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Analysis of Gene Expression Patterns Using Biclustering
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Abstract

Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological
knowledge is an emerging area of research in computational biology. A group of functionally related genes
may have similar expression patterns under a set of conditions or at some time points. Biclustering is an
important data mining tool that has been successfully used to analyze gene expression data for biologically
significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be
observed in expression data and discuss the role of biclustering techniques in detecting interesting
functional gene groups with similar expression patterns.
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1 Introduction

With the rapid growth of DNA microarray technology, it is now
possible to analyze expression patterns of many genes in a system-
atic and comprehensive manner at the genomic level [1]. The study
of expression patterns of genes in different experimental conditions
may enable one to understand the dynamic behavior of genes and
pathways involved in biological processes. A gene expression level is
a numerical value that measures how a particular gene is over-
expressed or under-expressed in comparison with its activity in
normal conditions. Analysis of expression patterns can be helpful
in discovering groups of genes that participate in similar biological
processes or functions. Various biotechnology laboratories and
pharmaceutical companies involved in in silico drug design can
identify molecular targets that may interact with the drugs. Micro-
array analysis can assist drug companies in choosing the most
appropriate candidates for participation in clinical trials of new
drugs [2]. Wide availability of diagnostic DNA microarrays has
positively impacted cancer research compared to other recent tech-
nologies since they are relatively easy to make and use.

One major goal of analyzing expression data is to discover
functionally similar genes. Co-regulation is a common phenome-
non in gene expression. Expression patterns with similar tendency
or behavior are normally termed as positively regulated and
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inverted behavior as negatively regulated [3]. Finding positively
and negatively co-regulated gene clusters from gene expression
data is a real need. A group of co-regulated genes may form gene
clusters that can encode proteins, which interact amongst them-
selves and take part in common biological processes. Genes with
similar (or inverted) expression profiles are very likely to be regula-
tors of one another or be regulated by some other common parent
gene [4, 5]. It has been observed that small sets of genes are co-
regulated and co-expressed under certain conditions, their behavior
being almost inactive for other conditions. Discovering groups of
genes with similar or inverted expression profiles under a set of
conditions leads to the concept of biclustering expression data. We
discuss here various expression patterns identified in microarray
data and how, based on these patterns, biological knowledge can
be extracted in the form of biclusters.

1.1 Patterns in Gene

Expression Data

With the help of microarray experiments one can simultaneously
monitor the expression levels of genes at a genome scale. Data
generated from microarray experiments, measuring relative expres-
sion levels of genes in a sample and in a controlled population can
be represented in the form of a matrix or vector [6], often called
gene expression matrix. Formally, it can be defined as follows.

Definition 1 (Gene Expression Data). Let G ¼ {G1, G2, . . ., Gm} be a
set of m genes and R ¼ {T1, T2, . . ., Tn} be the set of n conditions or
time points at which the genes’ expression levels are recorded in a
microarray dataset. The gene expression dataset X can be represented
as an m � n matrix, Xm�n where each entry xi, j in the matrix corre-
sponds to the logarithm of the relative abundance of mRNA
corresponding to a gene.

To gain better understanding of genes and their behavior inside
the cell, various patterns can be derived by analyzing the change in
expression levels of the genes. The notion of patterns in microarray
data is introduced in [7] as below.

Definition 2 (Expression Pattern). Given a gene Gi, its expression
values under a single condition or a series of varying conditions lie
within a certain range. Gi is a vector of real numbers within the range
[a, b], denoted as Gi@[a, b], and is called an item. The values in Gi are
limited inclusively between a and b.

A set containing one single item is called a pattern. A set of several
items, which come from different genes is also called a pattern. So, a
pattern looks like:

fGi1@½ai1, bi1�, . . . ,Gik@½aik, bik�g

where it 6¼ is, 1 � t, s � k, if k > 1.
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Example data (Table 1) from Homo sapiens microarray dataset,
GDS825, taken from NCBI1 and their respective profile plots are
shown in Fig. 1.

From a biological point of view, patterns play an important role
in discovering functions of genes, disease targets, or gene interac-
tions [8]. A number of different patterns have been identified in
biologically significant gene groups.

1.1.1 Shifting and

Scaling Patterns

In shifting patterns [7], the gene profiles show similar trends, but
distance-wise, they may not be close to each other (see Fig. 2).

