
Methods in Molecular Biology (2016) 1375: 137–153
DOI 10.1007/7651_2015_252
© Springer Science+Business Media New York 2015
Published online: 02 July 2015

Integrating Microarray Data and GRNs

L. Koumakis, G. Potamias, M. Tsiknakis, M. Zervakis, and V. Moustakis

Abstract

With the completion of the Human Genome Project and the emergence of high-throughput technologies,
a vast amount of molecular and biological data are being produced. Two of the most important
and significant data sources come from microarray gene-expression experiments and respective databanks
(e,g., Gene Expression Omnibus—GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular path-
ways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of
Genes and Genomes—KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.
reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity
IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new
insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.
Three major research lines and respective efforts that try to utilize and combine data from both of these

sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-
signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that
distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that
support the different types of gene-expression and GRN integration with a focus on methodologies that
aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology.

Keywords: Microarray, Gene expression, Gene regulatory networks, Pathways, Functional pathways,
Bioinformatics, Systems biology

1 Introduction

In recent years, high-throughput data capture technology, as with
microarray platforms, have vastly improved life scientists’ ability
to detect and quantify gene, protein, and metabolite expression.
The most common type, two-color microarrays, can measure the
expression of tens of thousands of genes with a single chip (1).
Applications include measuring gene expression in different devel-
opmental stages, identifying biomarkers for particular phenotypes
or diseases, and monitoring treatment response.

In the systems biology framework, scientists follow a “holistic”
approach in order to explore and study the behaviour of biological
components. System biology provides a global view of the dynamic
interactions in a biological system. On the molecular level, the
purpose of the underlying systems biology computational
approaches is to ascertain the interactions and dynamic behavior
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of molecules within a cell (2). The molecular mechanisms
determine how cells interact and how they develop and maintain
higher levels of organization and function. Systems biology tries to
formulate these mechanisms in mathematical models.

Currently bioinformatics community focuses on more
enhanced methods for gene selection on microarrays mainly by
adding and amalgamating knowledge from other sources, such as
GRNs. Integrating GRN information into the class comparison,
discovery, and prediction process is an important issue in bioinfor-
matics, mainly because the provided information possesses a true
biological content. By changing the focus from individual genes to
a set of genes or pathways, the gene set analysis (GSA) approach
enables the understanding of cellular processes as an intricate net-
work of functionally related components. A performance evalua-
tion of GSA methodologies (3) concluded that the inclusion of
additional biological features such as topology or covariates would
be more useful than simple gene selection approaches. In addition,
utilizing more domain knowledge is likely to reveal more insights in
the analysis.

Similar to bioinformatics, systems biology community took
advantage of the human genome and the microarray technology
to reconstruct and validate gene regulatory networks in an auto-
matic way. GRN reconstruction or reverse engineering aims toward
the inference GRN models from data (in most of the cases from
gene expression data). In the literature, a large number of compu-
tational methods are reported with the target of inferring gene
regulatory networks from expression data (4).

A relatively new line of research in the field is the identification
of the most discriminant GRNs, or parts of GRNs that differentiate
between specific phenotypes by coupling GRNs and microarray
data. Assessment of the discriminant power of (sub)networks is
based on the identification of those genes whose expression values
are consistent, i.e., could be justified, by their corresponding inter-
action pattern in the target GRN.

The study of the function, structure, and evolution of GRNs in
combination with microarray gene-expression profiles is essential
for contemporary biology research. Due to limitations in DNA
microarray technology—due to the different platforms utilised, to
the different experimental protocols, and mainly to small sample
sizes, higher differential expressions of a gene do not necessarily
reflect a greater likelihood of the gene being related to a disease and
therefore, focusing only on the candidate genes with the highest
differential expressions might not be the optimal procedure (5, 6).

Based on our knowledge, we propose a taxonomy of the meth-
odologies that combine gene-expression data and GRNs in order to
identify and assess discriminant pathway and subpathways (Fig. 1)
and a taxonomy of methodologies which identify and assess dis-
criminant pathway and sub-pathways (Fig. 2).
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A general observation concerns the different levels of knowl-
edge extraction from theGRNs employed by the different methods.
The first category naming pathway selection focuses on the
identification of differentially expressed pathways using microarray
data. Within this approach information about the topology, the
existing subpaths, as well as the reactions/relationships between
genes in a pathway are ignored. The second category subpathway

Fig. 1 Integration of microarray data with gene regulatory networks

Fig. 2 Taxonomy of discriminant pathways and sub-pathways
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selection using topology goes one step further and tries to identify the
discriminant pathways or subpathways. Within this approach iden-
tification and selection of the most discriminant paths ignore the
present gene relations/regulations. The last and most informative
category is the subpathway selection using regulatory mechanisms.
This approach takes advantage of the GRN topology as well as the
type of GRN gene relations (e.g., activation or inhibition).

