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Abstract

Rapid development and increasing popularity of gene expression microarrays have resulted in a number of
studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the
query-based search since gene co-expressions may indicate a shared role in a biological process. Although
there exist promising query-driven search methods adapting clustering, they fail to capture many genes that
function in the same biological pathway because microarray datasets are fraught with spurious samples or
samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other
hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both
the items and their features are useful while analyzing gene expression data, or any data in which items are
related in only a subset of their samples. This means that genes need not be related in all samples to be
clustered together. Because many genes only interact under specific circumstances, biclustering may recover
the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize
the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering
approach and evaluate its performance by a thorough experimental analysis.
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“What we call chaos is just patterns we haven’t recognized. What we
call random is just patterns we can’t decipher.”

— Chuck Palahniuk, Survivor

1 Introduction

The microarray technology enables large-scale genomic research by
allowing the measurement of the expression levels of thousands of
genes in parallel. Expression levels of genes in various samples are
collected and stored in a gene expression matrix. Mining these gene
expression matrices can provide insights into gene functions and
aids in the development and treatment of complex diseases. The
discovery of related genes is a challenging task and has been the
focus of many research studies [1–4] that search for more sophisti-
cated analysis methods. Most of the time, however, researchers
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focus on a specific gene or a gene set rather than exploring the
whole dataset. Query-based search algorithms [5–10] are proven to
be very useful when the objective is to rank the genes according to
how strongly they are correlated with the queried gene(s). For
example, several genes in S. cerevisiae database are categorized and
annotated by Hibbs et al. [6]. Similarly, top-ranked genes co-
regulated with breast cancer associated tumor suppressors,
BRCA1 and BRCA2, are found to be regulating the mitotic spindle
and cytokinesis by Bozdağ et al. [9]. In analyzing this torrent of
new data, unsupervised learning methods such as clustering are
important as the first step. In particular, a class of clustering algo-
rithms known as biclustering is useful for analyzing gene expression
data, or any data whose items are related in only a subset of their
samples. Biclustering methods cluster both the items and their
features simultaneously. In gene expression context, this means
that genes need not be related in all samples to be clustered
together. Because many genes only interact under specific circum-
stances, biclustering may recover relationships that traditional clus-
tering algorithms can miss.

In this chapter, first, we briefly survey the literature on biclus-
tering and proposed algorithms. Then we introduce a novel biclus-
tering algorithm, Correlated Patterns Biclustering (CPB), which
attempts to find genes that are related on a subset of their features
with a query gene. As mentioned above, identifying the genes co-
regulated with a gene of important function is crucial to understand
biochemical and genetic pathways in which the gene participates.
To quantify gene relationships, CPB uses the Pearson correlation
coefficient (PCC), an effective and widely used metric in this type of
analysis to quantify co-regulation between pairs of genes [2, 4].
CPB’s novel approach avoids costly pairwise correlation calcula-
tions in a manner that also increases its accuracy. It also allows
assigning genes to multiple biclusters, because many genes partici-
pate in multiple biological pathways. We further introduce a unique
method for combining results from multiple datasets, which is
important for uncovering uncommon genetic relationships. Initial
testing on artificial data shows that CPB outperforms other biclus-
tering methods in finding multiple types of biclusters. CPB’s per-
formance for querying the microarray data is similarly promising: it
was able to find many genes that have high correlation with
BRCA1, BRCA2, and p53. Of those genes, half are already
known to be involved in cancer processes, and the others are
promising new candidates for further investigation. The source
code of the framework, documentation, and sample datasets is
available at http://bmi.osu.edu/hpc/software/cpb/.

The methods in this chapter extend the framework proposed by
Bozdağ et al. [9] to increase the efficiency of the algorithms as well
as the consistency and relevancy of the results. The novelty of the
proposed algorithm can be summarized as follows:
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l A grid-based method is used for generating initial biclusters,
which covers the whole dataset.

l Results are investigated and the statistically insignificant biclus-
ters are filtered out with a non-parametric scheme.

l The biclustering method is tested on various models, noise
levels, and overlap ratios; compared with other techniques.

l Correlation scores of the genes are computed and combined
more efficiently.

