
Methods in Pharmacology and Toxicology (2016): 1–30
DOI 10.1007/7653_2015_41
© Springer Science+Business Media New York 2015
Published online: 20 March 2015

Molecular Dynamics Simulations and Computer-Aided
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Abstract

Molecular dynamics simulations of biomolecules, proteins especially, have emerged as an important tool in
the study of the conformational change, flexibility, and dynamics. These simulations, especially when
combined with virtual screening, have been a tool in drug discovery. Herein, we cover the basics of
molecular dynamics simulation, in the hopes that a reader would be able to intelligently conduct a
simulation of their favorite protein(s), analyze the results in order to make hypotheses about the links
between protein dynamics and conformation. We also discuss the integration between molecular dynamics
and virtual screening, so that a reader could use the results of simulations to perform virtual screening for
lead identification. Finally, we review several case studies to show what sort of information can be gained by
simulation of biomedically interesting proteins, and how that may impact drug discovery, as well as a
discussion of some areas in which simulation may prove more useful in the near future.

Key words Molecular dynamics, Simulations, Drug discovery, Markov analysis, Protein dynamics,
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1 Introduction

Molecular dynamics simulations of biomolecules have been devel-
oped since the late 1970s and early 1980s (1) in order to harness
the emerging power of computers to study the motions of proteins
and other biopolymers, as well as to study the interactions of these
biomolecules with small molecules, such as potential drugs. These
computational techniques often complement experimental techni-
ques such as Nuclear Magnetic Resonance (NMR) spectroscopy
and X-ray crystallography. Observing dynamics or obtaining
ensembles of conformations using these methods can be difficult.
However, these experimental techniques often provide highly
accurate structural information that computational methods
can use as starting points to study biologically important
molecules such as small molecule ligands, DNA, RNA and proteins.
In particular, Molecular Dynamics (MD) simulations provide a
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method to examine, in atomic detail if necessary, the kinetics and
thermodynamics of important biomedical systems.

Since all-atom molecular dynamics simulations require the
integration of Newton’s equations of motion of each atom, usually
including solvent and solvent ions, over short time-steps, typically
on the femto-second timescale, these simulations can be rather
computationally demanding. However, the growth of computer
power especially in the late 1990s and early 2000s enabled these
methods to be particularly predictive in studying protein dynamics,
such as in investigating the impact of protein motions on catalysis
and ligand binding (2–4). The latter studies have been especially
influential as they have required considerable discussion of the
interplay of conformational change, such as changes in active site
geometries in DHFR (2) or metallo-beta-lactamases (3) and cou-
pled protein fluctuations (4), which show that within a single
protein conformation, long-range coupling networks exist and are
sensitive to interactions with different ligands.

Even more recently, molecular dynamics simulations have
proven useful in studying larger biological systems and in aiding
in the drug discovery process by providing a predictive complement
to experimental methods, contributing predictions for dynamics
and structures not easily observed in vitro or in vivo. Such predic-
tions are useful in pharmacology for understanding the interactions
of drug candidates with biological systems on an atomic scale.

Molecular dynamics simulations also prove useful when con-
sidering proteins as ensembles of conformational states (5–10), as
simulations explore ensembles and output large collections of
structures, which sample the conformations that occur.

In part, the notion of generalized allostery comes out of the
conceptualization of proteins as ensembles of states and the under-
standing of conformational changes occurring due to long-range
coupling networks (9). If under certain conditions all proteins are
indeed allosteric, it is possible to design drugs that will bind to
allosteric sites. Such binding would force the protein into a certain
conformation—or specific ensemble of conformations—thereby
regulating the dynamics and interactions of the protein (9, 11).
However, for any given protein, an appropriate ligand and
corresponding binding site to induce the desired structural change
must be found. This type of search is one for which molecular
dynamics simulations are well suited. Much of the relevant scientific
work in the 2000s was reviewed a few years ago (12). This chapter
serves a few purposes. First, it expands upon and update that previous
review, especially in light of the tremendous improvements in compu-
tational algorithms and hardware, such as GPU-enabled computing.
Second, we describe the minimum theoretical and technical details
necessary for setting up, executing, and analyzingMD simulations so
that any who are interested in participating in computer-aided drug
discovery may have the tools necessary for doing so.
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2 Basics of Molecular Dynamics

2.1 Structures The minimum structural information required to start a
simulation is:

1. A list of all atoms involved in the simulation

2. Initial coordinates of these atoms

For a given system, with fixed protonation states, there is only one
possible list of atoms; however, there are infinitely many possible
initial coordinates. Of course, most of these combinations would
have enormous energy and would be negligible members of the
real, physical ensemble. To achieve realistic results, a physiological
initial state needs to be considered. Folding a biopolymer from an
unfolded state can rarely be achieved straightforwardly—the time
scales are still too long—except for the smallest systems. Therefore,
simulations usually start in a folded state; the set of coordinates
that likely correspond to a minimum free energy state. Online
databases–e.g., the protein databank (RCSB PDB—with 106,293
structures to date), which collect structures from X-ray crystallog-
raphy and NMR spectroscopy (13)—are the normal sources for
such initial structures. It is also possible sometimes to model the
initial atomic coordinates based on the structure of other proteins
with similar sequences via homology modeling (14). The extent to
which this is accurate of course depends on how close the
unknown protein is to the known proteins, which is generally not
known. As such, simulations almost always start from structures
obtained from the RCSB protein databank. A promising develop-
ment that could have impact in the near future is the possibility of
building up structures from a type of quantummechanical method
known as Density Functional Theory (DFT). Variants of this
method have proven useful in materials science and computational
chemistry (15).