Initial efforts used GRN information as groups (plain list) of
associated genes in order to identify the most discriminant and
phenotype-differentiating genes. Molecular pathways effectively
reduced the resulting sets of genes, extracted from a gene set analysis
approach, and in some cases improved prediction performance. But
GRNs encompass much more knowledge form just a plain list of
genes. Recently, more and more methods take advantage of the
GRNs topology and the underlying gene interaction patterns.

Pathway selection methodologies show similarities with gene
signatures in terms of the level of information used over the years.
Although GRNs hold important information about the structure
and correlation among genes that should not be neglected, most of
the currently available methods in pathway selection do not fully
exploit it. In the literature, one can find three categories of
methodologies that focus on the identification and selection
of discriminant pathways and subpathways, based on the different
levels of knowledge extraction from target GRNs. Initially the focus
was on the identification of differentially expressed pathways (as a
whole) using microarray data. Then the efforts concentrated on the
knowledge of the GRN topology using decomposition mechanisms
to reveal discriminant subpathways based on the graph theory
concepts and network visualization toolkits. Recently more
advanced methodologies are developed, which takes in consider-
ation not only the topology of the GRNs but also the regulation
type (activation/inhibition) of the interaction link that connects
two or more genes.

One can easily identify three main categories of methodologies
according to the level of the utilised GRN information. The cate-
gories are pathway selection using GRNs as list of genes, subpathway
selection using the topology of GRNs, and subpathway selection
methodologies using the underlying GRN gene regulatory interac-
tions. The last category—being in its infancy—exhibits the fewer
methodologies so far, but it takes the most out of GRNs and gene-
expression data compared to the other two, and is a promising
alternative for the identification of the regulatory mechanisms that
underlie and putatively govern various phenotypes.

The subpathway selection using the underlying GRN gene
regulatory interactions approach solves the major problem of the
set enrichment strategies that refers to the conflicting constrains
between GRNs and gene-expression data. A typical example of the
conflicting constrains is reflected in the situation when two

140 L. Koumakis et al.



significantly up-regulated genes increase the enrichment of the set
in microarray expression data, even if the first gene inhibits the
other in a GRN.

2 Method

We introduce a new methodology for the identification of
differentially expressed functional paths or subpaths within a gene
regulatory network (GRN) using microarray data analysis. The
analysis takes advantage of interactions among genes (e.g., activa-
tion, inhibition) as nodes of a graph network, which are derived
from expression data.

We propose a novel perception of GRNs and gene expression
data (Fig. 3). Initially we locate all functional paths encoded in
GRNs and we try to assess which of them are compatible with the
gene-expression values of samples that belong to different clinical
categories (diseases and phenotypes). The differential power of the
selected paths is computed and their biological relevance is assessed.
The whole approach is applied on a set of microarray studies with
the target of revealing putative regulatory mechanisms that govern
the treatment responses of specific phenotypes.

GRN and gene-expression data matching aims to differentiate
GRN paths and identify the most prominent functional sub-paths
for the given samples. In other words, the quest is for the subpaths
that exhibit high-matching scores for one of phenotypic class and
low-matching scores for the other. This is a paradigm shift from the
mining of differential genes to the mining of GRN functional
subpaths. The algorithm for differential subpath identification is
inherently simple.

Figure 4 provides an indicative example of the gene expression
limitation, where samples S1, S2, S3 belong to the “+” class and
samples S4, S5 belong to the “�” class. At the first sight, we can see
that no gene or no group of genes can discriminate 100 % our two
classes (“+” and “�”).

Figure 5 highlights the paradigm shift from the mining of
differential genes to the mining of GRN functional subpaths.
Given the same example as previously, we check our samples against
known sub-paths of GRNs.