The key advantages of the proposed query-based search frame-
work are:

l It finds co-regulated genes with a given reference gene on a
number of diverse microarray datasets having the same genes.
This is the case for data obtained from a single microarray.

l PCC-based biclustering technique is able to discover constant-
row, shift, scale, and shift-scale models with positive and nega-
tive correlations.

l CPB is extremely efficient compared to other PCC-based meth-
ods because of a novel correlation calculation.

l Filtering step increases the relevance of the results while elim-
inating insignificant and overlapping biclusters.

The rest of the chapter is organized as follows: In Section 2,
biclustering algorithms from the literature are briefly surveyed.
Section 3 describes the CPB algorithm. The results of the proposed
algorithm and framework’s experimental evaluation are given in
Section 4. Section 5 concludes the chapter.

2 Biclustering of the Microarray Data

Biclustering refers to a class of methods that perform simultaneous
clustering of both rows and columns of a data matrix. It was first
introduced to gene expression data analysis by Cheng and Church
[11]. This initial algorithm was followed by numerous biclustering
algorithms to identify additive, multiplicative [12, 13], or more
complex relationships [14–22] between the rows and columns of a
data matrix that correspond to genes and samples, respectively.

A straightforward two-phase approach to identify the biclusters
is applying standard clustering algorithms to the genes and samples
separately in the first step, and combine the results in the second
one [23]. However, the research on biclustering is focused to a
more integrated approach in which the genes and samples are
analyzed simultaneously. Several randomized or deterministic algo-
rithms based on both novel and existing techniques from various
domains, such as independent component analysis, singular value
decomposition, simulated annealing, and local search, have been
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proposed, i.e., [24–33], and evaluated on the gene expression data
for many diseases including the complex ones such as cancer. Some
algorithms in this set use greedy techniques, i.e., [11, 34], and
some employ evolutionary techniques [35–40]. In addition,
graphs, modeling pairwise gene–gene interactions, have also been
employed to design novel biclustering methods. For example, a
local, correlated structure in the graph obtained by the gene expres-
sion data is shown to be promising to be used as a bicluster [41].

In the literature, bicluster models that a biclustering algorithm
seeks for can be divided into two categories. Global biclusters are
defined by comparing a metric within the bicluster to the outside of
the bicluster. Up-regulated biclusters with higher expression values
compared to background, and down-regulated biclusters with
lower expression values than the background are examples of global
biclusters. Many algorithms have been proposed to capture the
global biclusters such as SAMBA [42], ISA [43], Spectral [44],
BiMax [45], QUBIC [46], COALESCE [47], BBK [48]. On the
other hand, local biclusters can be defined by the relationships
within the bicluster columns and rows such as constant, additive,
and multiplicative biclusters. Additive models are useful for captur-
ing shifting patterns (see Fig. 1b), whereas multiplicative models are
useful for capturing scaling patterns (see Fig. 1c) in the data. How-
ever, neither can simultaneously identify the shifting and scaling
patterns. In this chapter, we will seek biclusters fitting the shift-scale
model (see Fig. 1d) which covers both additive and multiplicative
patterns as special cases.

