humans (Lambert et al. 2002). In rodents, reduced light exposure is
associated with greater 5-HTT density (Rovescalli et al. 1989), lower 5-HT release
(Blier et al. 1989) and greater 5-HT clearance (Rovescalli et al. 1989) in the

Fig. 7 Regional 5-HTT BPND versus month (n=88 healthy subjects). Reciprocal peaks and
troughs of brain serotonin transporter binding and duration of sunshine in 88 healthy study
participants. Serotonin transporter binding potential values were measured in six brain regions.
Circles represent bimonthly moving average means. Error bars represent 95 per cent confidence
intervals of the mean. The shaded areas represent the average duration of sunshine in Toronto,
Ontario, Canada. Regional 5-HTT BPND was significantly greater in spring/summer than fall/
winter by 10 to 16%, p\0.02 for each region. Differences in peak to trough ranged from 22 to
42%. Reprinted from Meyer et al., Archives of General Psychiatry 65(9):1072–1078
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hypothalamus and suprachiasmatic nucleus. It is possible that these findings were
region specific or that the effect of light is more detectable in these regions of high
5-HT concentration and density.

While seasonal variation in pessimism has not been studied, the relationship of
5-HTT BPND to season has been subject to a number of interesting investigations.
In a study of 5-HTT BPND with [11C] DASB PET in 88 healthy, non-smoking
humans in Toronto, Canada, greater 5-HTT binding occurred in the fall/winter as
compared to spring/summer in a number of affect modulating brain regions
(Praschak-Rieder et al. 2008) (see Fig. 7). Another centre in Copenhagen, located
at a latitude more north than Toronto replicated the effect of season in a sample of
54 subjects using [11C] DASB PET (Kalbitzer et al. 2009, seasonal changes in
brain serotonin transporter, personal communication). In a combined sample of
49 healthy subjects and 49 depressed subjects, Ruhe et al. reported a similar
relationship between midbrain binding and season (Ruhe et al. 2009) (although
[123I]B-CIT SPECT is not very selective for 5-HTT). Buchert et al. reported the
same seasonal finding in the midbrain in a sample of 39 subjects using [11C]
McN5652 PET but not in the thalamus (Buchert et al. 2006). Although the Buchert
study reported a positive result in only one of the two regions assayed, the
sensitivity of this study to detect seasonal change was more modest: the sample is
smaller than the other studies, and [11C] McN5652 is a less sensitive technique
than [11C] DASB (Meyer 2007, 2008; Kent et al. 2002; Meyer et al. 2001b,
2004b). There are two studies in the literature that do not report greater 5-HTT
binding in winter and both have a small sample size (n = 12 or less) (Koskela
et al. 2008; Neumeister et al. 2000). To date, most studies of large sample size and
reasonably northern latitude report greater 5-HTT BPND in most brain regions in
the fall/winter as compared to spring/summer.

3.3 5-HT1A Receptor Binding and Anxiety

Most [11C] WAY-100635 PET studies report lower 5-HT1A BPND in subregions of
prefrontal cortex (dorsolateral, ventrolateral, orbitofrontal), anterior cingulate
cortex, temporal cortex and raphe during major depressive episodes and contin-
uance of this reduction during remission (Bhagwagar et al. 2004; Drevets et al.
1999; Sargent et al. 2000). There is one study with a different result and it may be
that the selection of white matter as a reference region, and/or sampling charac-
teristics may account for the difference (Parsey et al. 2006b). A potential problem
with applying white matter as a reference tissue is that in contrast to using grey
matter in cerebellar cortex, the properties of white matter are more likely to be
different from grey matter, and the modelling method requires the assumption that
the free and non-specific binding in the reference tissue is similar to grey matter
tissue. Hence, a grey matter region with low specific binding is preferable as a
reference tissue such as the cerebellar cortex excluding the vermis.
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There is reason to consider that finding in MDD may actually be more strongly
associated with anxiety, which often occurs during major depressive episodes or
presence of comorbid anxiety disorders, which also frequently occur with MDD
since reduced 5-HT1A binding also occurs in affect modulating regions also occurs
in anxiety disorders. In a [18F]trans-4-fluoro-N-2-[4-(2-methoxyphenyl)piperazin-
1-yl]ethyl]-N-(2-pyridyl) cyclohexanecarboxamide ([18F]-FCWAY) study of panic
disorder (with comorbid MDD in almost half the subject sample), significant
reductions in 5-HT1A binding in anterior cingulate, posterior cingulate and raphe
regions were reported (Neumeister et al. 2004a). (Quantitation with this radiotracer
is valid for subcortical regions but not cortical regions due to bone uptake of
radiotracer metabolite.) A second study applying [11C] WAY100635 reported
similar findings with the greatest magnitude being in orbitofrontal cortex, temporal
cortex and midbrain (Nash et al. 2008). In social anxiety disorder, reduced 5-HT1A