2.2 Force Fields Force fields are the potential energy functions used to calculate the
accelerations of the atoms and subsequently update the coordinates
and the velocities at each step of the simulation. This parameteriza-
tion of the energy surface of a protein or other biopolymers is
conceptually straightforward, but complicated in practice. In prin-
ciple, the energy surface of even a small protein has 100,000s of
dimensions even without solvent. However, since the aim is to
simulate the dynamics of connected and folded proteins, this sur-
face can be simplified using conventional terms from chemistry,
such as bonds, angles, dihedrals, and other terms related to chemi-
cal connectivity, and long-range interactions as modeled by van der
Waals interactions and electrostatics. Among the many force fields
that exist, the most popular families of force fields include
CHARMM (16), AMBER (17), and GROMOS (18). The energy

Molecular Dynamics Simulations and Computer-Aided Drug Discovery 3



equation from the CHARMM 27 force field is shown in Eq. (1),
where V is the total potential energy.
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Many of the bonded interactions are effectively modeled as sim-

ple harmonic oscillator potentials, including bonds, angles, the
Urey-Bradley term, and impropers, i.e., the first, second, fourth,
and fifth terms in Eq. (1). In each of these terms there are force
constants that control the stiffness of the bonds, angles, impropers,
and Urey-Bradley terms. In principle, every single such interaction
can have its own minimum and force constant, but in practice there
is a great of similarity. Bonds, the first terms, are 1–2 interactions
that occur between all atoms that are directly connected via chemical
bonds. Angles, the second term, are 1–3 interactions that occur
between all atoms that share a common bonded atom. The impro-
pers, the fourth term, are 1–4 interactions that occur between atoms
that share common angles. They occur between some atoms, those
in which dihedrals are insufficient to constrain the torsional angle.
The Urey-Bradley term, the fifth term, is a 1–3 interaction energy,
i.e., an interaction between atom pairs that share a common bonded
angle, that some atom pairs have and is designed to control angle-
bending for particularly stiff angles. Dihedrals, the third term, are
1–4 interactions between all atoms that share common angles and
aremodeled with a cosine approximation. The last two terms are the
non-bonded interactions, and are modeled via the Lennard–Jones
potential and the Coulomb potential, where every atom pair that
does not occur in a bond, angle, or dihedral, possesses these long-
range interactions. The nature of the 1/r Coulomb potential is a
long-range interaction, and is computationally limiting, since it does
not go rapidly to zero as the Lennard–Jones potential does over
longer ranges. However, methods have been developed to approxi-
mate the Coulomb potential accurately over longer ranges, such as
the particle mesh Ewald method (19).

Although force fields are complicated approximations, these
models are constantly being vetted and compared to experiment
to improve the force field parameterization for proteins, nucleic
acids and lipids. The force fields have been refined over the years
to correct issues where, for example, AMBER over-stabilized alpha-
helices (20, 21) or CHARMM tended toward pi-helices (22).
There is little consensus to suggest that one force field is better
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than the rest for protein simulations, and simulations performed on
the same structure with different force fields generate consistent
results, for example ref. (3) vs refs. (4) and (23). The success of these
force fields has been recently highlighted when Martin Karplus,
Michael Levitt, and Arieh Warshel won the 2013 Nobel Prize in
Chemistry “for the development of multiscale models for complex
chemical systems” (24).

2.3 Simulation

Programs

Various simulation suites exist and the most popular include
NAMD (25), CHARMM (26), AMBER (27), and GROMACS
(28). These suites share common basic features but vary in their
capacities and underlying philosophies.

The most user-friendly of these suites is NAMD, built upon
C++ and TCL programming and scripting languages, but has the
least functionality. However, it contains all the functionality needed
for all-atom simulations. Conversely, the most versatile package is
CHARMM, but it comes with a steep learning curve, and resembles
a Fortran-based language. GROMACS is the only one of the four
suites that is open source, and has been converted from its original
FORTRAN implementation to C. Of these four packages, NAMD
is the most capable of performing large, classical all-atom simula-
tions on CPUs, and has been used to simulate particularly large
proteins and protein complexes (for example (4, 29, 30)). GRO-
MACS has the advantage of a large number of external tools for
trajectory analysis; it is generally the second-fastest. CHARMM is
the most flexible for analysis and for performing different simula-
tions. For the simulations described in this chapter while running
on CPUS, arguably the “best” combination would be to use
NAMD to run simulations and CHARMM for analysis, while
using GROMACS for both simulation and analysis would be a
close second. However, over the last few years, GPU-enabled
codes have emerged, especially ACEMD (31), which is similar to
NAMD in its functionality. Until and unless other suites emerge
that are as GPU-enabled, the ideal simulation technology at present
is ACEMD on GPUs.

2.4 Running a

Simulation

Given a particular biomolecular system of interest and a simulation
package, the next step is to set up the simulation parameters. Many
of these are default configuration parameters that should be
understood.

First, a choice needs to be made as to which thermodynamic
ensemble should be approximated. Since the isothermal–isobaric
(NPT) ensemble has the Gibb’s free energy as its thermodynamic
potential, and usually corresponds to experimental conditions, this
is currently the most common ensemble to simulate. Simulating the
NPT ensemble requires using a thermostat and barostat to approx-
imate constant temperature and constant pressure respectively.
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Simulation packages typically offer the option to run other ensem-
bles, minimally the canonical (NVT), and microcanonical (NVE)
ensembles. Although it seems logical that one would simulate in the
NPT ensemble for best agreement with experiments, it is not clear
how different simulations are in these various ensembles.

To best represent physiological conditions, water molecules
and ions that surround biomolecules in vivo are either explicitly
or implicitly modeled in simulation; this is an important enough
topic to warrant its only section below. In the most common case of
explicit solvent and ions, periodic boundary conditions are imple-
mented and then long-range electrostatic interactions are approxi-
mated using a particle mesh Ewald summation method with Fast
Fourier transforms (32).

Embedded in each simulation code are numerical integration
methods that are used to update the positions and velocities of each
atom in the system from the accelerations determined by the force
field for each simulated atom at each time-step. This time-step, or
interval over which the forces are considered constant, and which
determines how often configurations change, is an important con-
sideration. If the time-steps are too small, computer time and disk
space will be wasted. If the time-steps are too large, the simulation
is no longer energy conserving and accuracy will suffer. However,
simulation packages typically have good default choices of integra-
tors, such as velocity Verlet (33) with time-steps of 1–2 fs.

