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Abstract As shown by clinical genetic studies, affective and anxiety disorders are
complex genetic disorders with genetic and environmental factors interactively
determining their respective pathomechanism. Advances in molecular genetic
techniques including linkage studies, association studies, and genome-wide asso-
ciation studies allow for the detailed dissection of the genetic influence on the
development of these disorders. Besides the molecular genetic investigation of
categorical entities according to standardized diagnostic criteria, intermediate
phenotypes comprising neurobiological or neuropsychological traits (e.g., neuro-
nal correlates of emotional processing) that are linked to the disease of interest and
that are heritable, have been proposed to be closer to the underlying genotype than
the overall disease phenotype. These intermediate phenotypes are dimensional and
more precisely defined than the categorical disease phenotype, and therefore have
attracted much interest in the genetic investigation of affective and anxiety dis-
orders. Given the complex genetic nature of affective and anxiety disorders with an
interaction of multiple risk genes and environmental influences, the interplay of
genetic factors with environmental factors is investigated by means of gene-
environment interaction (GxE) studies. Pharmacogenetic studies aid in the dis-
section of the genetically influenced heterogeneity of psychotropic drug response
and may contribute to the development of a more individualized treatment of
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affective and anxiety disorders. Finally, there is some evidence for genetic factors
potentially shared between affective and anxiety disorders pointing to a possible
overlapping phenotype between anxiety disorders and depression.

Keywords Intermediate phenotype � GWAS � CNV � Gene-environment
interaction (GxE) � Pharmacogenetics

Contents

1 Affective Disorders ........................................................................................................... 464
1.1 Clinical Genetics (Family, Twin, Adoption Studies) .............................................. 465
1.2 Molecular Genetics (Linkage, Association, GWAS, CNV Analysis) .................... 466
1.3 Pharmacogenetics...................................................................................................... 478

2 Anxiety Disorders.............................................................................................................. 480
2.1 Clinical Genetics....................................................................................................... 480
2.2 Molecular Genetics ................................................................................................... 481
2.3 Genetics of Intermediate Phenotypes of Anxiety Disorders................................... 483
2.4 Gene-Environment Interaction ................................................................................. 484
2.5 Pharmacogenetics...................................................................................................... 484

3 Overlapping Phenotypes.................................................................................................... 484
4 Outlook .............................................................................................................................. 486
References................................................................................................................................ 487

1 Affective Disorders

The group of affective disorders comprises both major depressive disorder (MDD;
unipolar depression) with various subtypes as well as bipolar disorder (BPD). The
latter displays by changes between (hypo-)manic and depressive phases, with
intermittent euthymic phases, while the course of MDD is characterized by
depression and euthymia. As patients rarely develop their first manic phase only
years after their first depression, they might well be initially mischaracterized as
MDD patients (so-called ‘‘hidden bipolars’’), which is a challenge for genetic
studies on affective disorders. To overcome this problem, several indicators for the
presence of BPD in depression have been suggested, e.g. subthreshold hypomanic
symptoms (Angst et al. 2010; Fiedorowicz et al. 2011). This however has not been
incorporated in current genetic studies and thus one should always consider that
MDD studies might well include a substantial amount of ‘‘hidden bipolar’’
patients, obfuscating MDD-specific findings. Furthermore, in the following section
more recent approaches such as genome-wide association studies (GWAS) and
copy-number variant (CNV) analyses are reviewed, as there are already plenty of
scholarly review articles on linkage and association studies. These issues will
therefore be touched upon more briefly; with respect to intermediate phenotype
and gene x environment (GxE) studies in affective disorders, the reader is referred
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to more specialized reviews for the sake of space, as this extensive topic is beyond
the scope of this article.

1.1 Clinical Genetics (Family, Twin, Adoption Studies)

There is ample evidence that BPD is a highly genetic condition featuring an
estimated heritability of 0.75 as evidenced by numerous clinical genetic studies.
The risk for a bipolar patient to have a bipolar first-degree relative is increased
about tenfold, and the risk to have an MDD relative is even higher (10- to 15-fold).
The largest study to date, that investigated more than two million Swedish nuclear
families (Lichtenstein et al. 2009), demonstrated a heritability of bipolar disorder
of 59%. Furthermore, relatives of bipolar patients also had a two to fourfold
increased risk to suffer from schizophrenia. Environmental influences were mainly
due to non-shared environment. In line with these data, twin studies also argue
for a heritability ranging from 59 to 87% (for an overview see Shih et al. 2004).
As little as two adoption studies on bipolar disorder have been carried out to date
(Mendlewicz and Rainer 1977; Wender et al. 1986), also argued for a genetic
cause of the disorder. An excellent overview on clinical genetic studies in bipolar
disorder can be obtained from Smoller and Finn (2003).

On the other hand, the heritability of MDD is comparatively lower (estimated to
be around 0.37 in the most comprehensive review and meta-analysis available to
date; Sullivan et al. 2000) and environmental influences (unique, but not shared
environment) are considered to play a more important role as compared to BPD.
This is also reflected in twin and adoption studies. However, especially older
studies do not discriminate between bipolar and unipolar depression and hence
explicit data on unipolar depression is in fact quite limited; only five family and six
twin studies, but no adoption study meet the stringent inclusion criteria in a
comprehensive analysis (Sullivan et al. 2000). Across the five family studies, the
summary odds ratio for MDD in first relatives of MDD patients was 2.84 and
significant. Interestingly, the odds ratio increased when only considering controls
which have been screened for absence of psychiatric disorders. Two of the three
reported twin studies argued for a substantial genetic component of MDD, and
finally, the twin studies including more than 21,000 individuals yielded a herita-
bility of 37% and an influence of individual-specific environmental effects of 63%.
No large differences in heritability indices were found between community and
clinical studies, and the influence of shared environment was negligible. Hence,
taken together, there is a clear genetic liability towards MDD although it is much
smaller as compared to BPD—which has also been taken into account when
reviewing studies where both conditions were not carefully treated separately.
Furthermore, it is evident for both MDD as well as BPD that these disorders do not
follow a strict Mendelian pattern of inheritance, but rather are complex genetic in
nature featuring polygenic and oligogenic models (‘‘common variant, common
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disease’’ model), but probably also—for a part of the patients—highly penetrant
risk genes (‘‘multiple rare variant, common disease’’ model, see below).

1.2 Molecular Genetics (Linkage, Association, GWAS,
CNV Analysis)

1.2.1 Linkage Studies

More than 40 linkage scans for BPD have been published to date which generated
plenty of disparate findings. However, quite a number of loci meeting significance
criteria were described by two or more groups: 3p12-14, 4p16, 4q31-35, 5q31-33,
6q16/21-25, 8q21-24, 10q25-26, 11p15.5, 12q23-24, 13q14-32, 18p11, 18q21-22
20q13, 21q21-22, 22q11-12, and Xq24-28. Confirmed positional candidate genes
however are yet to emerge from these studies. An initially highly promising
linkage peak on chromosome 11p15 is considered meanwhile to be due to type I
error (Egeland et al. 1987; Berrettini 2001). Also, other loci which have been
initially promising could subsequently not be confirmed. A paradigmatic case in
this respect is for e.g. the 12q23-24 locus (Dawson et al. 1995; Ewald et al. 1998,
2002; Green et al. 2005), which is noteworthy due to the co-segregation of Darier’s
disease with BPD (Maziade et al. 2001). It has been shown that, in some families
suffering from both disorders, the BPD locus lies outside of the Darier’s disease
causing ATP2A2 gene, yet is in linkage disequilibrium with this variant (Jones
et al. 2002). Hence, there might indeed be intermediately penetrant variants in this
region which are exclusive to only a few families and which are lost in noise when
combining many families, or cases, respectively. Similarly, a functional mutation
in the gene encoding the brain-specific tryptophan hydroxylase 2 (TPH2) has
been described which segregates with BPD in three families (Cichon et al. 2008;
Grigoroiu-Serbanescu et al. 2008). Findings like these argue for a ‘‘common
disease, multiple rare variant’’ model (McCarthy et al. 2008) and underscore the
clinical and genetic heterogeneity of BPD. This however does not argue against
the concurrent existence of a ‘‘common disease, common variant model’’. As both
models most likely are present in clinical samples, this additional level of com-
plexity further hampers the identification of BPD risk genes.

Different meta-analyses found the strongest evidence for BPD susceptibility
loci on 13q and 22q (Badner and Gershon 2002; 1228 patients from 353 families),
or 9p22.3-21.1, 10q11.21-22.1 and 14q24.1-32.12 (948 to 2437 patients; Segurado
et al. 2003). The latter study used the rank-based genome scan (GSAM) method
which, together with sample heterogeneity, might account for the different findings
as compared to the first study. Finally, in a combined analysis, 6q21-q25 and 8q24
showed genome-wide significance (5179 patients from 1067 families; McQueen
et al. 2005). Again, the underlying genes have not yet been identified. Further
scholarly reviews on this topic have been provided by Schulze and McMahon

466 K. Domschke and A. Reif



(2003), Serretti and Mandelli (2008), Barnett and Smoller (2009), and Craddock
und Sklar (2009).