binding occurs in most brain regions (insula, anterior cingulate cortex, medial
orbitofrontal cortex, amygdala and midbrain) (Lanzenberger et al. 2007). Since the
neuroimaging studies of 5-HT1A binding in MDD did not exclude comorbid
anxiety disorders, one interpretation of the reduced 5-HT1A binding in the brain
regions assayed in MDD, particularly in orbitofrontal cortex, anterior cingulate
cortex and midbrain, is that it reflects comorbid anxiety disorders. MDD with
anxiety is often treatment resistant, and this interpretation is appealing because
there could be an opportunity to target pathologies related to this abnormality in
this treatment resistant subgroup (Trivedi et al. 2006).

A limitation of this interpretation is that a postmortem study with subjects who
mainly did not have comorbid anxiety disorders reported decreased 5-HT1A

antagonist binding in orbitofrontal cortex (Stockmeier et al. 2009) and another
explanation could be that abnormally low 5-HT1A density in prefrontal and cingulate
cortex is associated with both MDD and anxiety disorders. Future work should
investigate the cellular mechanism, and identify the clinical subgroup of MDD with
this finding so as to optimise therapeutics. One explanation is that lower 5-HT1A

receptor density reflects decreased 5-HT1A receptors on GABA interneurons or the
segments of pyramidal cell axons proximal to extensions from GABA containing
chandelier interneurons (Stockmeier et al. 2009).

4 D2, DAT and Motor Slowing

4.1 Dorsal Striatal [11C]Raclopride Binding
and Motor Retardation in Major Depressive Disorder

Among the symptoms of MDEs, motor retardation and anhedonia both reflect
functions modulated by dopamine release in the dorsal putamen and nucleus
accumbens respectively. The second symptom, anhedonia, is more difficult to
investigate with neuroimaging markers of dopamine: The nucleus accumbens is a
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smaller structure. Anhedonia is difficult to measure during major depressive episodes
since it can be biased by negativistic perspective if the measure involves self report or
motor speed if the measure involves movement. However, given recent advances in
the development of neuroimaging markers for D3 receptors for the ventral striatum,
and ongoing development of quantitation of hedonic measures in depression, it is
likely that future investigations will focus upon this direction (Willeit et al. 2008).
The first symptom, motor retardation, is straightforward to investigate with quanti-
tative measures because dorsal putamen is large, motor retardation can be measured
with well validated motor tests such as the finger tapping test, and [11C] raclopride
has a strong specific binding signal in dorsal putamen. [11C] raclopride is a widely
available PET radiotracer selective for D2 type receptors whose specific binding
changes inversely relative to changes in neurotransmitter levels (Laruelle 2000).

In addition to the straightforward ability to quantify D2 BPND in dorsal striatum,
there were other reasons to investigate this biomarker in relation to motor retar-
dation. One is that greater D2 BPND and reduced dopamine levels occur in dorsal
striatum in Parkinson’s disease and other similar diseases that involve reduced
movement speed (Kim et al. 2002; Kish et al. 1988). The second is that D2 BPND

found with [11C]raclopride PET, is inversely proportional to extracellular dopa-
mine levels in animal and human paradigms that manipulate dopamine levels
(Laruelle 2000). The third reason is that decreased cerebrospinal fluid levels of the
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dopamine metabolite homovanillic acid is often reported during MDE with motor
retardation, suggesting that some regions of the brain have lower levels of dopa-
mine when motor retardation is present during major depressive episodes
(Korf and Praag 1971; Post et al. 1973; Praag et al. 1975).