The first path (IL-1R ! TRADD) satisfies samples 1,2,3,5.
Second path (IL-1R ! TRADD —| FLIP) satisfies samples S1,
S2, S3. Third path satisfies all samples and the fourth path doesn’t
satisfy any sample. The green arrow indicates that the second path
yields the maximum differential power, and it contains a potential
function differentiation since it contains only with samples that
belong to the “+” class (“!”: activation; “—|”: inhibition).

We rely on a novel approach for GRN processing that takes into
account all possible functional interactions in the network. Gene-
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Fig. 3 Flow of operations
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expression samples profiles and their phenotype assignments are
extracted form microarray data, and all targeted GRNs are evalu-
ated for the identification of the most informative ones.

The method unfolds into three modular steps.

1. Data preprocessing: On the one hand, gene expression values
are discretized into two states with values 1 and 0 for up-
regulated and down-regulated genes. On the other hand,
each target GRN is decomposed into its constituent subpaths.

2. Data annotation: Each subpath is interpreted on the basis of its
functional active-state, represented by a binary ordered-vector
with active states, resulting into its active-state ordered vector
<1,1,0> for the corresponding genes.

Fig. 4 Gene expression data example

Fig. 5 Matching functional sub-paths and gene-expression profiles
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3. Analysis (data mining): The binary ordered-vector of each
subpath is aligned and matched against all (discretized) binary
gene-expression sample profiles. The subpaths are taking the
place of sample descriptor features and utilized for the con-
struction of subpath based phenotype prediction models.

2.1 Data

Preprocessing

We utilize discretization of the gene-expression continuous values
into the core of the gene-selection process. Discretization of a given
gene’s expression values means that each value is assigned to an
interval of numbers that represents the expression-level of the gene
in the given samples. A variable set of such intervals may be utilized
and assigned to naturally interpretable values e.g., low, high. Given
the situation that, in most of the cases, we are confronted with the
problem of selecting genes that discriminates between two classes
(i.e., disease-states) and we believe that it is convenient to follow a
two-interval discretization of gene-expression patterns. Below we
give a general statement of the discretization problem when two
classes are present, followed by an algorithmic process that heur-
istically solves it. Therefore, expression value represented with
0 indicates a nonexpressed or underexpressed gene, whereas value
of 1 indicates overexpressed gene. These values are being derived
using the following process (as also shown in Fig. 6):

Fig. 6 The gene discretization process
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1. The expression levels of gene A over the total number of
samples are sorted in descending order.

2. The midpoints between each two consecutive values are
calculated.

3. For eachmidpoint, the samples are clustered into two subgroups,
H and L.

4. For each midpoint, an information gain formula is applied,
which computes the entropy (7) of the system in respect to its
division into subgroups. IG(μκ) is the Information Gain of the
system for midpoint μκ. E(L) is the total entropy of the system
taking into account their prior assignment into classes (e.g.,
case–control), whereas E(L/μκ) ¼ E(Hκ,Lκ) is the entropy of
the system taking into account its division into subgroups
around midpoint μκ.

5. Finally, the midpoint that results in the highest information
gain is selected as the one which best discriminates against the
two subgroups, and all the samples in the H group are consid-
ered to be overexpressed getting a value of 1, whereas the ones
in the L group are the nonexpressed/underexpressed, getting a
value of 0.

This discretization process is applied to each gene separately,
and the final dataset is a matrix of discretized values. A similar
approach has been used before in other expression profiling studies
(8, 9). Figure 7 shows an indicative example of a “dummy” micro-
array with five genes (rows) and six samples (columns) categorized
into two classes, normal and diseased. To the left of the figure we
can see the absolute or normalized values of our “dummy” micro-
array and to the right we have the discretized matrix when we
applied the proposed methodology.

On the other hand, the origin of concurrent knowledge about
GRNs does not come from any concrete theoretic framework.
However, although incomplete, this knowledge covers almost
every biology function such as metabolism, genetic/environmental

Fig. 7 Microarray discretization, an indicative example
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information processing, cellular processes, human diseases, and
drug development, while it is constantly under refinement and
enrichment. We chose to incorporate KEGG data for our analysis.
Since its first introduction in 1995, KEGG DB for pathways has
been widely used as a reference knowledge base for understanding
biological pathways and functions of cellular processes. The knowl-
edge from KEGG has proven of great value by numerous works in a
wide range of fields (10).