Also in MDD, numerous linkage scans were carried out (reviewed e.g. by
Lohoff (2010)) yet did not point to clear regions of susceptibility, as expected from
the lower heritability rate of MDD as compared to BPD. No meta-analysis has
been performed to date, which is surprising given the recent efforts to uncover the
genetic basis of MDD and hence there is a clear need for further research. There is
no meaningful overlap of linkage peaks between studies, although it is noteworthy
that two linkage signals have previously been implicated in BPD: one on chro-
mosome 18q (Camp et al. 2005) and the locus mentioned above on 12q23-24
(McGuffin et al. 2005; Abkevich et al. 2003). Therefore, this region appears to be a
promising region for affective disorders, yet most likely carries more than just one
risk gene.

1.2.2 Association Studies

With regard to candidate gene studies, many genes were shown to be associated
with BPD, but none of them has been established as a specific BPD susceptibility
gene. Among the best replicated genes are DAOA/G72 (which was associated in a
case–control study, but not in a meta-analyses; Muller et al. 2011; Shi et al. 2008),
BDNF (again, meta-analyses provided differing data: Kanazawa et al. 2007; Fan
and Sklar 2008), DISC1, NRG1, ARNTL/CLOCK, FAT, and GSK3B (Barnett and
Smoller 2009; Serretti and Mandelli 2008; Luykx et al. 2010). Not surprisingly,
many genes encoding for components of neurotransmitter pathways have been
tested for an association with BPD (such as SLC6A3, HTR2A, TPH2, MAOA,
COMT, DRD1, and SLC6A4). Coming from GWAS on schizophrenia, the risk
gene ZNF804A was demonstrated not to be specific for this disorder, but rather
was also associated with BPD (O’Donovan et al. 2008; Williams et al. 2011;
Steinberg et al. 2011). The same was true for the GWAS schizophrenia risk loci
around the MHC region and NRGN (Williams et al. 2011) and other genes which
initially have been described as schizophrenia risk genes: the above-mentioned
DISC1 and DAOA/G72 genes, but also NRG1, DTNB1, and NPAS3 (Huang et al.
2010; Pickard et al. 2009).

Most of the association studies published to date suffer from the drawback of
small sample sizes and lack of replication, and hence, the combination of large,
well described international samples (as done in the Psychiatric GWAS consor-
tium [PGC]) is paramount especially in the search for risk variants assuming a
‘‘common variant, common disease’’ model. Furthermore, meta-analytic treatment
of existing data might shed some light on the contribution of suggested BPD risk
genes. Such have been performed on considerably sized samples on only a few
genes. The gene encoding for methylenetetrahydrofolate reductase (MTHFR) has
been tested for an analysis with mood disorders several times. While the first study
on 1222 MDD patients yielded negative results (Gaysina et al. 2008), the latest
analysis comprising 9648 cases (MDD, BPD and schizophrenia combined) yielded
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again a significant yet unspecific association of MTHFR with mood disorders (best
OR = 1.26; Peerbooms et al. 2011). This is in line with a positive meta-analysis
on BPD by Gilbody et al. (2007), but in discrepancy to three further meta-analyses
on MTHFR in BPD (Zintzaras 2006, 1415 cases; Chen et al. 2009, 1260 cases;
Cohen-Woods et al. 2010, 2584 cases). Given that the original genotyping data
which was presented in the Cohen-Woods study (n = 897 BPD patients) was
negative, but not included in the Peerbooms study, which demonstrated a signif-
icant effect only when all mood disorders were combined, the role of MTHFR in
affective disorders seems to be rather unspecific and small.

A meta-analysis on all mood disorders found borderline evidence for an
association of the dopamine receptor 2 (DRD2) Taq1 polymorphism (which in fact
localizes to the neighboring gene ANKK1) with affective disorders, yet two more
SNPs in DRD2 proved to be negative in much larger data sets so that there is only
weak evidence for this gene being associated with BPD or MDD (Zou et al. 2010).
The gene for catechol-O-methyltransferase (COMT) that degrades dopamine,
features a well described functional polymorphism resulting in a Val to Met
transition and which has been shown to be linked to BPD in a meta-analysis on
2944 cases (Zhang et al. 2009b), although this seemed to be more pronounced in
Asian populations. Obviously, also genes coding for components of the serotonin
system were subjected to meta-analyses, which often were combined with genuine
genotyping efforts. A functional SNP in the promoter region of the serotonin
receptor gene HTR1A (rs6295) was demonstrated to be significantly associated
with BPD (1148 cases, Kishi et al. 2011). In the MAOA gene, three polymor-
phisms (sample sizes mostly [1000 cases) were meta-analyzed and the main
finding was an association of an intronic CA repeat with BPD in Caucasians
(Fan et al. 2010). The SLC6A4 promoter polymorphism (5-HTTLPR), which has
mainly been studied in MDD GxE (see below) was also included in several meta-
analyses that conclusively demonstrated a small yet significant association of the
short variant with BPD (Lasky-Su et al. 2005; Cho et al. 2005, 1712 cases). Two
meta-analyses focused on the TPH1 gene (Chen et al. 2008, 2011) and in unison
came to the conclusion that TPH1 is not associated with MDD (2340 and 1812
patients, respectively), but with BPD (1951 and 2083 cases). Given that in the
brain only the TPH2 isoform of tryptophan hydroxylase is expressed, this finding
is rather surprising; however, as the foetal brain depends on maternal 5-HT pro-
duction which is accomplished by placental TPH1 the observed association might
in fact be true but rather due to maternal and not case genotype as has been
described for rare TPH1 mutations in ADHD (Halmoy et al. 2010).

The lower heritability of MDD as compared to BPD notwithstanding, plenty of
case–control association studies have been published thereon as well. A scholarly
overview on candidate gene studies is provided by Lohoff (2010). In order to
separate the wheat from the chaff, replication is key and meta-analytic aggregation
of data is a possible route to success. Accordingly, a thorough meta-analysis on the
data available until June 2007 examined 183 papers on 393 polymorphisms
(Lopez-Leon et al. 2008). Twenty-two of these polymorphisms have been tested in
at least three studies and were thus subjected to further meta-analysis. Here,
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significant association was demonstrated for the genes APOE2 (827 cases), GNB3
(375 cases), MTHFR (875 cases), SLC6A4 (3752 cases), and SLC6A3 (as little as
151 cases). Negative results were obtained for ACE, BDNF, COMT, DRD3,
GABRA3, HTR1A, HTR1B, HTR2A, HTR2C, MAOA, SLC6A2, and TPH1.
Further meta-analyses which have been published before this study were per-
formed on ACE, DRD4, HTR2A, MTHFR, SLC6A4, and TH; positive findings
were obtained for DRD4 (Lopez Leon et al. 2005; 917 cases). In the years fol-
lowing the meta-analysis by Lopez Leon, only few other meta-analytic studies
have been published including those on MTHFR and TPH1 cited above. Fur-
thermore, Franke and associates recently conducted a meta-analysis on the func-
tional BDNF Val66Met polymorphism. As BDNF has been implicated both in the
pathogenesis of depression as well as the mechanism of action of anti-depressant
treatment (Duman and Monteggia 2006), it is an obvious candidate gene and
accordingly was shown to be associated with depression in this meta-analysis of
2812 cases, although the association is sex-specific and only detectable in males
(Verhagen et al. 2010).

The largest body of evidence, and by far the largest sample sizes, exists for the
gene encoding the serotonin transporter (SLC6A4). Following the seminal finding
by Caspi et al. (2003) that environmental influences interact with SLC6A4
genotype to increase the risk toward depression, emphasis has been put on studies
aimed to test such GxE interactions adding a further level of complexity. Fol-
lowing positive meta-analyses confirming a main gene effect of SLC6A4 in
depression (Furlong et al. 1998; Lopez-Leon et al. 2008; Clarke et al. 2010), also
meta-analyses on GxE interaction studies yielded support for the notion that
SLC6A4 has a role in the etiology of depression (Karg et al. 2011). As Karg and
Sen elaborate in depth on this topic in this book, the reader is referred to their
contribution as well as the review articles by Uher and McGuffin (2008, 2010).