How to evaluate the quality of the biclusters is also an impor-
tant problem: for example, the classical mean squared resi-
due (MSR) has been shown to be successful at finding constant,
and additive biclusters, while it is not suitable for multiplicative
biclusters. In addition, it is claimed to be biased toward flat biclus-
ters with low row variance, and hence, different scoring schemas
have been proposed Bryan and Cunningham [49]. Cheng and
Cherch propose a deterministic greedy algorithm that seeks to
find the biclusters with low variance, as defined by the MSR [11].

a b c d

Fig. 1 Sample biclusters with various models: (a) constant-row, (b) shift, (c) scale, and (d) shift-scale. In
pattern expressions, aij represents expression level of gene i in sample j, πj a base value, αi scaling, and βi
shifting patterns. The parameters are selected as αi ¼ ½1, 2, 3, � 1�T , βi ¼ ½2, 3, 4, 1�T , π j ¼ ½�1, 2, 1, 4�.
Shift-scale is the most general model, as it has shift and scale models as special cases and can represent both
positive and negative correlation
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Similarly, the xMOTIFs algorithm has been proposed to capture
conserved gene expression motifs that are the biclusters with con-
served rows in discretized dataset [50]. A more complex relation-
ship among the genes has been later studied in order-preserving
submatrix problem (OPSM) [1, 51]. The authors propose a deter-
ministic greedy algorithm that seeks biclusters for which the col-
umns can be sorted in increasing order for all rows in the bicluster.
Although additive and multiplicative biclusters can be captured by
OPSM algorithm, it fails to capture constant biclusters. Surveys on
biclustering of gene expression data, the proposed algorithms, and
their evaluation via bicluster validation from a biological point of
view can be found in [3, 45, 52–56].

2.1 PCC-Based

Biclustering

PCC is a measure that evaluates positive and negative linear rela-
tionships between vectors. It is commonly used in clustering gene
expression data [2, 4] due to its power in capturing both shifting
and scaling patterns. For a PCC-based biclustering on gene expres-
sion dataset, the correlation of two genes is calculated on some
specified columns since those genes may or may not be correlated
on every experiment. Therefore, our PCC-based similarity measure
between rows r and s on selected columns Y is calculated with:

pccðr, s,Y Þ ¼

X
i∈Y

ðri � r Þðs i � s Þ
�����

�����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈Y

ðri � r Þ2
X
i∈Y

ðs i � s Þ2
r , ð1Þ

where the equation runs on select columns, and the absolute value
of the expression gives a result in [0, 1] interval.

PCC-based biclusteringwas recently proposed in [9, 57]. In [57],
the authors present the bi-correlation clustering algorithm (BCCA),
which tries to find biclusters using Pearson correlation. They also
discuss the complexity of computing pairwise PCCs, and the ineffi-
ciency of the method. Bozdağ et al. [9] discuss potential complexity
issues of an exhaustive search using PCC, and propose that, instead of
computing all pairwise PCC values, a center-like vector (tendency
vector) is sufficient and more efficient at finding correlated rows.

3 Correlated Pattern Biclusters

Given a query gene and a set of microarray datasets, we compute a
ranked list of co-regulated genes in three steps. Here we give the
details of these steps: In the first step, the CPB algorithm recovers
a set of biclusters (Section 3.1). In the next step, we filter out
statistically insignificant biclusters (Section 3.2). Finally, the corre-
lation scores gathered from different datasets (Section 3.3). The
overview of the framework is given in Fig. 2.
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3.1 The CPB

Algorithm

LetR and C denote the set of rows and columns of a data matrix A,
respectively. Each element arc ∈ A represents the relation between
row r and column c. A bicluster B ¼ (X, Y ) is a subset of rows
X ¼ { x1, . . ., xn} and a subset of columns Y ¼ { y1, . . ., ym}, where
n � N, and m � M.

Definition 1 (Correlated Pattern Biclusters Algorithm). Given a data
matrix A, reference row rr, PCC threshold ρ, and minimum number of
columns γ, CPB finds a bicluster B ¼ (X, Y) such that rr ∈ X, m � γ,
8xi ,xj∈X pccðxi, xj ,Y Þ � ρ.

CPB starts with an initial bicluster B ¼ (X, Y ) and improves it
by iteratively moving rows and columns in and out of the bicluster
using a search technique similar to local search methods. Algo-
rithm 1 outlines the proposed biclustering algorithm. Important
steps, i.e., generation of the initial biclusters, computing tendency
vector T and normalization parameters, updating rows and columns
are described in detail in the following subsections.