Although it has been shown that KEGG has some errors (11),
they are not so prominent and can be counterbalanced by the
simplicity, the variety and the standard ontology that KEGG pro-
vides. Through KEGG public database, pathways can be down-
loaded in KGML1 format. KGML (stands for KEGG Markup
Language) is an exchange format of KEGG graph objects including
GRNs. The GRN is described through standard graph annotation.
Nodes can be either genes, groups of genes, compounds, or other
networks. Edges can be one of the gene relations known from the
biology theory (activation, inhibition, expression, indirect, phos-
phorylation, diphosphorylation, ubiquination, association, and dis-
sociation). Each gene relation has a different semantic that depicts
the precise biology phenomenon that happens during the regula-
tion of the specific network.

Our approach relies on a novel processing for GRN that takes
into account all possible functional interactions of the network. The
different interactions correspond to the different functional sub-
paths that can be followed during the regulation of a target gene.

GRNs are downloaded from the KEGG repository. With an
XML parser (based on the specifications of KEGG’s KGML repre-
sentation of GRNs), we obtain all the internal network semantics.
In a subsequent step, all possible functional network subpaths are
extracted as exemplified in Fig. 8.

2.2 Data Annotation We exploit microarray experiments and respective gene-expression
data for which we expect (suspect) the targeted GRNs play an
important role. These paths uncover and present potential under-
lying gene regulatory mechanisms that govern the gene-expression
profile of the samples under investigation. Such a discovery may
guide the fine classification of samples as well as the reclassification
of diseases, based on the most prominent molecular evidence. The
samples of a binary transformed (discretized) gene-expression
matrix are matched against targeted molecular pathways and
respective GRN functional paths (retrieved form the pathway
decomposition).

A translation between the genes identifiers used in the gene
expression data to the corresponding KEGG identifiers is needed.

1 http://www.kegg.jp/kegg/xml/
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Both the GRNs and the gene expression data have to use the same
ids. GRNs use gene ids while gene expression platforms use probes.
A probe is a specific segment of single-strand DNA that is comple-
mentary to a desired gene. For example, if the gene of interest
contains the sequence AATGGCACA, then the probe will contain
the complementary sequence TTACCGTGT. When added to the
appropriate solution, the probe will match and then bind to the
gene of interest.

Due to the large number of databases and associated IDs, the
conversion of gene identifiers is one of the initial and central steps in
many workflows related to genomic data analysis. In the literature
and the web, we can find several freely available ID conversion
tools. Although each tool has distinct features and strengths, as
reviewed by Khatri et al. (12), they all adopt a common core
strategy to systematically map a large number of interesting genes
in a list to the associated biological annotation.

The mapping from a thesaurus to another rises the many to one
issue which in our case many probes from the gene expression
dataset are assigned to the same KEGG gene ID. We check the
multiple probes for the gene and place a logic OR for the assess-
ment of the gene’s value. This is actually the selection of the value
of the probe with the highest intensity out of all the probes that
map to the same gene.

Then we need to identify the subpaths that exhibit high-
matching scores for one of phenotypic class and low-matching

Fig. 8 Functional-path decomposition: Left: A target part of an artificial GRN; Right: The ten decomposed
functional sub-paths
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scores for the others. Each GRN subpath is interpreted according
to Kauffman’s principles and semantics (13):

1. The network is a directed graphwith genes (inputs and outputs)
being the graph nodes and the edges between them represent-
ing the causal links between them, i.e., the regulatory reactions.

2. Each node can be in one of the two states, “ON,” the gene is
expressed or up-regulated (i.e., the respective substance being
present) or, “OFF,” the gene is not-Expressed or down-
regulated.

3. Time is viewed as proceeding in discrete steps—at each step the
new state of a node is a Boolean function of the prior states of
the nodes with arrows pointing towards it.

In order to cope with and reveal functional regulatory mechan-
isms we impose the following requirement over the formed sub-
paths: for a subpath to be considered as functional it should be
“active” during the GRN regulation process—in other words we
assume that all genes in a subpath are functional. For example,
consider the reaction A ! B, if A is “ON” then the activation/
expression (“!”) regulatory reaction is active, resulting into the
activation/expression of gene B (“ON”)—the same holds for an
inhibition (—|) reaction. In the case that gene A is “OFF” then the
reaction is considered as inactive with the state of the regulated
gene B to remain undetermined. Under this assumption, a path-
module is just a subpath (atomic or more complex) for which all its
reactions are considered as active. So, the state of all genes engaged
in a path-module that forms an ordered regulation pattern, e.g., the
pattern of the complex regulatory mechanism A ! D —| C is
<“ON,” “ON,” “OFF”>.