Also, genes encoding components of the cortisol pathway have proven to be
interesting candidates for GxE in MDD. The glucocorticoid receptor-regulating
co-chaperone FKBP5 has first been associated with recurrence of depression and
response to antidepressant treatment in 2004 (Binder et al. 2004). This has later
been replicated (Lekman et al. 2008) and FKBP5 was shown to interact with
HTR2A and GRIK4 in moderating the response to antidepressant treatment
(Horstmann et al. 2010). Most interestingly, FKBP5 has been shown to interact
with severity of childhood abuse on later-life PTSD symptoms (Binder et al. 2008)
which however might be confined to African Americans (Xie et al. 2010). One of
the involved SNPs (rs1360780) was later replicated to interact with childhood
maltreatment to affect depression measures (BDI-II) in adult life (Appel et al.
2011). This SNP also displayed a main gene effect on suicidal events in depressive
adolescents (Brent et al. 2010), a categorical diagnosis of depression (Lekman
et al. 2008) and general depressive symptoms (Lavebratt et al. 2010; Zobel et al.
2010; Velders et al. 2011) and interestingly is associated with decreased cortisol
levels (Velders et al. 2011) providing a possible pathophysiological mechanism for
the association data. Also, rs1360780 went along with smaller right hippocampal
volume in patients with depression (Zobel et al. 2010). Taken together, there is
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good evidence (Binder 2009) that risk genotypes in FKBP5 (especially rs1360780)
interact with early life adversity on later life depression, possibly by long-term
adaptive changes of the HPA axis and subsequent morphological changes of the
hippocampus increasing vulnerability to disease. In line with these findings, it was
also shown that rs110402 in the corticotropin-releasing hormone receptor
(CRHR1) interacted with child abuse to increase the risk toward later life
depression (Bradley et al. 2008), most interestingly in interaction with the sero-
tonin transporter risk genotype mentioned above (Ressler et al. 2010).

It seems to be a common phenomenon that candidate genes rarely replicate
when tested for in GWAS (see below) data sets. A thorough study on MDD
candidate genes (Bosker et al. 2011) tested 57 genes in the Genetic Association
Information Network (GAIN) MDD sample (n = 1862 cases). From 93 selected
candidate SNPs, only 18 were present on the array, and a further 47 were imputed.
Of those, only five (including an SNP in NPY) were associated in the GAIN
sample, all with p[0.03. When candidates were tested on a gene-based level,
analyzing 4870 SNPs, the TNF and NET genes yielded suggestive evidence.
In general, heavy use of imputation might have introduced a further source of
noise in this particular study. Likewise, when candidate genes were targeted in
other individual GWAS, rarely more than expected by chance replicated.

Taken together, numerous association studies on MDD and BPD—actually too
many to mention in this overview—hitherto only presented few convincing find-
ings. Amongst them, associations of affective disorders with MTHFR, BDNF, and
SLC6A4 seem to be robust. A length variant in the latter gene shows solid evi-
dence for GxE effect; FKBP5 is another promising candidate for the moderating
effects of early life stress regarding depression in adult life. Lessons that can be
learned from the plethora of false-positive findings to date are that large and well-
characterized samples have to be accrued, with careful evaluation of life events
and the assessment of biological measures such as neuroimaging endophenotypes
or therapy response.

1.2.3 Genome-Wide Association Studies

Along with autism, attention-deficit hyperactivity disorder (ADHD) and schizo-
phrenia affective disorder comprise the core disorders of the Psychiatric GWAS
Consortium (Sullivan 2010; Psychiatric GWAS Consortium [PGC] 2009), and at
the time of writing, more than 12,000 cases of BPD and 14,000 cases of MDD are
available within the PGC, with 20,000 more cases each expected to be included
over the next 2 to 3 years. While these numbers may at first sound impressive, one
has to consider that GWAS are the method of choice to pick common risk alleles
conveying only small individual risk. Other complex-genetic traits might provide
some clues for appropriate sample sizes: it took almost a quarter million people to
detect and respectively confirm 32 risk variants for body mass index, explaining as
little as 2–4% of genetic variance, and it was estimated that another 284 variants
would carry comparable effect sizes and together would explain 6–11% of the
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genetic variation. The authors assumed that further 730,000 individuals would
have to be genotyped to uncover 95% of these variants (Speliotes et al. 2010).
Likewise, a recent study on body height (Lango Allen et al. 2010) examined
180,000 subjects and found 180 loci explaining 16% of phenotypic variants.
As body weight and height are for sure somewhat easier to determine than
depression, which is a heterogeneous condition from the start, one can easily see
the obstacles one has to face when dealing with these kinds of studies. Having said
this, and thereby also lowering the bar of expectations somehow, the above-men-
tioned studies are also encouraging and can be seen as proof-of-principle: GWAS
can detect novel pathways and provide meaningful results, and thus larger scale
studies should be encouraged in order to identify the molecular determinants of
affective disorders, as previous linkage and association studies fell short in con-
clusively delineating these. Concluding these introductory remarks, the recent
debate on the missing—or, rather, hidden—heritability has to be mentioned. The
discussion whether the major endogenous psychoses are due to the sum of multiple
common alleles with small individual effects (e.g. Purcell et al. 2009) or due to many
rare variants, also including copy number variants (CNV), and causing ‘‘synthetic
associations’’ (Dickson et al. 2010) and resulting in phenocopies (Gershon et al.
2011) is held lively and far from being resolved. These authors’ personal view is that
both models might exist—which however complicates matters even more.

BPD
GWA studies on BPD, which has a higher heritability and presumably less

GxE effects as compared to depression, have (probably due to these facts)
provided stronger findings than MDD GWAS. The following section elaborates
on the most interesting findings from BPD GWAS at the time of writing
(04/2011) with focus on replicated risk genes and pathways, while issues like
population admixture, microarray technology, and statistical comments are not
further commented upon.

In one of the first published GWAS on BPD, Baum et al. (2008a) reported
genome-wide significance of rs10120253 in intron 1 of diacylglycerol kinase eta
(DGKH) in a German and US American population using a pooling approach. The
gene product of DGKH metabolizes diacylglycerol (DAG), which is produced
upon cleavage of PIP2 into IP3 and DAG by phospholipase C. DAG, in turn,
activates protein kinase C which phosphorylates a variety of proteins including
Dishevelled, an inhibitor of GSK3b (which itself has been considered an out-
standing candidate gene for BPD due to several lines of molecular genetic evi-
dence; Luykx et al. 2010). Furthermore, DGKH knockdown in HeLa cells
impaired the MEK/ERK pathway, while overexpression activated the pathway
(Yasuda et al. 2009). DGKH might therefore be involved in crucial pathways for
psychiatric disorders and especially the mechanism of action of lithium. However,
replication of DGKH failed in three studies on BPD and/or lithium response,
respectively (Manchia et al. 2009; Tesli et al. 2009; Takata et al. 2011) while four
other studies were ambiguous or positive (Baum et al. 2008b; Ollila et al. 2009;
Squassina et al. 2009; Zeng et al. 2011). A recent study provided evidence for
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an association of a DGKH risk haplotype with MDD, BPD, and adult ADHD (Weber
et al. 2011). Meta-analyses on Caucasian (Weber et al. 2011) as well as Asian (Takata
et al. 2011) samples however demonstrated that DGKH is significantly associated
with BPD. Furthermore, increased expression of DGKH in BPD (Moya et al. 2010)
was demonstrated in human post-mortem tissue, so that DGKH represents one of the
most promising candidate genes for BPD to date. Other candidates from the Baum
et al. GWAS include NXN, VGCNL1, DFNB31, and SORCS2, the latter two of
which were replicated in a later study (Ollila et al. 2009).

The UK Wellcome Trust Case Control Consortium (WTCCC 2007) aims at the
investigation of several complex genetic disorders with high prevalence. As evi-
dent from the first glance on the Manhattan plots in this paper, there are no
‘‘skyscraping’’ BPD risk SNPs as compared to very clear signals in cardiovascular
or metabolic disorders. The WTCCC BPD GWAS provided genome-wide evi-
dence for a non-gene marker next to PALB2, NDUFAB1, and DCTN5; other
signals were observed for KCNC2, GABRB1, GRM7, and SYN3, all of which are
in pathways previously implicated in BPD. Shortly after the WTCCC report, Sklar
et al. reported on the STEP-UCL study and provided significant findings for
MYO5B, TSPAN8, CDH7, and EGFR (Sklar et al. 2008). Some of those genes
were attempted to replicate using a targeted approach; both TSPAN8 (Scholz et al.
2010) and CDH7 (Soronen et al. 2010) were confirmed in doing so. When the
significant signals from the WTCCC and Baum data sets were tested in Sklar’s
STEP-BD/UCL sample, negative findings were observed for DGKH and PALB2,
however, this analysis provided further support for CACNA1C and DFNB31
arguing for the rationale to combine large data sets. Accordingly, the fourth
GWAS study, ED-DUB-STEP2 (Ferreira et al. 2008), investigated another 1000
patients and included meta-analytic treatment of the WTCCC and STEP-UCL data
sets (total n = 4387 cases). In doing so, the holy grail of genome-wide significance
was reached for markers in two genes: CACNA1C (alpha-1 subunit of a voltage
dependent calcium channel) and ANK3 (ankyrin 3). Other interesting candidate
genes from this study include SYNE1, SPRED1, CMTM8 (which interacts with
EGFR), NPAS3 (which has previously been suggested to be associated with
schizophrenia and bipolar disorder; Pickard et al. 2009), and ARNT2. In a sub-
sequent meta-analysis including two samples from Nordic countries, the breast
cancer risk genes PALB2 and BRCA2 were followed up in these as well as the
WTCCC and STEP-UCL/ED-DUB-STEP2 samples (total case n = 5547). In doing
so, variants in both genes were shown to be associated with BPD (Tesli et al.
2010). Not surprisingly nevertheless, CACNA1C and ANK3 drew most attention
in follow-up studies.