Unfortunately, early imaging studies of dopamine receptors did not sample
depressed subjects who were medication free and non-smoking or addressing the
confounding effect of age (Meyer 2008). Since D2 BPND declines with age and
motor retardation increases with age, to assess this relationship in a manner that
addressed the age bias, one must correct for the effect of age upon each variable
prior to investigating the relationship between the two. There is only one study that
meets all of these criteria, and there is no other study meeting two of these three
criteria (Meyer 2008). The main findings of the one, unbiased study, of striatal D2

BPND and motor retardation were that the caudate and putamen D2 BPND were
elevated in the depressed group as compared to the healthy group, and that greater
putamen D2 BPND was significantly correlated with more severe motor retardation
in the depressed group (Meyer et al. 2006b) (see Fig. 8). The findings support a
specific, neuromodulatory role for striatal dopamine loss during MDE, particularly
when motor retardation is present.

4.2 Striatal DAT Binding and Motor Retardation During Major
Depressive Episodes

With regard to dopamine transporter (DAT) imaging in MDD, studies sampling
medication free subjects typically report lower striatal DAT BPND (Meyer et al.
2001a; Neumeister et al. 2001; Sarchiapone et al. 2006), whereas studies sampling
subjects with recent antidepressant treatment sometimes report higher striatal DAT
binding (Brunswick et al. 2003). Most studies address the age-related decline in
DAT and some address the confound of cigarette smoking. Mechanisms to explain
reduced striatal DAT binding include lesions to dopamine releasing neurons or a
downregulation model (in response to another monoamine lowering process).
In contrast to the serotonin transporter, dopamine transporters in the striatum
downregulate when subacute to chronic dopamine depletion occurs (Gordon et al.
1996; Han et al. 1999; Ikawa et al. 1993; Kilbourn et al. 1992).

The downregulation model may explain reduced striatal DAT binding during
MDD since greater MAO-A levels occur in striatum in major depressive episodes and
MAO-A metabolises dopamine (Meyer et al. 2006a, 2009). In addition, greater striatal
D2 BPND was found during major depressive episodes with [11C]raclopride PET and
this index is increased when extracellular dopamine is reduced (Laruelle 2000).

Also, the correlation between lower dorsal putamen DAT BPND values and less
impaired performance on the finger tapping test has a particular interpretation
(Meyer et al. 2001a). The finger tapping test is a measure of motor slowing in MDD
(Meyer et al. 2001a, 2006b). Slower performance on the finger tapping test is
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correlated with greater putamen D2 BPND during MDE and greater D2 BPND from
[11C] raclopride occurs when extracellular dopamine is lower (Laruelle 2000). The
data can be interpreted as follows: Major depressive episodes without motor retar-
dation are associated with lower DAT BPND and demonstrate a compensatory
protective mechanism (Meyer et al. 2001a). Downregulation of DAT occurs when
dopamine is chronically low in striatum (Gordon et al. 1996; Han et al. 1999; Ikawa
et al. 1993; Kilbourn et al. 1992), but reduced DAT levels decrease clearance of
extracellular dopamine. Compared with the healthy state, the compensated state has
only mildly reduced extracellular striatal dopamine concentrations with downreg-
ulated DAT. This is the process whereby dorsal striatal DAT BPND is decreased
protects against motor slowing.

5 Behavioural Correlates of With Abnormalities
in Glutatmate Regulation

Magnetic resonance spectroscopy (MRS) can measure ‘Glx’ in brain tissue, an
index mainly composed of glutamate (intracellular and extracellular), and gluta-
mine. Exposure to elevated glutamate levels has been proposed as a mechanism
that leads to sad mood because treatment resistant MDD subjects often experience
a rapid, short term, mood elevation after single dose ketamine, a NMDA receptor
antagonist and some subtypes of MDE have a response to lamotrigine, a medi-
cation that can reduce glutamate release (Barbee and Jamhour 2002; Barbee et al.
2011; Zarate et al. 2006). Also, elevations in extracellular glutamate have been
proposed as being relevant to mood symptoms because reductions in glia are
reported in orbitofrontal, dorsolateral prefrontal and anterior cingulate cortex in
MDD and glia clear glutamate via excitatory amino acid transporters (Rajkowska
and Miguel-Hidalgo 2007).