In terms of expression values, the gene patterns are separated
by more or less constant vertical distances among them. Formally,
shifting patterns can be defined as follows

Definition 3 (Shifting Pattern). Given two gene expression profiles
Gi ¼ {Ei1, Ei2, . . ., Eik} and Gj ¼ {Ej1, Ej2, . . ., Ejk} with k expression
values, a profile is called a shifting pattern with respect to another

Table 1
Sample gene expression data from Homo sapiens

ORF C1 C2 C3 C4

GALNT5 �3.474 �3.837 �4.644 �5.059

APOE �2 �1.943 �1.786 �1.737

IDH3B 1.449 1.299 0.993 0.832
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1www.ncbi.nlm.nih.gov.
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profile, if expression value Eip can be related to Ejp with a constant
additive factor πij for the p ¼ 1. . . k. For genes Gi and Gj, the fact can
be represented as follows.

Eip � E jp

�� �� � πij : ð1Þ

Similarly, scaling patterns in gene expression roughly have mul-
tiplicative distance among the patterns. Scaling pattern can be
defined as follows.

Definition 4 (Scaling Pattern). Given two gene expression profiles
Gi ¼ {Ei1, Ei2, . . ., Eik} and Gj ¼ {Ej1, Ej2, . . ., Ejk} with k expression
values, a profile is called a scaling pattern with respect to another
profile, if expression value Eip can be related to Ejp with constant
multiplicative factor ζij for the p ¼ 1. . . k. For genes Gi and Gj, the
fact can be represented as follows.

Eip=E jp � ζij or E jp=Eip � ζij : ð2Þ

As shown in Fig. 2, values of G2 are roughly three times larger
than those of G3, and values of G1 are roughly three times larger
than those of G2. In nature, it may so happen that due to different
environmental stimuli or conditions, the pattern G3 responds to
these conditions similarly, although G1 is more responsive or more
sensitive to the stimuli than the other two.

1.1.2 Coherent Patterns A group of genes showing similar pattern tendency across different
conditions is called coherent. Such a group shows predominantly
one kind of co-expression in the expression profiles of all member
genes. Co-expressed genes are likely to be involved in the same
cellular processes. In practice, co-expressed genes may belong to
the same or similar functional categories indicating co-regulated
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families [5]. Coherent gene expression patterns may characterize
important cellular processes and may provide a foundation for
understanding regulation mechanisms in the cells [9]. The patterns
shown in Fig. 2 are examples of coherent patterns.

1.1.3 Co-regulated

Patterns

Often, coherent patterns are divided into two categories, namely,
positively regulated patterns and negatively regulated or inverted
patterns. Sometimes, a group of genes that are positively or nega-
tively regulated are also called co-regulated genes. In Fig. 1, human
genes, GLANT5 and IDH3B, show similar patterns or positively
regulated patterns. On the other hand, IDH3B andGLANT5 show
inverted or negative patterns with APOE. Biologically all three
genes are very significant. As suggested Gene Ontology, the three
genes are involved in regulation of plasma lipoprotein particle levels
and triglyceride-rich lipoprotein particle remodeling. Pronounced
inverted or negative patterns can be observed in Fig. 3, taken
from NCBI Rat dataset GDS3702. Gene Ontology suggests that
both are responsible for regulation of interferon-beta production. A
group of genes may share a combination of both positive and
negative co-regulation under a few conditions or at some time
points.

Thus, gene expression data analysis involves pattern finding.
Data mining is the study of techniques that extract patterns from
large amounts of data. As a result, data mining provides the pri-
mary tools for gene expression data analysis. Biclustering is an
important data mining tool for analyzing biologically significant
gene groups. Below we present a brief discussion of biclustering
techniques.
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1.2 Biclustering of

Co-regulated Genes

Clustering is a popular data analysis tool in genomic studies, partic-
ularly in the context of gene-expression microarrays [10–12]. Each
microarray provides expression measurements for thousands of
genes and clustering is a useful exploratory technique to analyze
gene expression data since it groups similar genes together and
allows biologists to identify groups of potentially meaningful
genes, which have related functions or are co-regulated, which in
turn helps find the relationships among them in the form of gene
regulatory networks [5]. It has frequently been observed that sub-
sets of genes are co-regulated and co-expressed under a subset of
environmental conditions or time points [13]. Biclustering algo-
rithms tackle the problem of finding a set of sub-matrices where
each sub-matrix or bicluster meets a certain homogeneity criterion.

Given a gene expression dataset DN�M, where G ¼ {G1, G2,
. . . GN} is a set ofN genes andR ¼ {T1, T2, . . ., TM} is the set ofM
conditions or time points, biclusters can be defined as follows.

Definition 5 (Biclusters). Biclusters are a set of sub-matrices of the
matrix D ¼ (N, M) with dimensions I1 � J1, . . . Ik � Jk such that
Ii � N, Ji � M 8i{1, . . ., k}, where each sub-matrix (bicluster) meets a
given homogeneity criterion.

Madeira and Oliveira [14] identify four different categories of
biclusters based on homogeneity criterion, namely:

1. Constant biclusters,
2. Biclusters with constant values on either columns or rows,
3. Biclusters with coherent values, and
4. Biclusters with coherent evolutions.