For both ANK3 and CACNA1C, it is noteworthy that replication attempts not
only provided evidence that these genes are associated with BPD; rather, they were
demonstrated to be associated with a broad range of disorders across diagnostic
boundaries arguing for a more unspecific role of these genes in psychiatric dis-
orders. For example, ANK3 was not only replicated in BPD (Lee et al. 2010;
Schulze et al. 2009; Scott et al. 2009; Smith et al. 2009), but also associated with
schizophrenia (Athanasiu et al. 2010). Likewise, CACNA1C was again found to be
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associated with BPD (Keers et al. 2009), but also with schizophrenia (Green et al.
2009; Moskvina et al. 2009; Nyegaard et al. 2010), MDD (Green et al. 2009), and
psychopathological features (e.g., agitation) therein (Casamassima et al. 2010).
Neuroimaging studies demonstrated an effect of the CACNA1C risk variant
rs1006737 on brain structure (Franke et al. 2010; Kempton et al. 2009) as well as
function (Erk et al. 2010; Krug et al. 2010; Wessa et al. 2010).

In the last 2 years, several other GWAS and meta-analyses on BPD have been
published. A small study from Japan (Hattori et al. 2009), which applied a two-stage
design, provided nominal although not corrected significance for markers within
AUTS2 (previously implicated in autism), SNAP25 (which is a schizophrenia and
ADHD candidate gene), PLXNA2 (which has been found in schizophrenia and
anxiety GWAS) and CSMD1, which was already one of the candidates from the Baum
et al. study (Baum et al. 2008a). No other top hits from previous BPD GWAS however
were replicated. In Han Chinese patients suffering from BPD type I, Lee et al. (2010)
likewise did not provide findings on the genome-wide level, yet interestingly
also found suggestive association of BPD with SNPs in another voltage-dependent
calcium channel subunit, CACNB2 (other highly significant SNPs were located in
KCTD12, SP8, and ST8SIA2) pointing again to calcium signalling having a role in
BPD. Targeted investigation of previously identified GWAS candidate genes yielded
a p = 10-5 for an SNP near ANK3, yet no other gene has been replicated.

Scott and colleagues combined two GWAS studies from the US, Canada, and
UK (the NIMH/Pritzker and GSK GWAS) and analyzed them separately as well as
in conjunction with the WTCCC study (Scott et al. 2009). In doing so, no genome-
wide significant finding was observed; yet three regions with a p around 10-7 were
reported encompassing the genes MCTP1 (which encodes a high-affinity calcium
binding protein which is highly expressed in the brain), ITIH1 and GLN3.
Furthermore, CTNNA2 was amongst the top hits which also gained support from
other hypothesis-free approaches in psychiatric disorders such as ADHD (Lesch
et al. 2008). Neither DGKH, ANK3 nor CACNA1C were confirmed in this
GWAS, however the latter yielded convincing support upon a fixed-effects meta-
analysis including the Ferreira and Schulze studies. In 2009, Kelsoe and associates
reported on two GWAS examining US Americans of European and African
ancestry (Smith et al. 2009), respectively, with a combined n = 1346 BPD cases.
Again, no genome-wide significant findings emerged and interestingly, significant
findings were discrepant for each subsample. One of the promising top hits in this
study is NTRK2, as this gene which encodes a neurotrophin receptor has been
implicated in mood disorders previously. When previous GWAS risk genes
were tested for, ANK3 yielded further support, while CACNA1C was negative.
It should be noted that this sample overlaps with the one tested by Baum et al.;
generally, the sample overlap between different studies will become the rule rather
than the exception due to the need for international cooperation and large sample
sizes. Furthermore, a small GWAS from Norway (n = 194), which however
was followed up in a larger Icelandic sample (Djurovic et al. 2010), provided
suggestive evidence for several interesting candidate genes (e.g. GUCY1B2,
SHANK, and CNTNAP5), none of which however was amongst the top hits in
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previous studies. The largest study to date has employed a two-stage design using
a discovery cohort of 682 BPD patients and carried over the top 48 SNPs to
replication samples; SNPs surviving this procedure were subjected to a meta-
analysis with previous BPD GWAS data sets (Cichon et al. 2011). The total case
number investigated in this study was thus n = 8441 BPD patients. In doing so, the
neurocan (NCAN) gene was identified as a susceptibility factor for BPD with the
best SNP yielding a p = 2.1 9 10-9, i.e. genome-wide significance.

In conclusion, GWAS on BPD and subsequent meta-analysis provided evidence
that BPD shares risk variants with schizophrenia, MDD, and ADHD; furthermore,
calcium and GABA signalling pathways were repeatedly found to be associated
with disease, along with genes modifying neuronal plasticity. At the time of
writing, CACNA1C, ANK3, and DGKH can be considered the risk genes with the
most compelling body of evidence. Accordingly, those are scrutinized more
thoroughly and first functional studies already provided evidence for changes in
brain function in risk allele carriers.

MDD
While the prevalence of MDD is five to tenfold higher as compared to BPD, its

heritability is lower and presumably heterogeneity is even higher. These issues
complicate GWAS on this phenotype, probably explaining the lack of genome-
wide findings despite the fact that studies on MDD and schizophrenia feature the
largest of all disorders analyzed in the PGC.

The NIH sponsored Genetic Association Information Network (GAIN) studies
also featured major depression and these studies were amongst the first published
GWAS on MDD (Sullivan et al. 2009). Discovery sample patients came from two
Dutch longitudinal studies (NESDA and NTR, combined n [1700). The top 25
SNPs featured four SNPs in the PCLO gene, which encodes for a subunit of the
presynaptic vesicle fusion complex, although none of them met the criteria for
genome-wide significance. Considerable overlap was noted for the mood disorder
candidate genes CACNA1C, ANK3, GRM7, and DGKH. While PCLO did not
clearly replicate in the Sullivan et al. study, a later reanalysis questioned this initial
notion and argued for an association of a non-synonymous coding SNP with MDD
in the very same replication cohorts (Bochdanovits et al. 2009). Furthermore, a
later population-based study demonstrated an association of PCLO rs2522833 with
depressive disorders (Hek et al. 2010), which also held true when a meta-analysis
of all published data was conducted especially when only population-based studies
were considered (p = 1.9 9 10-9). Most interestingly, in a hypothesis-free
approach, PCLO was demonstrated to be differentially expressed and associated
with BPD again questioning the diagnostic specificity of GWAS candidate genes
(Choi et al. 2011). However, meta-analysis of an MDD and a BPD GWAS did not
support a role of PCLO in BPD (Liu et al. 2011).

In a medium-sized GWAS from Germany (Rietschel et al. 2010), there was
a suggestive finding for HOMER1 which replicated in an independent sample.
In this study, the authors also conducted a genomic imaging study and demonstrated
decreased dorsolateral prefrontal cortex activation in the n-back task as well as
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decreased anterior cingulate cortex activation upon anticipation of a monetary
reward in risk allele carriers. Especially the latter might be related to anhedonic
behavior, one of the key features of depression. Most interestingly, also CACNA1B
was amongst the highest ranked genes, again implicating calcium signalling in
affective disorders. A larger (n = 1636 cases) UK-based GWAS argued for the BICC1
gene in MDD (almost needless to say, genome-wide significance was missed);
however, it was not replicated in samples from Munich and Lausanne. When all three
studies were treated by meta-analysis, the schizophrenia/autism candidate gene
NLGN1 was amongst the most promising findings with a pcombined = 8.5 9 10-6