Algorithm 1 Correlated Pattern Biclusters

1: function CPB(A, B, rr, w, γ, ρ )
2: B = (X, Y ) is an initial bicluster s.t. rr ∈X
3: ρc ← 2/3ρ ; ρΔ = 1/12ρ ; γc = m; γΔ = m−γ

4
4: repeat
5: step ← 0
6: repeat
7: step ← step + 1; Bsave ← B
8: Compute T, αi, βi

9: if step mod 2 = 1 then
10: Update X such that
11: ∀xi ∈ X, pcc(xi, T, Y )>ρc

12: else
13: Find row r with smallest pcc(r, T, Y )>ρc

14: Update Y such that
15: ∀yk ∈Y, ERROR(yk)>ERROR(r)
16: end if
17: until step > 20 or B = Bsave

18: ρc ← ρc + ρΔ; γc ← γc − γΔ

19: until ρc > ρ
20: return B = (X, Y )
21: end function

Fig. 2 Overview of the proposed framework
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3.1.1 Generating Initial

Biclusters

Selecting the rows and columns of the initial bicluster is important
since the algorithm converges to a more stable one by adding and
removing rows and columns to this bicluster. In [9], initial biclus-
ters were chosen randomly, and the algorithm runs efficiently when
discovering small number of biclusters embedded in synthetic data-
sets. However, we observe that when there are multiple biclusters
this approach does not provide a consistent mechanism to return
multiple biclusters with good coverage of the whole dataset.

In CPB, we generate initial biclusters with a grid-based
approach. We first shuffle the row and column numbers of the
dataset, and then partition the dataset into a coarse-grain grid of
10 � 2 initial biclusters. The query gene rr is inserted into each
bicluster, if necessary. At the end, all genes and conditions in the
dataset are assigned to at least one initial bicluster. Repeating the
process gives us enough initial biclusters to find co-regulated genes
and corresponding conditions. In addition, different runs obtain
more than 75 % of the top-ranked co-regulated genes with the
grid-based initialization, even though the generation of the initial
biclusters is randomized.

3.1.2 Computing

Normalization Parameters

and Tendency Vector

In order to avoid making pairwise comparisons of all rows, we
compute a tendency vector that represents an average of the rows
of the bicluster. We compute a normalized data value

ãxiyk ¼
axiyk � αxi

βxi

for each xi ∈ X and yk ∈ Y, where αxi and βxi are shifting and
scaling parameters associated with row xi, respectively. Then, each
element tk of tendency vector T is computed as the arithmetic mean
of ãxiyk on all rows xi ∈ X.

To ensure that the reference row rr has a larger impact on
decision mechanisms of the algorithm, we assign a larger weight,
ω, to the reference row when computing the vector T. Total con-
tribution from rows except rr is multiplied by (1�ω) and contribu-
tion from rr is multiplied by ω, where ω is an input parameter. Large
values for ω allow discovering patterns that resemble rr more
closely, whereas small values reduce sensitivity, hence offer a higher
tolerance to noise. Therefore, if a reference row and ω specified, the
elements are calculated with

tk ¼
ω� ãxiyrr þ ð1� ωÞ �

X
k∈X�frrg

ãxiyk

jX j : ð2Þ

We compute T,αxi and βxi using an iterative process. Initially we
set αxi ¼ 0 and βxi ¼ 1, and compute T. Then, we apply least
squares fitting on pairs fðt1, axiy1Þ, . . . , ðtm, axiymÞg to obtain the
best shifting and scaling parameters that maximize alignment of
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each row xi with the tendency vector T. We assign intercept and
slope obtained in least squares fitting toαxi and βxi , respectively. T is
updated using these parameters, and the process iterates until
convergence.