The samples of abinary transformed (discretized)gene-expression
matrix are matched against functional path-modules of target
GRNs. We follow an information-theoretic gene-expression discreti-
zation process.

2.3 Data Analysis As an example, assume the gene-expression binary profiles of six
artificial samples for genes A, B, D and C—with “1” to denote
“ON” and “0” to denote “OFF”—three of them are assigned to
phenotype-1 (S1, S2, and S3) and the other three to phenotype-2
(S4, S5, and S6)—refer to Fig. 9.

Furthermore, assume the artificial GRN shown in the left part
of Fig. 9, and its subpath A ! B ! D —| C (in bold). We follow a
logic-gates process that aims to match the path-module instance of
the subpath with the respective samples’ binary instances. The
process results into the formation of an ordered pattern that indi-
cate the samples for which the target sub-path is consistent with
(“1”s) or not (“0”s), i.e., the respective path-module
A¼“ON” ! B¼“ON” ! D¼“ON” —| C¼“OFF” is active.
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Note that for the finally inferred pattern of Fig. 9,
<1,0,1,0,0,0>, value “1” occurs in positions one and three,
which means that the examined path-module is active for samples
one and three; in all other samples it is inactive (“0”). As samples
one and three belong to phenotype-1, the target path-module
matches 2 out of 3 phenotype-1 samples, and zero phenotype-2
samples. In general, assume that there are S1 and S2 samples
that belong to phenotype-1 and phenotype-2, respectively, and
that path-module Pi matches Si;1 and Si;2 samples form
phenotype-1 and phenotype-2, respectively. Formula 1, computes
the differential power of a path-module with respect to the two
phenotypic classes;

Formula 1

Si ;1=S1 � Si ;2=S2

The formula posses a polarity characteristic according the class
phenotype: positive for class S1 and negative for class S2; e.g., for
the above example, the differential power of path-module
A¼“ON” ! B¼“ON” ! D¼“ON” —| C¼“OFF” is (2/3)
– 0 ¼ 0.67, and as it positive it is interpreted and considered as a
regulation mechanism that governs phenotype-1.

After the decomposition of each of these pathways into its
functional components, each subpath has been matched against
the respective samples’ gene-expression profiles of the respective
microarray studies. The result is an array of sub-paths with binary

Fig. 9 Matching gene-expression sample profiles with GRN functional path-modules: a logic-gates approach
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values for every sample in the form of a discretized microarray.
Then using the machine learning library WEKA (14) we can extract
the most discriminant subpaths using ranking algorithms. A feasi-
bility study of the methodology approach is presented in the fol-
lowing section.

2.4 Experiments Most of breast cancer (BRCA) cases are estrogen responsive, imply-
ing the activation of a series of growth-promoting pathways, for
example, the estrogen receptor (ER) related ErbB signaling GRN.
In an effort to reveal the underlying regulatory mechanisms that
govern BRCA patients’ treatment responses we applied our meth-
odology on a public gene-expression study from the GEO, the
GSE73902 dataset targeting the ER phenotypic status of the
respective patients, i.e., ER+ (ER positive) vs. ER� (ER negative).

We targeted 14 pathways all of which are engaged within the
“Pathways in Cancer” integrated pathway of KEGG (hsa05200)
namely: ECM-receptor interaction (hsa04512), Cytocin-cytocin
receptor interaction (hsa04060), Adherens junction (hsa04520),
Wnt signaling (has04310), Focal adhesion (hsa04510), Jak-STAT
signaling (hsa04630), ErbB signaling (hsa04012), MAPK signaling
(hsa04010), mTOR signaling (hsa04150), VEGF signaling
(hsa04370), Apoptosis (hsa04210), p53 signaling (hsa04115),
Cell cycle (hsa04110), and TGF-β signaling (hsa04350).