(Lewis et al. 2010). When the STAR*D study was analyzed for the phenotype MDD
(n = 1,221; Shyn et al. 2011), no genome-wide significant findings also emerged.
Promising or previously implicated candidate genes—however, all at a p[10-5—
included ANKRD46, CTNND2, and CSMD3. Another recent GWAS focused on
recurrent early onset MDD, as defined by an onset before the age of 31 (GenRED, n =
1020; Shi et al. 2011). Nested candidate gene analysis yielded the lowest p value in
CACNA1C; as is common for all mood disorder GWAS, there were no findings
meeting the genome-wide significance threshold, but several highly suggestive
findings with the top hit in a brain-expressed transcript of unknown function. Other
interesting candidates include GDNF, SP4, STIM1, KCNQ1, VAMP4, and CSMD1.
Most noteworthy, the SP4 signal (which almost entirely came from female subjects)
became stronger when the GenRED sample was treated meta-analytically with the
STAR*D and GAIN studies (total ncases = 3,957; Shyn et al. 2011). This meta-
analysis yielded better, although still only suggestive significance levels and also
argued for an association of the GRM7 gene. While SP4 encodes a transcription
factor orchestrating gene networks implicated in affective disorders (and most
notably, as mentioned above, the SP8 transcription factor has been found in a BPD
GWAS), GRM7 which encodes a glutamate receptor was not only of suggestive
significance in the WTCCC BPD GWAS, but also amongst the top hits of another
MDD GWAS (Muglia et al. 2010). This study was performed in two European
samples from Southern Bavaria and Lausanne (total n[1,500), yet also did not result
in genome-wide significant findings or meaningful overlap of top SNPs between both
samples. The authors computed a meta-analysis of both samples as well, along with
the implementation of gene-wide tests. This interesting method yielded several genes
which also survived a correction procedure, the genes with the lowest p-values being
SMG7 and NFKB1. Candidate genes from previous studies however did not replicate
in this analysis, apart from the glutamate receptor gene GRM7. A similar approach
(i.e., discovery GWAS followed by meta-analysis and gene-based tests) was taken by
the largest MDD GWAS to date, the MDD2000 + study (Wray et al. 2012). Here, a
total of[2400 cases were examined and a meta-analysis was conducted by including
the GAIN sample and the UK-based study reported by Lewis et al. (total n[5700
cases). Suggestive findings (p\10-5) include NOS1AP, ADCY3, and the schizo-
phrenia/autism risk gene CNTNAP2 (the latter in males only). The adenylate cyclase
ADCY3 gene was ranked second in the gene-based test, and also the gene encoding
galanin (which was previously shown to be associated with antidepressant treatment
response and disease severity in MDD and anxiety disorders; Unschuld et al. 2010)
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was amongst the top ten hits in this analysis. From the pre-selected candidate genes,
IL10, OPRM1 (being a candidate stemming from the GAIN MDD GWAS), HTT,
HTR1B, GRIN1, and the apparently pleiotropic risk gene CACNA1C were associ-
ated with disease. Meta-analysis did not yield significant findings and in particular
did not support PCLO as a risk gene for MDD.

Trait depression, as assessed with the NEO-PI personality questionnaire (where
‘‘depression’’ is a subscale of the Neuroticism domain) was assessed in two GWAS
in the general population from Sardinia and the US (combined n = 4811; Terr-
acciano et al. 2010). The top hit, at a p = 6 9 10-7, was an intronic SNP in the
RORA gene. Two other noteworthy high-ranking candidates include the glutamate
receptor gene GRM8, which hitherto has mainly been associated with cognitive
phenotypes, and CDH13, which has been identified in an ADHD linkage scan
meta-analysis (Zhou et al. 2008) as well as GWAS on ADHD (Lesch et al. 2008)
and substance use disorders.

Cross-Disorder Analyses
In order to yield larger samples, several meta-analyses have been conducted.

The largest meta-analysis combined the WTCCC, STEP-BD, NIMH-BD, and the
German BPD sample, as well as the GAIN-MDD GWAS on MDD. The total
number of cases exceeded 6600, compared against [9000 controls (McMahon
et al. 2010). An inherent problem with this kind of study is the use of different
genotyping platforms, diagnostic heterogeneity, as well as ethnic heterogeneity;
to minimize these limitations, only subjects of European descent have been
analyzed. In doing so, six SNPs which were located in the PBRM1 gene met the
criteria for genome-wide significance. The best SNP was also significant in the
replication sample, yielding a final p = 1.7 9 10-9. When the ED-DUB-STEP2
GWAS was analyzed together with an MDD GWAS (Liu et al. 2011), CAC-
NA1C SNPs passed the hurdle of genome-wide significance while ANK3 was
not supported in the meta-analysis, probably suggesting that this gene is more
specific to BPD. SYNE1 was one of the candidates where the significance level
actually increased upon meta-analysis, and which interestingly also turned up in
the primary PGC BPD GWAS meta-analysis. Not surprisingly, also schizo-
phrenia and BPD were treated meta-analytically (Wang et al. 2010). In this
study, meta-analysis provided evidence for the genes ASTN2 and CNTNAP2,
both of which have been implicated in ADHD, as well as the GABA receptors
GABRR1 and GABRR2. When the three large US American GWAS on psy-
chiatric disorders and treatment efficacy—namely, STEP-BD (BPD), CATIE
(schizophrenia), and STAR*D (MDD) were analyzed jointly (yielding a total
ncases[3000; (Huang et al. 2010), one locus met the criteria for being genome-
wide significant (near the ADM gene, and apparently being specific for bipolar II
disorder). A total of 24 more SNPs reached the defined Omnibus GWAS Test
Threshold; however, more than half of them were imputed. Promising candidates
are again CTNND2, SP8, ODZ4, and NPAS3.

An alternative rationale is to search for risk variants influencing phenotypic
features of mood disorders. Suitable phenotypes include, for example, therapy
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response (see below) or suicidal ideation. Accordingly, the STEP-BP, WTCCC,
UCL, and STAR*D studies were evaluated with respect to the latter (Perlis et al.
2010). None of the 11 loci which were identified in the discovery cohorts however
replicated. Also, candidate genes which were selected according to previous data
(such as HTR1A or TPH2) did not yield convincing evidence. Meta-analysis of all
samples argued for an involvement of SORBS1 and PRKCE, a gene with some
a priori biological evidence. Analysis of STAR*D alone, where 90 out of 1953
patients developed treatment-emergent suicidal ideation (Laje et al. 2009),
revealed a highly significant association of an SNP in PAPLN and suggestive
association of an IL28RA SNP. Additive effects with previous risk alleles for
treatment-associated suicidal ideation in the GRIK2 and GRIA3 genes were
observed. However, paucity of psychometric data on the suicidal patients along
with the very limited sample size bears the high chance of a type-I error. Similar
analyses in GENDEP (total n = 706, thereof n = 244 with treatment-associated
suicidal ideation under treatment with either escitalopram or nortriptyline; Perroud
et al. 2010) provided some evidence for the genes GDA, KCNIP4, and ELP3 to be
associated with escitalopram-associated suicidal ideation. Nested candidate-driven
approaches did not yield significant results. A major concern regarding these
studies is whether or not treatment-associated suicidal ideation is genetic at all and
whether these studies are homogeneous—the striking differences in the percentage
of suicidal ideation casts some doubts on this assumption.

Analysis of the complete PGC data set, comprising 12,000 BPD cases and
52,000 controls, yielded 21 SNPs with a corrected p\0.05, the best candidate
genes being CACNA1C, ODZ4, and two regions of chromosome 11 and 12. As
also suggested from earlier cross-disorder analyses demonstrating a significant
overlap of common risk variants for BPD and schizophrenia (including also
CACNA1C, as well as another voltage-dependent calcium channel and a member
of the diacylglycerol kinase family [DGKI]; Moskvina et al. 2009), the latest
cross-disorder analysis of the PGC yielded strong evidence for an association of
CACNA1C with endogenous psychoses as evidenced by p = 8.45 9 10-9 when
BPD and schizophrenia samples were combined. In these analyses, it became
also evident that BPD risk genes were highly predictive for schizophrenia,
and vice versa. On the other hand, BPD neither predicted MDD nor did MDD
predict BPD or schizophrenia. When all three disorders were pooled together (total
ncases[25,000), six genes met the criteria for genome-wide significance: ITIH3, the
HLA/HIST cluster on chromosome 6p21-p22, CACNA1C, TCF4, NT5C2/
CNNM2, and IFI44/ELTD1. In MDD alone, the situation is much more frustrat-
ing: when combining more than 11,000 cases from the GAIN, GenRED, GSK,
mdd2000, MPIP, RADIANT, STAR*D, and NGFN Germany studies, only two
SNPs (in the genes NVL and GPHN, which is a highly interesting candidate) came
near the level of genome-wide significance. Lower heritability in conjunction with
increased heterogeneity might explain the scarcity of solid findings in MDD as
compared to BPD.
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1.2.4 Copy Number Variations

Currently, there is increasing interest about the role of deletions/duplications of
large chunks of the genome (copy number variations, CNVs) in psychiatric dis-
orders. Especially large ([100 kb) and rare CNV harboring many different genes
seem to occur more often in schizophrenia, mental retardation, and autism—
although there is no diagnostic specificity and some CNVs might underlie any of
these three conditions. In any case, these CNVs are rare and can only account for a
small percentage of cases, again arguing for a ‘‘common disease, multiple rare
variant’’ model. In bipolar disorder, there are only two studies to date which
yielded conflicting findings. While the first study (Zhang et al. 2009a; 1001
patients) demonstrated an excess of large ([100 kb) and rare CNVs in BPD,
Grozeva et al. (2010) did not find an increased rate of large and rare CNVs in
almost 1700 patients suffering from BPD. Hence, even larger samples are needed
to unequivocally evaluate the contribution of CNVs in BPD, although from the
present data it seems to be clear that at least large and rare CNVs can only account
for a very small fraction of BPD cases, if at all.