There are several studies applying proton MRS to measure Glx, in reasonably
large samples of MDD with region specific results. For example, greater Glx levels
were reported in the occipital cortex, a reduction was reported in the medial pre-
frontal cortex and no change was reported in the pregenual cingulate cortex (Hasler
et al. 2007; Sanacora et al. 2004; Walter et al. 2009). A reasonable explanation for
the anatomical variation is that glutamate levels are generally elevated in the brain
during MDD, and that regions with reduced glial cell density (Rajkowska and
Miguel-Hidalgo 2007) have reduced Glx because the intracellular contribution of
Glx signal are lower. Some level of homogenous abnormality in brain glutamate
regulation during MDD is suggested by a recent [11C]ABP688 study reporting
reduced prefrontal cortex, cingulate cortex, insula, thalamus and hippocampus
mGlu5 receptor binding in conjunction with a postmortem study of reduced mGlu5
density in prefrontal cortex (Deschwanden et al. 2011). The investigation of
pregenual cingulate cortex did detect, in highly anhedonic depressed subjects,
decreased glutamine, a metabolic product of glutamate (Walter et al. 2009) and the
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investigation reporting greater glutamate in the occipital cortex found the greatest
levels in melancholia (Hasler et al. 2007; Sanacora et al. 2004; Walter et al. 2009).
Ideally, future studies should aim to sample the regions previously investigated
concurrently so as to optimally address the regional specificity of findings, and
preferentially sample melancholic and anhedonic subjects so as to replicate the
findings by Sanacora et al. (2004) and Walter et al.(2009). While there is evidence
for disturbances in glutamate levels during major depressive episodes, the mech-
anism of the relationship to specific mood symptoms requires further study.

6 Conclusions

While neuroimaging is limited by the range in biomarkers available, its ability for
in vivo measurement is bridging markers of neurochemistry and neuroplasticity to
pathophysiological mechanism of symptom onset for major depressive disorder.
For example, indices of greater monoamine oxidase A (MAO-A) level, particu-
larly in the prefrontal and anterior cingulate cortex, are associated with depressed
mood states, and high-risk states for onset of major depressive episodes. MAO-A
metabolises monoamines, and greater metabolism of monoamines occurs when
MAO-A is elevated in brain. Hence, greater levels of MAO-A may be viewed as a
key monoamine lowering process during major depressive episodes.

Evidence to date suggests that ongoing deficiency of specific monoamines in
specific regions is implicated in symptoms of disease. Lower extracellular serotonin
is associated with greater pessimism in humans and chronic serotonin deficiency is
associated with upregulation of 5-HT2A (serotonin2A) receptors in cortex. During
major depressive episodes, when pessimism is more severe, greater 5-HT2A binding
occurs in prefrontal and anterior cingulate cortex. These results argue for a mech-
anism of lowering extracellular serotonin in the prefrontal and anterior cingulate
cortex, consequent to elevated MAO-A level. The relationship between elevated
5-HTT binding greater pessimism during major depressive episodes suggests that
greater 5-HTT density in the context of elevated MAO-A level further contributes to
serotonin deficiency in these brain regions (see Fig. 9). A similar mechanism may
explain the association between neuroimaging indices of greater dorsal striatal D2

density, DAT density and symptoms of motor retardation: Greater MAO-A level and
relatively greater DAT density lower extracellular dopamine in the dorsal striatum,
leading to motor retardation (also see Fig. 9).

Specific mechanisms underlying other neuroimaging abnormalities continue to
be investigated. Indices of greater 5-HT1A density, particularly in the cingulate
cortex, have been associated with major depressive disorder, and well as anxiety
disorders, suggesting that this abnormality is mechanistically related to presence of
anxiety symptoms. At this point, abnormalities in glutamate level have been most
strongly associated with presence of major depressive episodes, with greater levels
in occipital cortex, and reduced levels in prefrontal cortex. Future neurochemical
imaging investigations will ultimately focus upon detecting the mechanisms that
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predispose towards onset of MDE so as to create new biologically informed
methods of prevention, and superior, more symptom targeted treatments based
upon symptom specific underlying pathology.
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