The visualization of the results for the ErbB signaling
(hsa04012) can be found in Fig. 10 where with the help of the
Cytoscape3 graph library. The graph preserves the KEGG layout
topology. It is enriched with the expressed regulatory mechanisms
(relations) between genes that differentiate between the two
phenotypes and the color coding is as follows:

l Red indicates relations active at class 1 which in our example
is the ERpos.

l Blue indicates relations active at class 2 (ERneg).

l Magenta indicates overlapping relations in the two classes.

l Orange for subpaths that are always active.

The figure highlights only the “interesting” subpaths which in
our case are the most discriminant subpaths for the specific two
phenotypes.

Inspecting the reduced network, it is clear that there is a
pathway starting from NRG (1 and 2) and ends at inhibiting the
CDKN1B for ERpos phenotype; and a pathway starting from
TGFA or AREG or HBEFG that ends-up at inhibiting EIF4EBP1
for ERneg phenotype.

2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼gse7390
3 http://www.cytoscape.org/
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According to recent literature, the aforementioned results are
quite relevant to the estrogen-receptor status. Based on a search of
the related biomedical literature we focus our exploration on the
mechanisms underlying the resistance to pure estrogen antagonists
(e.g., fulvestrant). Recent studies show the significant role of both
ErbB3 and ErbB4 as alternative targets for the treatment of BRCA
patients. As Sutherland notes in ref. (15): “the initial growth inhib-
itory effects of fulvestrant appear compromised by cellular plasticity
that allows rapid compensatory growth stimulation via ErbB-3/4.
Further evaluation of pan-ErbB receptor inhibitors in endocrine-
resistant disease appears warranted.” In addition, Hutcheson et al.
in ref. (16) investigated whether induction of ErbB3 and/or ErbB4
may provide an alternative resistance mechanism to antihormonal
action. Their conclusion is that fulvestrant treatment is sensitive to
the actions of the ErbB3/4 ligand HRGb1 (NRG1) with enhanced
ErbB3/4-driven signaling activity, and significant increases in cell
proliferation.

3 Discussion and Conclusions

Current trend in GRNs and gene expression data is the subpathway
selection using regulatory mechanisms, which seems that it is at its
first steps and could possibly gain a momentum. Our assumption

Fig. 10 Results of GSE7390 over 14 cancer related pathways
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for that momentum amplifies with the similarities we can find
between the discriminant gene regulatory (sub)networks and
microarray gene selection methodologies.

Apart the proposed procedure, only four (4) other tools take
advantage of the underlying GRN gene regulation mechanisms,
naming GGEA (17), SPIA (18), TEAK (19), and PATHOME (20).
The main difference of the proposed methodology from these four
systems is the handling of the gene regulatory mechanisms. To our
knowledge all the other methodologies count with a +1 the activa-
tions and�1 the inhibitions. Each subpath gets a final score which is
also used as a ranking mechanism. Contrary, our approach strictly
checks and takes into account only subpaths that are functional
(according to the gene relations and the expression values). Our
approach is binary and leads to distinction between functional and
nonfunctional subpaths per sample instead of a representation of the
sub-path per class (the sum).

Our methodology relies on a novel approach for GRN proces-
sing that takes into account all possible functional interactions of
the network. The phenotype information is extracted from micro-
arrays and all the selected GRNs are evaluated for the identification
of the most informative GRNs at the specific phenotype. The
efficient ranking of subpaths provides the most differentiating and
prominent GRN functional subpaths for the respective target phe-
notypes. The formula posses a polarity characteristic according the
class phenotype, i.e., positive for class S1 and negative for class S2.
These subpaths present evidential molecular mechanisms that gov-
ern the disease itself, its type, its state or other targeted disease
phenotypes (e.g., positive or negative response to specific drug
treatment). The methodology was applied on a gene-expression
study with the target of identifying putative mechanisms that
underlie and govern the treatment response of breast cancer
patients according to their ER-status profiles. Results were quite
indicative and strongly supported by the relevant biomedical
literature.

It is known that integrating heterogeneous data sources is more
effective than working within the boundaries of a single scientific
technology/field. Bioinformatics and systems biology has proven
that taking advantage of the knowledge from each other can aid the
relevant scientific communities in their research endeavours or even
reveal and create new research domains. In most of the cases there
are levels of integration as well as levels of knowledge to be utilised.
Extracting out the most of the knowledge will always give us more
natural and meaningful, as well as more accurate results.