1.3 Pharmacogenetics

In the treatment of depression, antidepressive pharmacotherapeutic agents have
proven to be highly effective for a large proportion of patients. However, two
major problems have to be faced: (1) treatment resistance: 30–40% of all patients
fail to respond sufficiently to the initial treatment (Fava and Davidson 1996) and
(2) treatment intolerance: There is a considerable rate of ‘‘treatment emergent
adverse effects’’ associated with antidepressive pharmacotherapy such as hypo-
tension, weight gain, anticholinergic effects, antidepressant-induced mania, or
sleep disturbance, which leads to discontinuation of treatment in about 10% of the
cases (MacGillivray et al. 2003).

Among multiple reasons underlying non-response to antidepressive pharma-
cotherapy or differential development of treatment emergent adverse effects under
antidepressants, it has been suggested that psychotropic drug response may be
heritable with first-degree relative pairs being significantly concordant for anti-
depressant treatment response (Pare et al. 1971; O’Reilly et al. 1994; Franchini
et al. 1998). Pharmacogenetic studies allowing for the detailed dissection of the
genetically influenced heterogeneity of psychotropic drug response have revealed
several risk genes on a pharmacokinetic as well as on a pharmacodynamic level to
drive antidepressant treatment response. On a pharmacokinetic level, variation in
the CYP2D6 gene resulting either in poor metabolizers (PM; 7% of the Caucasian
population) or in rapid (RM) or even ultrarapid metabolizers (UM; 3% of the
Caucasian population) has been reported to be associated with response to tricyclic
antidepressants and SSRIs, particularly paroxetine (cf. Kirchheiner et al. 2004).
On a pharmacodynamic level, association of response to antidepressants has been
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observed with variation in candidate genes of depression, especially those involved
in the serotonergic system (e.g. SLC6A4, HTR1A, HTR2A, MAOA, TPH1 (for a
review see Kato and Serretti 2010; Serretti et al. 2005). Additionally, there is first
evidence for differential genetic effects on treatment response specifically in
melancholic depression (Baune et al. 2008), depression with comorbid anxiety
(Domschke et al. 2008a, 2010) or in gender subgroups (Domschke et al. 2008c).
The identification of genetic risk factors for antidepressant treatment response as
known to date tremendously helps in better understanding the mechanism of action
of antidepressants. These rapidly growing molecular genetic findings might
nourish further biochemical, physiological, or pharmacological studies and even-
tually lead to a personalized medicine with an individually tailored antidepressive
pharmacotherapy according to genotype reducing the patients’ suffering and
lowering healthcare costs at the same time.

Most of the MDD GWAS were embedded in efficacy studies; thus not sur-
prisingly, treatment response GWAS were reported frequently. It should be noted
that treatment response of course encompasses a plethora of diverse factors
ranging from adherence to medication to exogenous pharmacokinetic influences,
adding further noise to already noisy genetic data. The first report was on the
German MARS trial and also included an independent German sample as well as
the STAR*D study (Ising et al. 2009). Obviously, not only diagnostic but also
treatment heterogeneity has to be taken into account in the interpretation. The best
signal, which however was not significant on the genome-wide level, came from
an SNP in the 50 region of CDH17; when the 338 best SNPs from the German
samples were tested in the STAR*D sample, 46 were associated at the nominal
level of significance. Amongst them, interestingly, was HOMER1 (see above).
When the level 1 participants of STAR*D, which received citalopram, were
analyzed separately (743 remitters versus 608 non-remitters; Garriock and
Hamilton 2009a, b), as little as three SNPs were associated with response on the
p\1 9 10-5 level. The most interesting finding from this study probably is
ARNTL, which is also a member of the PAS superfamily and related to NPAS3.
In 2010, the GWAS data of the multicentre European GENDEP study was pub-
lished (n = 811 cases, treated with either nortriptyline or escitalopram; Uher et al.
2010). Analysis of the complete sample did not provide meaningful signals, while
analysis of either compound alone pointed to the IL11, UST, and RGL1 genes.
Genotype by drug interaction analyses interestingly implicated a region 11 kb
downstream of NOL4, which was also one of the four top regions in the STAR*D
study. As both studies were published in parallel, this was not mentioned in either
paper, yet can be considered a true independent replication.

As compared to MDD, pharmacogenomics studies in BPD are sparser. As
treatment response to lithium, the gold standard drug treatment in BPD, is familial,
lithium treatment response studies seem to be most worthwhile; as only ca. 40% of
all BPD patients can be considered clear lithium responders, and as treatment
might go along with considerable side effects in the case of non-response, data
on genetic prediction of lithium response would directly translate into the
clinical routine. Several case–control association studies comparing responders to
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non-responders have suggested a variety of risk genes such as the SLC6A4 (seven
studies, mixed findings) and other hypothesis-driven targets mainly of neuro-
transmitter pathways, intracellular signal transduction pathways involved in the
mechanism of action of lithium, and circadian clock genes. GSK3B and CREB1
are amongst the candidates with the best empirical support and also good face
validity and hence should be further tested, as evidence is far from being solid.
Samples were often rather small and again, most genes lack replication. Scholarly
overviews on published association studies can be obtained from McCarthy et al.
(2010) and Smith et al. (2010). Although not specifically designed for this ques-
tion, the STEP-BD trial tested for lithium response as well by means of a GWA
study, which was replicated in a second, independent sample (n = 458, and n = 359
bipolar I or II patients, respectively). Not surprisingly, there were no genome-wide
significant findings, however five SNPs associated in the STEP-BD cohort repli-
cated in the second sample including a polymorphism within the GRIA2 gene
(Perlis et al. 2009). To specifically search for lithium response genes, the
ConLiGen consortium (Schulze et al. 2010) has gathered more than 1200 lithium
treated BPD patients whose treatment response has been evaluated using the Alda
scale. Genome-wide genotyping has been accomplished and initial data are
expected for the second half of 2011.

2 Anxiety Disorders

2.1 Clinical Genetics

Panic disorder has been found to be highly familial with an up to three to fivefold
increased prevalence of the disorder in first-degree relatives of patients with panic
disorder (Horwath et al. 1995; Maier et al. 1993; Hettema et al. 2001). In relatives
of the subgroup of patients with panic disorder and suffocation anxiety, an even
higher familiarity has been discerned (Horwath et al. 1997). Furthermore, famil-
iarity of panic disorder seems to depend on the age of onset in the index patient
with an onset before the age of 20 years predicting a 17-fold increased risk of
panic disorder in first-degree relatives (Goldstein et al. 1997). Also for generalized
anxiety disorder and specific phobias a significant familial aggregation was
reported (Hettema et al. 2001; Marks and Herst 1970).

Twin studies have identified up to 2–3 times higher concordance rates for panic
disorder in monozygotic as compared to dizygotic twins (Skre et al. 1993), with an
even higher concordance rate for the subgroup of patients with carbon dioxide-
sensitive panic disorder (Bellodi et al. 1998). According to a comprehensive meta-
analysis, the contribution of genetic factors has been calculated to be as high as up
to 48%, with the remaining 52% being attributable to individual environmental
factors. Generalized anxiety disorder has been estimated to have a heritability of
about 32%, while the common heritability of phobias was reported to be about
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30%, with highest estimates for agoraphobia (67%), blood-injection-phobia (59%),
and social phobia (51%). The heritability of posttraumatic stress disorder was
reported to be about 20–30% (Kendler et al. 1999; Hettema et al. 2001; Segman
and Shalev 2003). Finally, several studies point towards overlapping genetic risk
factors for panic disorder and agoraphobia or other phobias, respectively (Kendler
et al. 1995; Mosing et al. 2009; Tsuang et al. 2004). In panic disorder and other
anxiety disorders, segregation analyses failed to identify a mode of inheritance
according to Mendelian patterns, which points to a complex genetic inheritance
with an interaction of multiple ‘‘vulnerability’’ or ‘‘risk genes’’, each with only a
minor individual influence (‘‘oligo- or polygenic model’’), and environmental
influences (Vieland et al. 1996).