After the simulation has been set up, usually a brief minimiza-
tion is performed to remove any clashes between atoms. Post-
minimization the system is simulated for a given number of time-
steps—depending on the timescale necessary to address the
biomedical problem as well as the computational power available.
With current GPU-enabled codes, simulations on the 100s of
nanosecond to microseconds are feasible depending on system
size and patience of the user. Also, typically multiple simulations
are performed where each atom starts with a different random
velocity, taken from a Boltzmann distribution, to allow for better
coverage of phase-space.

3 Solvation Techniques

In order to accurately simulate biomolecules, it is imperative to
recreate the local environment as best as possible. As such, biomole-
cules are simulated in an aqueous environment to approximate phys-
iological conditions. Modeling solvation is important, as it has been
shown that solvent fluctuations can be directly related to protein
motions (34, 35). Additionally, the layer of water surrounding the
biopolymer, i.e., the water molecules closest to the sample, has prop-
erties different than that of the bulk solvent (36). It is clear that
solvent interactions are critical to properly functioning biomolecules,
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and when simulating such systems, the choice of solvent approxima-
tion is an important issue. There are twomain approaches to simulat-
ing solvents, with explicit or implicit solvent, andmanymodels within
each implementation.While none of these is perfect, some are advan-
tageous particularly dependent on the simulation in question.

An explicit solvent is exactly that, including a box composed of
an oxygen bound to two hydrogens, each with updated coordinates
and velocities calculated at each time-step. These models are often
characterized by the number of site interaction points considered
and go from 2-site models up to 6-site models. TIP3P and TIP4P
are common 3 and 4-site models, respectively (37, 38), that have
been studied extensively (39, 40).

The simplest explicit water models assume rigid bonds and only
calculate non-bonded interactions including van der Waals and
electrostatic interactions. In many explicit models, water bonds
are maintained via the SHAKE algorithm, in order to speed up
calculations as these bonds are typically not interesting, yet are of
high frequency (41).

Because explicit solvents can handle representative motions at a
global and local scale, they are often preferred. Alternatives include
implicit solvent approximations in which the electrostatic proper-
ties of the water are calculated approximately without including the
explicit presence and motion of water molecules. This reduces the
computational expense by removing explicit water atoms. Various
implicit solvent models have been compared (42–44), and
Generalized Born (GB) models (23) show the most promise of
the implicit models (42, 43). The struggle is to reproduce the
solvent behavior consistent with experiment, and while there has
been some success (23, 45), comparison of the TIP3P water model
to GB implicit models show an over-stabilization of secondary
structure in implicit solvent models over explicit solvent models.
Namely, it has been shown that alpha-helices are over stabilized in
GB models over TIP3P (20), and ion pair interactions are some-
times over stabilized leading to the trapping of molecules in non-
native states (39). Overall, implicit solvents reduce computational
time, yet they pay a penalty in accuracy. However, explicit solvents,
while generally more accurate, require additional computer
resources. In the era of GPUs and parallelization of calculations,
explicit models are preferable when possible, due to their accuracy.

Regardless of the solvation technique, in order to model in vivo
or in vitro conditions, ions need to be added to the simulation.
If the ions exist in the X-ray structure, then they can be added in
explicit in the positions in the structure, as such ions are likely to be
structurally important. Otherwise, there are automated processes
for doing so in software packages such as VMD (46), which place
sufficient ions randomly in the water box to match conditions
desired; such as 0.15 M ionic strength with NaCl as is common
to match experiment conditions, or just sufficient Na+ or Cl� to
neutralize the protein system.
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4 Analysis Methods

Once simulations have been performed, they must be analyzed to
check their validity and also to extract useful information. Since the
results of a simulation are the coordinates of all the atoms in the
system simulated over the timescale of the simulation, a wide
variety of analysis methods can be applied to extract virtual any
type of structural and provide the most dynamical information.
Below, the most common–and typically the most useful—of these
analysis methods are discussed.

Simulation Check: Structural relaxation
Given that simulations can run from hours to months depending on
the system size and timescale desired, performing energy and struc-
tural checks shortly after starting a simulation minimizes time
wasted on unstable or improperly setup simulations. If a simula-
tion’s log file has been configured to report energies, the user can
read out the energies after a relatively small number of time-steps to
see if the energies reported are reasonable. Similar checks can be
performed on the pressure and temperature, which should be
relatively constant for biological systems and fluctuate around the
values set for the thermostat and barostat (usually 300 K and 1 atm,
although 310 K can be used to better match physiological condi-
tions). As an additional validity check, a user can calculate the Root
Mean Square Deviation (RMSD) of a subset of the simulation’s
atoms. This measure quantifies how much the polymer of interest
has changed from a reference structure over time. Such checks
allow a user to judge the physical reasonableness—relative to the
system and thermodynamic ensemble chosen—of a simulation
(12). The reference structure is usually the initial structure that
has been obtained from experimental work, in order to gauge the
stability of the simulation and structure itself. Beyond understand-
ing how realistic a simulation is, measures of energy, pressure,
temperature and RMSD versus time are indicators of a successfully
equilibrated system. An initial period of rapid change followed by
relative stability with small fluctuations around a mean value indi-
cates a successfully equilibrated system. For example, in Fig. 1,
there is a rapid growth of RMSD in the first 100 ns. Afterward,
the system reaches an equilibrated state with small fluctuations
around a mean of about 5 Å.

This RMSD measures the average difference of all selected
atoms from one frame to the next via

RRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where N is the number of atoms in the selection, r is the position
vector (x,y,z) of the atom at time t, and r 0 is the position of the atom
in the reference frame. Before a meaningful measure of RMSD (or
any other quantity that depends on translational or rotational dif-
ferences in position) can be made, the atoms of interest in the
trajectory must first be aligned to some reference structure so as
to remove the overall motion of the protein. Without this align-
ment, conformational changes will be conflated with rigid body
motions of the protein that is the diffusion and overall rotation of
the entire protein that occurs during the simulation. To align the
atoms, analysis software, such as VMD or scripts in CHARMM or
GROMACS, minimizes the RMSD of selected atoms between a
reference structure and every frame in the trajectory using only
rigid-body rotations and translations. This alignment focuses the
analysis of protein conformations and dynamics.