A comprehensive survey of different biclustering techniques for
gene expression data clustering can be found in [15, 16]. In gene
expression analysis, patterns play a more important role than
expression values [17]. As a result, the value based homogeneity
criterion mentioned above may not be suitable for grouping bio-
logically significant genes.

2 Materials

Technological improvements in high-throughput DNA microarray
technology is instrumental in the tremendous growth of publicly
available gene expression data. This growing amount of expression
data requires concurrent development of adequate bioinformatics
tools for comprehensive analysis of the data for extracting
biological knowledge. A number of online and offline tools are
available for biclustering of gene expression data. We mention
here a few of the leading, freely available biclustering packages
(Table 2).
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2.1 Data Sources A plethora of real expression data produced by different biotech-
nology labs are freely available online. In this chapter, we use some
datasets from Table 3 for experimentation and demonstration.

2.2 Evaluating

Quality of Biclusters

From the point of view of biological data analysis, a cluster is
biologically significant if it can produce functionally enriched
groups of genes. A majority of the literature on biclustering evalu-
ates and reports results based on functional enrichment of the
clusters against Gene Ontology (GO). To determine the statistical
significance of the association of a particular GO term with a group
of genes in a cluster, various online tools from the GO Project2 are
available. In Table 4, we report some freely available tools.

These tools use the hypergeometric distribution to calculate
the p-value or q-value, which evaluates whether the clusters have
significant enrichment in one or more function groups. The p-value
is computed as follows:

Table 2
Freely available Biclustering software packages

Package Availability Web site Platform Method(s) Reference

Expander 6.3 Download http://acgt.cs.tau.ac.il/expander/ Java Samba [18]

Bic_AT Plus Download http://people.ee.ethz.ch/s̃op/bicat/ Java BiMax, CC, [19]
ISA, xMotif,
OPSM

BiGGEsTS Download http://kdbio.inesc-id.pt/software/
biggests/

Java CCC, e-CCC, [20]

CC-TSB

BiVisu Download http://www.eie.polyu.edu.hk/
ñflaw/Biclustering/

Matlab BiVisu [21]

QServer Online http://csbl.bmb.uga.edu/
publications/materials/ffzhou/
QServer/

Web QUBIC [22]

PAGE Download http://www.niehs.nih.gov/research/
resources/software/biostatistics/
page/

Java q-Clustering [23]

CoBi Download https://sites.google.com/site/
swarupnehu/publications/
resources

Java CoBi [24]

2 http://www.geneontology.org.
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p ¼ 1�
Xk
i¼0

f
i

� �
g � f
n � i

� �

g
n

� � : ð3Þ

The p-value gives the probability of seeing at least k genes out
of the total n genes in a cluster annotated with a particular GO

Table 3
Short description of data sources

Organism Dataset
No. of
genes

No. of
samples Source

YeastDB 2884 17 http://arep.med.harvard.edu/biclustering/yeast.matrix
Yeast Sporulation 474 7 http://cmgm.stanford.edu/pbrown/sporulation

Yeast_KY 237 17 http://faculty.washington.edu/kayee/cluster/
YeastCho
(cell cycle)

384 17 http://faculty.washington.edu/kayee/cluster

Rat Rat_CNS 112 9 http://faculty.washington.edu/kayee/cluster

Human GDS3712 325 12 NCBI
Fibroblast 517 13 http://www.sciencemag.org/feature/data/984559.hsl/
Serum

Mouse GDS958 308 12 NCBI

Rice Thaliana 138 8 http://homes.esat.kuleuven.be/s̃istawww/bioi/thijs/
Work/Clustering.html

Table 4
GO-based cluster evaluation tools

Tool Platform Type Url

FuncAssociate 2 Web Online http://llama.mshri.on.ca

Fatigo Web Online http://fatigo.bioinfo.cnio.es

GOTermFinder Web Online http://go.princeton.edu,
http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

OntoExpress Web Online http://vortex.cs.wayne.edu

GeneMANIA Web Online www.genemania.org

DAVID 6.7 Web Online http://david.abcc.ncifcrf.gov

AGO Matlab Offline www.k-space.org/alakwa/AGO/AGO.zip
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termf, given the total number of genes in the whole genome g and
the number of genes in the whole genome that are annotated with
that GO term f. It is important to note that p-value measures
whether a cluster is enriched with genes from a particular category
to a greater extent than what would be expected by chance. If the
majority of genes in a cluster appears in one category, the p-value of
the category is small. That is, the closer the p-value to zero, the
more the probability that the particular GO term is associated with
the group of genes. The Q-value is the minimal False Discovery
Rate (FDR) at which this gene appears significant. Q-values are
estimated using the Benjamini Hochberg procedure [25].