2.2 Molecular Genetics

2.2.1 Linkage Studies

In panic disorder, linkage studies have yielded a variety of potential risk loci on
chromosomes 1p, 4q, 7p, 9q, 11p, 15q, und 20p (Crowe et al. 1987, 2001; Knowles
et al. 1998; Gelernter et al. 2001; Hamilton et al. 2003; Thorgeirsson et al. 2003;
Fyer et al. 2006; Kaabi et al. 2006). In subgroups of patients with panic disorder
with comorbid bipolar disorder or kidney/bladder dysfunction, respectively, risk
loci on chromosomes 2, 12, 13, and 18 or 13 and 22, respectively, have been
described (MacKinnon et al. 1998; Logue et al. 2009; Weissman et al. 2000;
Hamilton et al. 2003). In social or specific phobia, linkage studies have excluded a
major influence of HTR2A and SLC6A4 loci, with however, some evidence for
potential risk loci on chromosomes 16q and 14p (Stein et al. 1998; Gelernter et al.
2003, 2004).

2.2.2 Association Studies

In panic disorder, a variety of association studies has been published so far. Most
studies have investigated variation in classical candidate genes for panic disorder
as suggested by animal models (e.g. knock-out mice), challenge experiments (e.g.
cholecystokinin [CCK] challenge, caffeine challenge), or pharmacological obser-
vations (e.g. clinical efficacy of selective serotonin reuptake inhibitors (SSRIs),
monoamine oxidase (MAO) inhibitors). Most significant evidence has been yiel-
ded for association of variants in the CCKBR (Kennedy et al. 1999; Hösing et al.
2004), MAOA, particularly in female patients (Deckert et al. 1999; Samochowiec
et al. 2004; Maron et al. 2005b), COMT (again restricted to female patients,
Hamilton et al. 2002; Domschke et al. 2004; Woo et al. 2002; Woo et al. 2004;
Domschke et al. 2007; Zintzaras and Sakelaridis 2007), HTR1A (Rothe et al.
2004; Huang et al. 2004) and ADORA2A (Deckert et al. 1998; Hamilton et al.
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2004a; Hohoff et al. 2010). Furthermore, there is some evidence for several other
potential risk variants to be involved in the pathogenesis of panic disorder such as
polymorphisms in HTR2A (Inada et al. 2003; Rothe et al. 2004; Maron et al.
2005a; Unschuld et al. 2007; Yoon et al. 2008), SLC6A4 (Ohara et al. 1998;
Maron et al. 2005a, b; Strug et al. 2010; but: Deckert et al. 1997; Hamilton et al.
1999; Blaya et al. 2007), TPH2 (Maron et al. 2007; Kim et al. 2009; but: Mössner
et al. 2006), NET (Lee et al. 2005; but: Sand et al. 2002a), CCK (Wang et al. 1998;
Hattori et al. 2001), ACE (Olsson et al. 2004; Erhardt et al. 2008; Bandelow et al.
2010; but: Shimizu et al. 2004), the transcription factor CREM (Domschke et al.
2003; Hamilton et al. 2004b), ‘regulator of G-protein signaling’ (RGS2, RGS7)
(Leygraf et al. 2006, Smoller et al. 2008b; Hohoff et al. 2009b) and several
hormone receptors (Sand et al. 2002b; Ho et al. 2004; Keck et al. 2008; Hodges
et al. 2009). However, since most of these studies either did not withstand repli-
cation in independent samples or still warrant replication, these results have to be
considered preliminary. The role of the GABA-ergic system in panic disorder
remains to be further elucidated on a molecular genetic level with only little
evidence so far for the glutamate decarboxylase (GAD) or GABA receptors and
transporters, respectively (Crowe et al. 1997; Sand et al. 2000; Hettema et al.
2006; Nakamura et al. 2006; Kobayashi et al. 2007; Thoeringer et al. 2007, 2009;
Unschuld et al. 2009). Recently, besides the classic neurotransmitter systems much
attention has been paid to the role of neuropeptides in the mediation of anxiety.
Significant association of anxiety or panic disorder in particular have been reported
for variants in genes for galanin (Unschuld et al. 2008), the neuropeptide Y (NPY)
system (Domschke et al. 2008b) and the neuropeptide S receptor (NPSR)
(Domschke et al. 2011). Finally, there is preliminary support for possible inter-
active effects of several genetics variants in the mediation of the genetic risk for
panic disorder, e.g. for HTR1A and COMT (Freitag et al. 2006). For social phobia
and generalized anxiety disorder, association has been reported with variation in
the dopamine transporter (SLC6A3) gene (Rowe et al. 1998), while DRD2 variants
seem to play a role in the pathogenesis of posttraumatic stress disorder (Segman
and Shalev 2003). Further associations were observed for COMT in specific
phobias (McGrath et al. 2004), for HTR2A in social phobia (Lochner et al. 2007)
and MAOA in generalized anxiety disorder (Tadic et al. 2003).

In summary, consistent with findings from clinical genetic and linkage studies,
molecular genetic association studies point to a complex genetic etiology of
anxiety disorders with an additive or rather interactive effect of multiple risk
variants.

2.2.3 Genome-Wide Association Studies

The first genome-wide association study in panic disorder in a Japanese sample
yielded evidence for several markers in genes, which have not been implicated in
the pathogenesis of anxiety before (PKP1, PLEKHG1, TMEM16B, CALCOCO1,
SDK2, and CLU) (Otowa et al. 2009). However, these findings could not be
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replicated in a follow-up GWAS by the same group (Otowa et al. 2010). Another
genome-wide association study in three German samples points to a potential role
of the TMEM132D gene in the pathogenesis of panic disorder (Erhardt et al.
2011). Currently, another large GWAS on a homogenous sample from Germany is
under analysis (Reif et al., in preparation).

2.3 Genetics of Intermediate Phenotypes of Anxiety Disorders

Dimensional markers such as neuroticism, anxiety sensitivity, state or trait anxiety
or behavioral inhibition have been proposed as valid intermediate phenotypes of
anxiety disorders with aggregation in families and elevated concordance rates in
monozygotic twins pointing to a significant heritability (e.g. Rosenbaum et al.
1991; Maier et al. 1992; Stein et al. 1999). Linkage studies have discerned risk loci
on chromosomes 8, 18, 20, and 21 for harm avoidance (e.g. Cloninger et al. 1998),
and association studies have reported a potential role of genetic variation of e.g.
SLC6A4 for harm avoidance and neuroticism (Lesch et al. 1996) and the corti-
cotropin releasing hormone (CRH) for behavioral inhibition (Smoller et al. 2003,
2005), respectively.

Besides neuropsychological markers, more recently, neurobiological traits have
been investigated as intermediate phenotypes of anxiety disorders. Here, signifi-
cant association was observed, for e.g. increased sympathetic activity and
ADORA2A as well as COMT gene variation (Hohoff et al. 2009a; Kang et al.
2010), blushing propensity in social phobia with SLC6A4 variation (Domschke
et al. 2009), an increased startle response with COMT and SLC6A4 variants (e.g.
Montag et al. 2008; Brocke et al. 2006), as well as CO2-sensitivity to panic attacks
with again SLC6A4 variation (Schmidt et al. 2000; Schruers et al. 2011).

Another very promising intermediate phenotype of mental disorders in general
and affective and anxiety disorders in particular are neuronal activation correlates
of emotional processing as captured by functional imaging techniques such as
magnetic resonance imaging (fMRI). In panic disorder, first imaging genetics
findings may indicate a distorted corticolimbic interaction depending on variants
of the COMT and HTR1A (Domschke et al. 2006, 2008d). In patients with social
phobia, polymorphisms in SLC6A4 and TPH were found to be associated with
increased amygdala excitability (Furmark et al. 2004, 2008, 2009). Finally,
markers spanning RGS2 were reported to be associated with childhood behavioral
inhibition and with increased limbic activation during emotion processing
(Smoller et al. 2008b). In summary, these first imaging genetics findings in panic
disorder, social phobia, and anxiety-related traits may indicate that—depending
on variants of COMT, SLC6A4, HTR1A, and RGS2—patients with anxiety dis-
orders are prone to impaired cerebral processing of anxiety-related stimuli
in cortical regions known to play a crucial role in the evaluation of emotional
stimuli and determination of salient events (for a review see Domschke and
Dannlowski 2010).
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2.4 Gene-Environment Interaction

In contrast to a multitude of gene-environment studies (GxE) available in
depression (see 1.2.2., e.g. SLC6A4 and FKBP5), with respect to anxiety disorders
as a categorical nosological entity or anxiety-related traits, to the best of our
knowledge only few GxE studies have been performed yet (for a review see
Klauke et al. 2010). No associations were found between 5-HTTLPR, childhood
emotional abuse, and neuroticism (Antypa and Van der Does 2010). An exemplary
GxE study with respect to anxiety-related traits has been published by Stein et al.
(2008), who observed a significant interaction between levels of childhood mal-
treatment and the less active 5-HTTLPR S allele on anxiety sensitivity as mea-
sured by the anxiety sensitivity index (ASI). 5-HTTLPR S and LG haplotypes were
furthermore reported to be associated with increased anxiety in interaction with
daily stressors (Gunthert et al. 2007). Conversely, assessing 5-HTTLPR genotype
and environmental adversity at birth (family adversity) and at 19 years of age
(stressful life events), Laucht et al. (2009) found an interactive effect of more
active 5-HTTLPR LL genotype and high family adversity on anxiety disorders.
Other studies have identified association of the ADORA2A with increased anxiety
after caffeine administration in healthy volunteers, demonstrating that a panic
disorder risk gene might drive the sensitivity to an environmental stimulus and,
therefore, the vulnerability to anxiety (Alsene et al. 2003; Childs et al. 2008).