4.1 Clustering:

Searching

Conformation Space

Given that simulations can run from hours to months depending on
the system size and timescale desired, clustering analysis simplifies the
comparison of structures output from an MD simulation by classify-
ing thousands to ten thousands of frames into a smaller taxonomy
with representative conformations. Figure 2 shows how finely these
clusters can distinguish structures from simulations, while still reduc-
ing the complexity from, in the case, the structural information
contained in a microsecond scale simulation to just 50 representative
structures along with how often these structures are sampled. Two of
which are depicted in Fig. 2 for illustrative purposes.
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Fig. 1 All-atom MD simulation of a Zinc-Finger structure has a 100 ns equilibra-
tion phase
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The clusters are defined by their size in a parameter space—
typically pair-wise RMSDs between structures—so that clustering
effectively partitions configuration space. Algorithms for deciding
what conformations fall in a given cluster come in two categories,
hierarchical clustering and nonhierarchical clustering. The method
for determining the distance between clusters distinguishes algo-
rithms within each category. Hierarchical clustering methods parti-
tion the conformation space into a tree by iteratively connecting
neighboring elements in a dataset. Selecting a level at which to
divide the tree forms clusters. Hierarchical clustering, Fig. 3, is
simple and fast since once an element of the dataset has been placed
in a cluster it is ignored for the remainder of the clustering process.
Slower, nonhierarchical methods optimize each cluster based on
some desired parameters set by the user. Nonhierarchical cluster-
ing, Fig. 4, allows for moving data among clusters as part of the
optimization process, making them slower than their hierarchical
counterparts (47, 48). Nonhierarchical, iterative methods are
implemented in two popular analysis software packages, VMD
(46) and CHARMM (49).

VMD uses a Quality Threshold (QT) clustering algorithm
(47). The method begins by assembling a cluster based on every
element in the dataset. For example, if an MD trajectory contains
10,000 frames, the first iteration of the QT algorithm will have
10,000 clusters. In this iteration the Nth cluster begins with the
Nth frame and is compared with all other frames, regardless of
whether those frames have already been placed in another cluster.
The frame that causes the smallest increase in cluster diameter is
accepted into the group. This process is repeated for theNth cluster
until no frame can be added without taking the cluster diameter
past the threshold specified by the user. At the end of this iteration,

Fig. 2 Two representative structures of a 10-residue FdUMP chain show small
conformational differences between some clusters. From the red to the blue
representative, F10’s termini have spread apart
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all frames in the largest cluster are removed from consideration.
This largest cluster is now fixed, and the process iterates until
either no frames remain or the number of fixed clusters equals a
target number of clusters set by the user. In the latter case the
remaining frames are simply left unclustered. In VMD specifically,
if M is the target number of clusters, all unclustered frames are
labeled as cluster M + 1. CHARMM uses the ART-20 clustering
Algorithm, which is based on a self-organizing neural network
(50, 51). Similar to QT, this algorithm optimizes each cluster
based on a constrained cluster radius. However, ART-20 starts
with one cluster rather than the largest possible number of clus-
ters. The first of two phases in the clustering determines the
number of clusters and their respective centers. To begin, ART-
20 selects the first frame of the trajectory as the center of a single
cluster. Then, the Euclidean distance to each (in the space of the
user-selected cluster parameter) frame is calculated. If the distance
from the cluster center to a conformation is within the cutoff
radius, that frame is added to the cluster and the cluster center is
recalculated before comparison with the next frame. If the dis-
tance is outside the cutoff radius, the rejected frame is assigned as
the center of a new cluster. The second phase of clustering is still
done with Euclidean distance but is performed in multiple itera-
tions; furthermore, at each iteration, the number of clusters and
cluster centers are fixed. Once all frames are assigned to a cluster in
a given iteration, the cluster centers are recalculated. Finally, the
clustering assignment process is repeated. This cycle of the second
phase continues until no changes occur between iterations. An
obvious pitfall of this method is that the order of the frames
influences the cluster assignment. Therefore, the user may wish
to check the stability of the clusters by doing a second round of
clustering with a randomized frame order (48).

Regardless of the clustering method used, the user must set
input parameters based on some analysis criteria based on user
preference. For example, when using VMD’s RMSD clustering
method, a cutoff distance and number of clusters must be set.
These parameters should be chosen in such a way that balances
the number of frames placed in clusters and the number of clusters
themselves. Obviously, if the number of clusters is set to the num-
ber of frames, the user is guaranteed that all frames will be clus-
tered. However, no information is gained in this example as the
point of clustering is simplifying the analysis of the trajectory. To
this end, the user may first decide a reasonable number of clusters,
e.g., 50, to analyze and then adjust the cutoff parameter to mini-
mize the number of unclustered frames. The strategy in that case is
to begin with a low cutoff, e.g., 2 Å, and gradually increase it until
the point when either VMD reports fewer clusters than the number
desired or an increase results in no or a very small change in the
number of unclustered frames. Such a procedure balances
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approximations, but not requiring a large number of clusters to
analyze while including as much of the simulation data available for
in clusters for further analysis.

4.2 Markov Analysis In addition to identifying representative structures of clusters, such
as those in Fig. 2, plots of cluster vs frame, Fig. 5, can show the
transitions among states. In this representation it is easy to identify
long-lived states and to find the populations of different conforma-
tional states. However, it is also easy to miss short-lived stable
states, and it is difficult to accurately see the transition states by
eye. Accessing these transitions requires reconstructing the kinetics
of the system, a task for which Markov State Models (MSMs) are
well suited.