3 Methods

This approach to clustering was originally introduced by Hartigan
[26] and later applied by Cheng and Church [27] to expression
data to capture the coherence of a subset of genes under a subset of
conditions. Several techniques have been proposed to find quality
biclusters from expression data. In Cheng and Church’s approach,
the degree of coherence is measured using the concept of mean
squared residue (MSR) and the algorithm greedily inserts/removes
rows and columns to arrive at a certain number of biclusters,
achieving some predefined residue score. The lower the score, the
stronger the coherence exhibited by the biclusters, and better is the
quality of the biclusters. Following Cheng and Church, a number
of biclustering techniques have been proposed [27–37] to deter-
mine quality biclusters.

A greedy iterative search [27, 28] based approach finds a local
optimal solution with an expectation to finally obtain a globally
good solution. A divide and conquer [26] approach divides the
whole problem into sub-problems and solves them recursively.
Finally, it combines all the solutions to solve the original problem.
In exhaustive biclustering [35], the best biclusters are identified
using exhaustive enumeration of all possible biclusters extant in the
data, in exponential time. A detailed categorization of heuristic
approaches is available in [29]. A number of techniques based on
metaheuristics, such as evolutionary and multi-objective evolution-
ary framework, have also been explored [30] to generate and itera-
tively refine an optimal set of biclusters. All of them use MSR as the
merit function.

An MSR based technique is effective in finding optimized max-
imal biclusters. From a biological point of view, the interest resides
in finding biclusters with subsets of genes showing similar behaviors,
not similar values. Interesting and relevant patterns from a
biological point of view, such as shifting and scaling patterns, may
not be detected using this measure as it considers only expression
values, not the patterns or tendencies of gene expression profile. It is
important to discover this type of patterns because frequently the
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genes can present similar behavior although their expression levels
vary in range or magnitude. Aguilar-Ruiz [31] proves that MSR is
not a good measure to discover patterns in data when the variance
among gene values is high, that is, when the genes present scaling
and shifting patterns. To detect biologically relevant biclusters with
scaling and shifting patterns, a scatter search based approach has
been proposed [32]. This method uses a fitness function based on
linear correlation among genes and an improvement method to
select just the positively correlated genes.

Often, it has been observed that genes share local rather than
global similarity in their gene expression profiles and only under a
few conditions or time points [13]. Thus, correlation based tech-
nique may not be effective when computing pair-wise similarity
among gene expression profiles. Other than that, various pattern-
based approaches have also been proposed [33, 34, 38, 39] for
discovery of biclusters where expression levels of genes rise and fall
at a subset of conditions or time points.

Recently, it has been observed that [3] co-regulated genes also
share negative patterns or inverted behaviors, which existing
pattern-based approaches are unable to detect. CoBi [24] (Core-
gulated Biclustering) captures biclusters among both positively and
negatively regulated genes as co-regulated genes. It considers both
up- and down-regulation trends and similarity in degrees of fluctu-
ation under consecutive conditions for expression profiles of two
genes as a measure of similarity between the genes. It uses a new
BiClust tree for generating biclusters in polynomial time that needs
a single pass over the dataset.

3.1 Performance

Comparison

We compare the performance of a few biclustering methods taking
into account functional enrichment of the biclusters. We consider
four biclustering techniques: Bimax [40], Cheng and Church
(CC) [27], OPSM [41], and CoBi [24]. For the purpose of com-
parison, we set the parameter values of other algorithms as recom-
mended in the original papers. The functional enrichment of each
bicluster is measured usingQ-values associated with GO categories.
For each bicluster, we calculate average of the percentage of the
number of genes from the bicluster with a given function against all
genes in the genome with the function. Figure 4 shows the average
of functional enrichments of each bicluster obtained by different
biclustering algorithms from four different datasets [24].

From the graphs it is clearly evident that CoBi outperforms all
three algorithms in obtaining functionally enriched biclusters.
However, for the YeastCho dataset, the Cheng and Church (CC)
approach performs better than other algorithms.
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4 Notes

Biclustering is a promising and important data mining tool for
analyzing gene expression data. A number of techniques are avail-
able for biclustering. Most are greedy in nature and often compu-
tationally expensive. Moreover, they ignore positive- and negative-
regulation patterns when performing biclustering. As mentioned in
[42], a bicluster is considered a quality bicluster when participating
genes exhibit consistent trends and similar degrees of fluctuation
under consecutive conditions. We consider both up- and down-
regulation trends and similarity in degrees of fluctuations under
consecutive conditions for expression profiles of two genes as a
measure of similarity between the genes. Compared to other meth-
ods discussed above, the design of CoBi has been motivated by a
desire to handle the outstanding issues mentioned above and as a
result, it exhibits promising results.
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