152 L. Koumakis et al.



Acknowledgment

This work was supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement
N� 270089 and by the European Union (European Social Fund—
ESF) and by the European Union (European Social Fund—ESF)
and Greek national funds through the Operational Program “Edu-
cation and Lifelong Learning” of the National Strategic Reference
Framework (NSRF)—Research Funding Program: Heracleitus II
Investing in knowledge society through the European Social Fund.

References

1. Brown PO, Botstein D (1999) Exploring the
new world of the genome with DNA microar-
rays. Nat Genet 21:33–37

2. Huang Y, Zhao Z, Xu H, Shyr Y, Zhang B
(2012) Advances in systems biology: computa-
tional algorithms and applications. BMC Syst
Biol 6(3)

3. Hung J-H, Yang T-H, Zhenjun H, Weng Z,
DeLisi C (2012) Gene set enrichment analysis:
performance evaluation and usage guidelines.
Brief Bioinform 13(3):281–291

4. Heckera M, Lambecka S, Toepferb S, van Som-
erenc E, Guthke R (2009) Gene regulatory
network inference: data integration in dynamic
models—a review. Biosystems 96(1):86–103

5. Ein-Dor L, Kela I, Getz G, Givol D, Domany E
(2005) Outcome signature genes in breast can-
cer: is there a unique set? Bioinformatics 21
(2):171–178

6. Iwamoto T, Pusztai L (2010) Predicting prog-
nosis of breast cancer with gene signatures: are
we lost in a sea of data? Genome Med 2(11):81

7. Shannon CEA (1948) Mathematical theory of
communication. Bell Sys Tech J 27
(3):379–423

8. Potamias G, Koumakis L, Moustakis V (2004)
Gene selection via discretized gene-expression
profiles and greedy feature-elimination. Meth
Appl Artif Intelligence 3025:256–266

9. Li L, Weinberg CR, Darden TA, Pedersen LG
(2001) Gene selection for sample classification
based on gene expression data: study of sensi-
tivity to choice of parameters of the GA/KNN
method. Bioinformatics 17(12):1131–1142

10. Kanehisa M, Araki M, Goto S, Hattori M, Hir-
akawa M, Itoh M, Yamanishi Y (2008) KEGG
for linking genomes to life and the environ-
ment. Nucleic Acids Res 36:480–484

11. Ott MA, Gert V (2006) Correcting ligands,
metabolites, and pathways. BMC Bioinformat-
ics 7(1):517

12. Khatri P, Draghici S (2005) Ontological analy-
sis of gene expression data: current tools, lim-
itations, and open problems. Bioinformatics
21:3587–3595

13. Kauffman SA (1993) The origins of order: self-
organization and selection in evolution.
Oxford University Press, New York

14. Hall M, Frank E, Holmes G, Pfahringer B,
Reutemann P, Ian H (2009) The WEKA data
mining software: an update. SIGKDDExplora-
tions 11(1)

15. Sutherland RL (2011) Endocrine resistance in
breast cancer: new roles for ErbB3 and ErbB4.
Breast Cancer Res 13(3):106

16. Hutcheson IR et al (2007) Heregulin beta1
drives gefitinib-resistant growth and invasion
in tamoxifen-resistant MCF-7 breast cancer
cells. Breast Cancer Res 9(4):50

17. Geistlinger L, Csaba G, K€uffner R, Mulde N,
Zimmer R (2011) From sets to graphs towards
a realistic enrichment analysis of transcriptomic
systems. Bioinformatics 27(13):366–373

18. Tarca AL, Draghici S, Khatri P, Hassan SS,
Mittal P, Kim JS, Kim CJ, Kusanovic JP,
Romero R (2009) A novel signaling pathway
impact analysis. Bioinformatics 25(1):75–82

19. Judeh T, Johnson C, Kumar A, Zhu D (2013)
TEAK: Topology Enrichment Analysis frame-
worK for detecting activated biological sub-
pathways. Nucleic Acids Res 41(1):1425–1437

20. Nam S, Chang HR, Kim KT et al (2014)
PATHOME: an algorithm for accurately
detecting differentially expressed subpathways.
Oncogene 33(41):4941–4951

Integrating Microarray Data and GRNs 153


	Integrating Microarray Data and GRNs
	1 Introduction
	2 Method
	2.1 Data Preprocessing
	2.2 Data Annotation
	2.3 Data Analysis
	2.4 Experiments

	3 Discussion and Conclusions
	References