MSMs are network models that convey the rates of transition
among states. These models typically assume the system is mem-
oryless, though they can be generalized to systems with memory.
For example, a memoryless process is aMarkovian process of order 1.
In this case, the state of a system at time-stepN depends only on the
system’s state at the previous time-step N � 1. To generalize to
include memory, one uses a Markovian process of order M. In this
case, the state of the system at time-step N depends on the system’s
state at time-steps N � M, N � (M � 1), . . . and N � 1. Using

0
1

2

3

4

5

6

C
lu

st
er

7

8

9

10

11

500 1000 1500 2000
Frame

Cluster vs.Frame

2500 3000 3500
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these models requires defining states based on physical parameters,
typically based on RMSD. For example, a state might consist of all
structures within 2 Å of each other. In which case, these states are
taken from clustering analysis. These Markov models also allow for
further simplifications based on kinetic definitions of macrostates,
which are combinations of microstates. A macrostate might be all
microstates that transition among each other in less than 20 ps. Once
these states are, it is possible to apply statistical mechanics to estimate
various thermodynamics quantities, such as the free energy of a
macrostate using kTlog(P) where P is the population of the states
contained in a macrostate.

Recently, software packages for assisting in dynamics-based
clustering and construction of MSM have been developed. Two
such packages are EMMA (52) and MSMBuilder2 (53). The latter
software package has a companion application, MSMExplorer, for
visualizing MSMs (54).

A convenient way to convey the information in a MSM is with a
rate matrix and heat map thereof, Fig. 6. There are three primary
steps in the construction of such a matrix for an MD trajectory.
First, order clusters by their corresponding frame number. This

Fig. 6 Whenever this FdUMP polymer enters cluster 1 (blue in Fig. 2), it is 90 % likely to remain there during
the next time step (in this case 5 ns). This molecule frequently transitions from cluster 5 to cluster 2 and
cluster 9 to cluster 2
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sorted list is called a Markov chain. Next, count how often state i is
followed by state j where both i and j run from 1 to the number of
macrostates. Finally, place those counts in A, which is an M � M
matrix, whereM is the number of states, and normalize each row so
that it sums to unity. Now, the matrix is read “when the system is in
state i, the probability it will transition to state j in the next time-
step is Aij.” Using Markov State Models in this fashion quickly
reduces the task of analyzing the kinetics of thousands to billions of
conformations to reading an M � M matrix, where M is much
smaller than the number of frames in the trajectory. More details
on such modeling are beyond the scope of this review, but a simple
yet comprehensive review of them has been published (55).

4.3 Analysis

of Protein Motions

and Dynamics

Clustering combined with Markov analysis provide information
about the configuration space accessed by a biopolymer during
the timescale, typically nanosecond to microsecond, of the MD
simulation. Markov analysis also provides information about kinet-
ics via quantifying transitions between configurations. However,
there is additional information contained in a simulation, including
information about protein motions through analysis of dynamics
via examination of fluctuations.

Dynamical studies of protein motions are important in under-
standing regulation and function of a cell. Naturally, cellular func-
tion is an extremely active process requiring a myriad of properly
functional components. To use this information for predictive pur-
poses, it behooves us to have some knowledge of the motions that
dictate proper function and understand how physical laws drive
motions. Simulations provide enough insight to hypothesize the
important functional processes, as conformational changes have
helped to identify drug targets, for example (. . .). Mechanisms
such as protein–protein and protein–surface interactions have
recently gained more traction in the drug targeting process (56).

Understanding how protein motions are affected by ligand
binding and the impact that may have on proper function of a
biomolecule suggest the importance of dynamics in the drug dis-
covery process (57). However, there is a great deal of remaining
investigation of the dynamics of protein, DNA, and RNA interac-
tions, and dissecting these dynamics may yet inform the develop-
ment of therapeutics.

Studies suggest that conformational changes at one site of a
protein, for example, affect distant regions of a protein and its
ability to bind properly, despite no noticeable changes in the bind-
ing region (58). This form of general or hidden allostery is a
dynamical component often overlooked in the drug discovery pro-
cess (9) and is proving useful in predicting functional molecular
mechanisms (59).
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4.4 Root Mean

Square Fluctuations

Root mean square fluctuation (RMSF) is a useful analysis tool to
examine the behavior of a protein with atomic precision across the
whole trajectory by measuring the average mobility of each atom in
the simulation. RMSFs are a measurement of time-averaged fluc-
tuations from a reference frame, typically the first frame. The RMSF
is a useful estimation of the rigidity of various parts of the biomole-
cule, with higher RMSF indicating a more flexible region. Values
are typically on the order of a few to tens of Angstroms and are
calculated using the following equation,

RRMSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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Where r is the x, y, z coordinates of the atom, for example, and r 0 is
that of the reference structure. T is the total number of frames, and
i represents the index over atoms and j represents the index over
time. Figure 7 provides an example of RMSFs for a small 28-residue
zinc finger, NEMO (60). In this example, the flexibility of this
protein is studied over different timescales, and surprisingly for
such a small protein, the flexibility was radically increased on
longer-time scales. The RMSFs plots also show changes in flexibility
along the protein backbone, indicating regions of increased flexi-
bility and regions of increased rigidity.
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Fig. 7 A plot of RMSF for each alpha carbon for four different timescales of simulations showing variation in
flexibility on a residue basis
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4.5 Covariance and

Correlation Analysis

Whereas RMSFs provide information about flexibility at the atomic
level, they provide no information about coupled motions. Covar-
iances, or their normalized counterparts, correlations, however, pro-
vide an indication of coupled dynamics by indicatingwhat parts of the
system show correlated motions; these could be motions in the same
direction, in the opposite directions, or most often, uncorrelated
motions (61). Covariance analysis is a useful technique for detecting
the motions of a protein that might, for example, be responsible for a
particular interaction, or to elucidate long-range interactions within a
sample that may be responsible for allosteric regulation or other
functional behavior. If ri and rj are position vectors of two atoms in
the sample, then the covariance is calculated using

eCij ¼
XN
α¼1

r
!α

i � r
!α

i

D E�
�
�
r
!α

j � r
!α

j

D E� �
N

Here N indicates the total number of frames and alpha is the index
over each frame of the trajectory. These covariances are then typi-
cally normalized into correlations by dividing by the square root of
the product of Cii and Cjj, so that the diagonals are one; an atom
always fluctuations with itself. In the molecular dynamics literature,
correlation matrices, e.g., Fig. 8, are often referred to as covariance