2.5 Pharmacogenetics

In anxiety disorders, so far only three exemplary studies have investigated the
impact of genetic variants on response to a pharmacological treatment regime.
Two groups reported significant association of 5-HTTLPR with response to SSRI
treatment in panic disorder as well as in generalized anxiety disorder (Perna et al.
2005; Stein et al. 2006). Furthermore, SSRI treatment in panic disorder might in
part be driven by variation in HTR1A (Yevtushenko et al. 2010).

3 Overlapping Phenotypes

Depression and anxiety are highly comorbid with up to 60% of patients with
depression also displaying anxiety (Leckman et al. 1983) and about 58% of those
patients actually meeting DSM criteria for anxiety disorders (see review by
Lydiard 1991; e.g. de Graaf et al. 2002; Kessler et al. 1996; Zimmerman et al.
2002). Comorbidity of affective and anxiety disorders has a significant impact on
the course and treatment of the respective leading disease with a more chronic
course and a significantly detrimental effect on treatment response (e.g. Clayton
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et al. 1991; Liebowitz 1993; Lydiard 1991). Patterns of occurrence allow for both
affective and anxiety disorders preceding the respective other disease.

Besides either simultaneous or sequential true comorbidity of anxiety disorders
and major depression there is a continuous debate about a possible overlapping
phenotype between anxiety disorders and depression. The clinical phenotype of
‘‘anxious depression’’ (Overall et al. 1966; Overall and Zisook 1980) capturing
major depression with subthreshold anxious features has been suggested to con-
stitute a diagnostic entity of its own requiring specific diagnostic and therapeutic
attention (see Levine et al. 2001; Lydiard and Brawman-Mintzer 1998; Silverstone
and von Studnitz 2003). Dual action drugs acting as reuptake inhibitors on both
transporters (serotonin and norepinephrine reuptake inhibitors, SNRI) have been
suggested to be superior to SSRI only or tricyclic antidepressants TCA in the
treatment of anxious depression (Rudolph et al. 1998; Silverstone and Ravindran
1999). While three large meta-analyses discerned similar response rates to anti-
depressant treatment in highly anxious and less anxious patients with major
depression (Levine et al. 2001; Nelson et al. 2009; Papakostas et al. 2008; see
Nelson 2008), there is accumulating evidence for anxious features of depression
potentially complicating the course of antidepressant treatment (e.g. Altamura
et al. 2004; Domschke et al. 2010; Fava et al. 2008; Joffe et al. 1993; see review by
Bagby et al. 2002).

Apart from the individual genetic risk for affective and anxiety disorders, both
disease entities also exhibit a common familial risk (as reviewed by Middeldorp
et al. 2005). There is evidence from twin studies that depression and general
anxiety disorder, panic disorder, and post-traumatic stress disorder share a con-
siderable proportion of their genetic risk (Kendler et al. 1992, 2007; Kendler 1996;
Roy et al. 1995). Consistently, molecular genetic studies have yielded evidence for
specific genetic loci that may generally influence susceptibility across the anxiety-
depression spectrum, e.g. on chromosome 18q (cf. Camp et al. 2005; Hettema
2008). In particular, the combined clinical phenotype of anxious depression has
been suggested to constitute a specific subtype with an increased familial risk of
depression (Clayton et al. 1990, 1991), which points to a possibly increased her-
itability of anxious depression with a specific set of genetic risk factors mediating
the vulnerability for the development of anxious depression. First imaging and
pharmacogenetic studies in anxious depression have implied CNR1, NPY, and
SLC6A4 to confer parts of antidepressant treatment response particularly in the
clinical phenotype of anxious depression, potentially via a dysfunctional cortico-
limbic interaction underlying distorted emotional processing (e.g. Baffa et al.
2010; Domschke et al. 2008a; 2010).

These molecular and imaging genetic findings of overlapping genetic variants
as well as common brain networks of emotional processing partly driving both
clinical phenotypes of anxiety and affective disorders point to similar neurobio-
logical mechanisms underlying these disorders and therefore possibly a common
clinical sub-phenotype shared by anxiety and affective disorders. Particularly,
the clinical phenotype of ‘‘anxious depression’’ might thus possibly constitute a
diagnostic entity of its own requiring specific diagnostic and therapeutic attention

Behavioral Genetics of Affective and Anxiety Disorders 485



(cf. Lydiard and Brawman-Mintzer 1998; Silverstone and von Studnitz 2003).
So, back from bench to bedside, genetic and imaging studies might inspire a
re-evaluation and refinement of DSM-IV categorized nosological concepts of
depression and anxiety. Alternatively, the current and still emerging body of
knowledge in the field of neurobiological research in anxiety and depression might
have even more far-reaching consequences in the future by challenging the DSM
concept in itself in favor of a more neurobiologically oriented taxonomy of mental
disorders. As suggested by Smoller et al. (2008a), genetic and imaging research
revealing etiological mechanisms of mental disorders might infer a novel noso-
logical concept based on pathogenesis more than phenomenology. To date,
however, despite first essential steps having been made, neurobiological knowl-
edge about the pathomechanism of depression and anxiety has still not progressed
far enough to provide a reliable and valid fundament for diagnostic decisions in
daily clinical practice. So, in summary the presently known vulnerability genes
and patterns of affective and anxiety disorders are slowly beginning to challenge
the DSM-defined nosological boundaries and might have the potential to evolve
into a valuable tool to more precisely delineate the diagnostic system of mental
disorders in the future.

4 Outlook

Future research with respect to the genetic dissection of affective and anxiety
disorders will have to comprise technical as well as clinical aspects. On a
molecular genetic level, more comprehensive analyses such as tagging SNP
approaches, haplotype analyses, as well as the investigation of epistasis of several
genes constituting relevant biochemical pathways or cascades are warranted. Here,
novel genomic techniques such as duplication/deletion analysis using genotyping
arrays and next-generation sequencing of the whole exome or genome for point
mutation identification might have a large impact on risk gene identification.
Furthermore, it will be of utmost importance to analyze the functional conse-
quences of the associated genetic variants and thereby gain more knowledge about
the pathomechanism of the disease of interest. Additionally, there is a need for
more detailed gene-environment interaction studies potentially also in a genome-
wide fashion (cf. Poulton et al. 2008; Thomas 2010) in order to disentangle the
interactive effect of genetic and environmental factors conferring risk or resilience,
respectively, to affective and anxiety disorders. In this respect, epigenetic studies
investigating e.g. DNA methylation or histone modifications regulating gene
activity will tremendously contribute to the elucidation of the interplay between
environmental and genetic factors in the pathogenesis of affective and anxiety
disorders (cf. for bipolar disorder and schizophrenia: Abdolmaleky et al. 2006,
2008).

Besides the more technical aspects as detailed above, future research in the
genetics of affective and anxiety disorders will greatly benefit from clinical
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considerations. Given that—apart from very few results—most linkage and
association findings either did not withstand replication in independent samples or
still warrant replication and given that genome-wide association studies in affec-
tive as well as in anxiety disorders so far fell short of expectations regarding
replicating previous candidate genes or generating novel hypotheses, one possible
reason might be the great neuropsychological and neurobiological heterogeneity of
the investigated phenotypes of categorical nosological entities as defined by DSM-
or ICD-criteria. Thus, besides the recruitment of even larger sample sizes, a more
precise definition of the clinical phenotype will be key. In the latter respect, the
approach of investigating intermediate phenotypes of affective and anxiety dis-
orders will have to be intensified with the search for novel depression- and/or
anxiety-related neurophysiological, biochemical, endocrinological, neuroana-
tomical, cognitive, or neuropsychological endophenotypes (cf. for major depres-
sion: Hasler et al. 2004) and their analysis with respect to their genetic basis.

In summary, to date there is some support for several risk genes contributing to
the development of affective and anxiety disorders or their intermediate pheno-
types and some light has been shed on gene-environment interactions contributing
to the disease risk. However, so far the identified genetic risk factors are of no
diagnostic or predictive value, which will only change if the entirety of all genetic
risk factors interdependent with environmental factors is identified, which is not
foreseeable in the near future. Nevertheless, the increasing elucidation of genetic
risk factors tremendously helps in better understanding the pathophysiology of
affective and anxiety disorders and might nourish the development of innovative
pharmacotherapeutic substances in the treatment of these diseases (e.g. Domschke
and Zwanzger 2008), preferably in an individually tailored manner according to
genotype.
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