Fig. 8 Alpha carbon covariances for the same 28-residue zinc finger protein, NEMO, as in Fig. 7, as simulated
on the microsecond timescale
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matrices, where they should properly be referred to as correlation
matrices. The difference between the two is that a covariance matrix
has not been normalized so that the diagonal elements are one,
whereas a correlation matrix is a normalized version of the covari-
ance matrix. Such correlation matrices aka normalized covariance
matrices are useful in extracting the essential degrees of freedom
often hypothesized responsible for the primary function of a system
(62). Additionally, entropy estimates, and subsequently heat capac-
ity, can be derived from the covariance matrix using harmonic
approximations (63, 64). Figure 8 provides an example of correla-
tions for the alpha carbons a small 28-residue zinc finger, NEMO
(60). In this example, there are some unsurprising covariances,
those within the secondary structural elements, the beta structure
(residues 5–12), and the alpha helix (residues 16–24), but also
shows correlated motions between the beta sheet and portions of
the alpha helix, and anti-correlated motions between the beta-sheet
and the loop connecting the helix and the sheet., c.f. Fig. 9 for the
structure of NEMO. Whether these are due to zinc binding is a
subject of further study, but this illustrates that non-trivial covar-
iances can exist in even small proteins, and provides an example of
the sort of information available from correlations plots, even by
just visual inspection.

5 Small Molecule Docking

The analysis tools discussed so far provide information about the
conformations, fluctuations and dynamics of a protein or other
macromolecular system. Clustering and Markov analysis have

Fig. 9 Cartoon drawing of NEMO. Based on the striker 2JVX from the RCSB. The
alpha helix in magenta, the beta sheet in yellow with the zinc in vdW represen-
tation in green. The binding residues of the zinc are in a bonded representation
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particular uses also in syncing with small molecule docking for lead
generations. Protein flexibility is a challenge for molecular docking.
Rather than allow docking software to simulate small conforma-
tional changes, it is often more efficient to use MD software to
assemble an ensemble of structures as initial structures for docking
studies, since simulations of polymer flexing are squarely in the
realm of MD. Once these conformations are selected from an
MD trajectory, each one can be used as a starting structure for
small molecule docking, for which there are multiple efficient soft-
ware packages (65–72).

One such docking software, arguably the most efficient, that is
popular in a wide variety of uses is AutoDock (73, 74). In 2004, an
open source generation of the software was released—AutoDock
Vina (75). Previous generation software focused on analytic
approaches to docking. For example, AutoDock 4.2 calculated
free energies of association for bound conformations using an
empirical force field, Lamarckian Genetic Algorithm (76), and
explicit modeling of side chains in receptors (77). While AutoDock
Vina maintains some of these strategies, the energy function has
been refined using machine learning and the PDBbind database
(78, 79) of known binding affinities. The key advantage of Auto-
Dock Vina is the calculation of both a scoring function and the
gradient thereof. By calculating the gradient, the software knows
which direction the next iteration of the search should move a given
local set of atoms (75, 80–82). As a result, AutoDock Vina is far
faster than previous software packages, while still retaining consid-
erable precision.

In order to use docking software for identify potential lead
candidates for drug discovery, ligand libraries must be used. While
a small ligand library could be hand constructed using common
molecular drawing and export software, a strategy to take advan-
tage of the strength of molecular dynamics and of virtual screening
would be to use a large general screening library of ligands. These
can be obtained from various online chemical databases such as
BindingDB (83), ChEMBL (84), DrugBank (85), PubChem (86),
TCM Database@Taiwan (87), and ZINC (88, 89). This last data-
base, ZINC, is arguably the best for general purpose docking and
was originally developed with drug discovery in mind and has kept
that focus while growing to sample 34,000,000 unique molecules
from 134 commercial and 36 annotated catalogs. The attempt is to
have a library of all commercially available compounds. This focus
on drug discovery manifests itself in two ways. First, ZINC’s struc-
ture files are generally selected for their biological relevance. Sec-
ond, the subsets into which these structures are grouped have been
curated with screening and discovery in mind so that datasets using
standard definitions of “drug-like,” “lead-like,” and “fragment-
like” are readily available for download. They also maintain subsets
of these datasets containing “currently” available compounds;
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usually updated every 6 months or so. Currently available means a
delivery window of 0–10 weeks, with a target price of $100 or less
per sample. Within each of the latter lead-like datasets, there are
also different versions that have had different levels of similarity
analysis performed on them. For example, one could download
currently available lead-like molecules, from a set of 3,687,621
molecules at the time this was written. Or one could download a
subset filtered at the 90 % similarity level—so that any two com-
pounds that are more than 90 % similar are filtered out and only one
selected—which is less than a tenth the size of the whole library;
322,638 molecules.

The ZINC database has other features that make it particularly
useful for drug discovery using virtual screening. For example, to
ensure the quality of structures and groupings, the creators of
ZINC have what they term a “hit picking party” (89) from time
to time, during which they run docking trials on structures in the
ZINC database and compare the output structures to experimental
data. Beyond providing structures for virtual screening, the physical
compounds can be purchased through ZINC. For time-sensitive
studies ZINC is able to sort purchasable compounds by estimated
delivery time. While the physical compounds are sold commercially,
searching for and downloading structure files are free services (89).

If it is not desirable to use a general library for virtual screening,
for example, if there is a lead available and the goal is to refine
or expand outward in the space of molecules, or if particular che-
mistries are desired, then libraries can be constructed combinatori-
ally. That is particular core structures can be defined along with
functional groups to modify those groups, and they can be com-
bined computationally to generate a personalized library. There
are commercial libraries that can be used for this purpose, but
Simlib is a freely available code that can be used to easily generate
libraries (90).

6 Timescale Considerations

It should not be surprising that longer timescale simulations
require more computational resources, and choosing the appropri-
ate timescale to simulate is an important consideration. The deci-
sion is motivated by the resources available and what is of
biophysical interest. Nanosecond timescale simulations are valuable
to elucidate low energy conformations and nearby fluctuations
from that minimum. These simulations can be especially useful
for identifying dynamical motion sufficient to hypothesize
corresponding biological function (59, 91), and afford sufficient
time to observe conformational changes such as motions of a lever
arm, for example. These types of simulations may indeed be suffi-
cient for lead identification (11, 92).
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And yet, many important molecular processes occur at longer
timescales, so if these are of primary interest, either for biological
interest or to obtain rarer conformations for docking, then longer
simulations are required. Larger conformational arrangements may
require longer simulations as slower processes are responsible for
some allosteric regulation or other conformational selection events
(93). Even for small systems, such as a 28 residue zinc-finger motif,
rare events, that are not available in shorter simulations, occur in
the microsecond regime (60). These less-common events may well
have significance for drug discovery, and the fact that they happen
on the order of microseconds means they still happen 100s–1000s
times per millisecond, and they may provide pockets for drug dock-
ing, as suggested by those who argue that allostery is an intrinsic
property of all proteins (9).

7 Recent Applications of Molecular Dynamics and Docking

7.1 Molecular

Dynamics and

Docking: MSH2/6

and Rescinnamine

An example of pharmacological use of virtual screening via docking
to clusters from MD simulations comes from a search for small
molecules that would selectively bind to an apoptosis-inducing
conformation of the MSH2/MSH6 proteins (92). These two pro-
teins form a complex and recognize DNA defects resulting from
improper replication. The proteins then enter either a repair
conformation when the lesions are reparable or a death-signaling
conformation when the lesions are irreparable (94–99). In both
cases, this protein complex senses the defect or damage and recruits
other proteins to either repair the defect or initiate cell death. It is
also likely that there are multiple cell death pathways. The goal of
this example study was to find cytotoxic agents that would bind to
MSH2/MSH6 while the protein is in the death-signaling confor-
mation, thereby triggering apoptosis (91, 99).

The researchers started with an X-ray structure of a complex of
DNA and Escherichia coliMutS—a homolog of MSH—modified to
include the cisplatin adduct cross linking DNA with hydrogens
added via the CHARMM software package and solvated with
TIP3P water using VMD’s “Add Solvation Box” extension. They
performed a 250 ps equilibration and subsequent 10 ns production
run in NAMD with the CHARMM27 force field, having pressure
set to 1.01325 bar and temperature to 300 K. Frames in the final
trajectory were clustered using a 1 Å cutoff radius K-means cluster-
ing. They input the resulting ensemble of conformations into
AutoDock 3 (see (76) for details of this version) for docking trials
with a small library of commercially available compounds. They
then tested the compounds with highest binding affinities for the
E. coli MutS-DNA complex in vitro on MSH2/MSH6 and found
that they could indeed use a selectively binding ligand to select out
the death-signaling conformation of the proteins (92, 100).
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Beyond their specific goal, this work demonstrated the predictive
power of in silico molecular dynamics and virtual screening to select
compounds for in vitro trials. Subsequent work building on this has
focused on using nanoscale simulations to study further aspect of
binding of damaged DNA to the human MSH2/6 (59, 101, 102).

7.2 Docking Without

Molecular Dynamics

Docking trials on their own are powerful predictive tools for drug
discovery. For example, they were used in the development of a
novel phosphatidylinositol-3-kinase (PI3K) inhibitor that specifi-
cally targets prostate cancer (103). PI3K activity is currently under-
stood to inhibit apoptosis of prostate cancer cells and allow them to
continue multiplying even in local environments that would be
unfavorable to healthy cells, specifically areas of low androgen
concentration (104). In order to inhibit PI3K activity and allow
induced apoptotic signaling, the researchers were searching for the
most energetically favorable binding site on PI3K for a quercetin
analog (LY294002). Using AutoDock 3 (76) with a pool of 30,000
initial dockings, the researchers found that the activated prodrug
(L-O-CH2-LY294002) had a high affinity for PI3K’s ATP binding
site, leading them to conclude that the activated prodrug would
indeed inhibit PI3K activity. They then confirmed experimentally
that this compound was successful in inhibition and induced apo-
ptosis in prostate cancer cells. Discovering this drug’s affinity for
PI3K’s ATP binding site through 30,000 in vitro experiments
would have been prohibitively expensive, in terms of both time
and compound synthesis required, but was made tenable with the
aid of in silico trials.

7.3 Sequence

Similarity Motivates

Drug Discovery with

MD: Tamiflu and

Relenza

A study of multiple drugs and their related proteins via MD simu-
lation have proven useful in understanding how drug binding
mechanisms work (29), and has implications for new drug discov-
ery, as well as understanding mechanisms of drug resistance (105).
In the Le study, the pathogenic avian H5N1 type-I neuraminidase,
which is the target for drugs such as Tamiflu and Relenza, is
compared to other sequence-similar proteins. These all-atom simu-
lations investigated drug–protein interactions, including both con-
served and unique interactions, with particular emphasis on
hydrogen bonding and electrostatics. Their findings suggest how
conserved networks of hydrogen bonds across the three structural
variations elucidate a possible mechanism for how certain muta-
tions might lead to drug resistance.

Such investigations on howmutations affect drug resistances or
create genetic diseases are increasingly common, as conformational
and dynamical changes comparing similar structures or systems
highlight the specific mechanisms likely responsible for proper, or
improper, function. This form of mechanism hypothesis is just one
of the many ways MD simulations help to push the ability to
generate effective drugs, namely, ones that are less susceptible to
mutation based resistance.
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8 Areas in Which Molecular Dynamics Shows Promise to Impact Drug Discovery

In addition to explicitly providing conformations, especially rarer
conformations for ligand screening, there are multiple areas in
which molecular dynamics appears poised to make an impact;
these areas include protein–protein interfaces, an elusive, yet poten-
tially profitable arenas for drug discovery, and in understanding
more complex, longer-range allosteric interactions.

8.1 Protein–Protein

Interfaces and

Interactions via

Molecular Dynamics:

Peroxiredoxins

Another study involving molecular dynamics, enhanced by addi-
tional calculations, in this case electrostatic-based pKa calculations,
have been ones on the peroxiredoxins (Prxs) shows how detailed
pKa values, combined with MD simulation, can be combined to
gain additional insight into the modeling chemical contributions to
the oligomerization (106, 107). This family of proteins is responsi-
ble for catalyzing the reduction of hydrogen peroxide, alkyl hydro-
peroxides and peroxynitrite. They control levels of cytokine-
induced peroxide and act as a regulator of signal transduction in
mammals (108–110).

These interactions have proven elusive in the drug discovery
process because of the complexity in finding information about
specific sites for ligand binding (111), although progress is being
made (56, 112). The transient nature of the PPI makes identifica-
tion of regions for small molecule binding difficult to find, and
understanding dynamics will be critical for effective predictions.
Recent efforts combining NMR with MD have proven useful in
this regard (112).

8.2 Molecular

Dynamics and Long-

Range Allostery:

MetRS/tRNA

Complexes

In a different research study, the authors used MD to probe action
at a distance allostery involved in enzymatic reactions (113). They
simulated E. coli methionyl-tRNA synthase (MetRS) with 9 ns long
trajectories, using the CHARMM27 force field and a TIP3P
explicit water model. Using RMSFs, they compared simulation
results directly against experimental values from X-ray crystallogra-
phy and compared global mobility for the different mutations.
Additionally, covariance analysis helped reveal how certain amino
acid substitutions alter the conformations and dynamics. Through
this careful analysis of the results, the authors showed that sub-
stitution of a certain tryptophan residue (trp-461) results in
specific changes in protein correlation and dynamics. Effects of
this substitution to the local region are not surprising, but there
is clear evidence that the mobility-correlated motions of a region
40–50 Å away are reduced in the absence of the conserving trypto-
phan. It appears that the conserved residue has function in addition
to codon recognition that is mediating the conformational
structures available to the protein. These simulations along with
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previous ones discussed (59, 91, 101, 102) show the utility of
nanosecond scale simulations to study protein dynamics around
the ground state of the folded structure.

Here we see another example of how MD is used to inform the
drug discovery process. While this particular system might not have
direct application for drug discovery, it is useful in showing how
MD can help us realize the mechanism of action in these extremely
complex, highly dimensional systems. It is difficult to conceive a
better method of understanding elusive biomolecular processes,
such as this type of hidden allostery, than MD simulations.

9 Further Reading

Although we have surveyed the basics of molecular dynamics as it
pertains to drug discovery and discussed several illustrative studies,
there are other articles which review different aspects of molecular
dynamics simulations and their use in understanding drug–protein
interactions, binding mechanisms, and protein–protein interac-
tions. Additional case studies can be found in (12), and a discussion
of homology modeling and a possible method for accelerating
molecular dynamics can be found in (114).

The use of homology modeling in molecular simulation and
drug discovery is somewhat controversial. However, homology has
gained traction in recent years, as a means to alleviate the time
consuming and expensive tasks of X-ray crystallography and
NMR, especially in protein families for which there are many struc-
tures available (114). In addition becoming the basis for iterative
processes for model refinement as more information becomes avail-
able, homology is commonly used for comparison of families of
proteins for bioinformatics. As discussed in (114) homology has
been used to help fill the gap between sequence and structure, for
G-protein coupled receptors (GCPRs). They are among the most
prominent targets for small molecule drugs, and, due to this abun-
dance, they are a prime target for homology modeling as a means to
structure based drug design. While there are roughly 100 GPCR
structures in the PDB there are still many more in the family, and
due to their popularity as a drug target for a variety of disease, this
problem is particularly well suited to homology modeling, despite
the difficulties (115, 116). There is even some evidence that
homology modeling is more successful with GPCRs than de novo
techniques (117). The success of homology modeling provides
hope that computationally techniques will be able to draw upon
the increasing number of experimental structures available to apply
molecular dynamics and virtual screening techniques to the even
larger protein universe, which is increasing even faster.

Additionally, Kalyaanamoorthy discusses implementations of
enhanced sampling techniques to access longer timescales.
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One such technique is promising, namely, that of random
acceleration molecular dynamics (RAMD). Used for investigating
ligand dissociation, RAMD applies a small, additional random force
to the center of mass of the ligand allowing it to search the protein
for potential egresses. This technique is appealing because it can
provide ligand dissociation information on nanosecond timescales,
it unbiasedly searches possible molecular channels, due to the sto-
chastic nature of the extra force, and may be able to help identify
key amino-acid residues in the ligand (un)binding process.
Although a disadvantage of course is that this requires a structure
with a ligand, but could be used, for example, to study conforma-
tional changes that occur due to ligand escape which could then be
used to inform, or even to provide structures, for virtual screening.
A complementary technique is steered MD (SMD) and it is analo-
gous to an atomic force microscopy or optical tweezers, in silico.
Much like RAMD, it could be used to look at small molecule
dissociation. Both of these techniques show promise in further
enabling drug discovery by using experimental structures with
ligands, and providing information about the binding process.

One of the remaining challenges for the field is the perception
of the scientific community. It seems that confidence in MD simu-
lations has not gained the traction that it has in other scientific
disciplines such as meteorology, fluid dynamics and astrophysics
(118). Despite the success in other disciplines, MD simulations
are often disregarded as insufficient, even though there is a wealth
of data showing consistent results between simulation and experi-
ment including many of the examples reviewed herein.
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