3.1.3 Updating the Rows

of a Bicluster

For a row r to be included in X, we require pcc(r, xi, Y ) > ρ for all
xi ∈ X. To avoid testing this condition against all xi ∈ X, we
utilize the tendency vector T, and only test whether pcc(r, T, Y) is
greater than another threshold ρ0 instead. ρ0 is selected such that
pcc(r, T, Y) > ρ0 must ensure pcc(r, xi, Y ) > ρ for all xi ∈ X.
However, PCC lacks transitivity property [58] and has a complex
formula that strongly depends on the values and the length of the
vectors. Although it is analytically difficult to compute a lower
bound for ρ0, it was empirically shown that there exists a lower
bound proportional to ρ [9].

In Algorithm 1, we start with a relaxed threshold and slowly
tighten it at Line 18. While tightening ρ0, we relax the constraint on
minimum number of columns. This allows sweeping the search
space between two extreme combinations of these parameters.
The algorithm uses five tightening steps and initial values of

ρ
0
c ¼ 2=3ρ

0
and γc ¼ jY j (Line 3).

3.1.4 Updating the

Columns of a Bicluster

Using PCC to measure the coherence between the columns is too
restrictive. For example, although the rows in Fig. 1d are perfectly
correlated, Pearson correlation between columns is less than 1.
Therefore, we use root mean square error to assess the coherence
of the columns. It is computed as:

ERRORðykÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðãxiyk � tkÞ2
s

, ð3Þ

where yk ∈ Y and n ¼ jY j. For a column c =2Y, we compute
ERROR(c) in a similar way, by using a value tc analogous to tk
that quantifies tendency of rows xi ∈ X in column c.

In CPB, only the columns having ERROR below a threshold ε
are included in the bicluster. In order to have comparable ERROR
threshold for the column selection with respect to row addition, we
select ε in relation to ρ0. To establish this relation, first we note that
ERROR can also be computed for rows, and it is a comparable
metric for rows and columns. For a row xi ∈ X, ERROR(xi)

is computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k¼1

ðãxiyk � tkÞ2
s

. Then, it is observed that

ERROR(r) generally implies a high pcc(r, T, Y) [9]. Therefore,
by setting ε to the ERROR of row r that has the smallest
pcc(r, T, Y) above threshold ρ0c (Line 13), we prevent the algorithm
from returning imbalanced biclusters (i.e., very small or very high
number of columns).
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3.2 Filtering

Biclusters Found by

Random Chance

Any dataset contains small biclusters with a high Pearson correla-
tion value by random chance. Although we specify a lower bound
for PCC ρ0 and minimum number of columns γ, especially when γ is
small, in addition to larger biclusters, CPB recovers such
small biclusters. To eliminate randomly found biclusters in a
non-parametric fashion, we developed following method. Suppose
 ¼ fB1,B2, . . . ,Bzg be the set of biclusters found by different
runs of CPB on a data matrix A. We first generate A0 by shuffling
the elements ofA. Then, we find the bicluster Bmaxwith the highest
number of rows in A0, and use its dimension n0 as a threshold to
filter biclusters in . Algorithm 2 summarizes the filtering process.
Note that the parameter n0 is unique for each dataset, but this
method empirically finds a lower bound for n0. The more biclusters
generated from the shuffled dataset, the better the estimate of n0.

Algorithm 2 Filter Random Biclusters.

1: function FilterRandomBiclusters(A, B, γ, ρ )
2: A ← Shuffle(A); B ← {}
3: for each row ri in A do
4: B ← B ∪ CPB(A , ri, 0.5, γ, ρ )
5: end for
6: n ← argmaxBi∈B′ ni

7: for each bicluster Bi in B do
8: (ni, mi) ← size[Bi]
9: if ni ≤ n then
10: B ← B \ {Bi}
11: end if
12: end for
13: return B

14: end function

In addition to filtering out the statistically insignificant biclus-
ters, we also remove those that have substantial overlaps. For any
bicluster pair that has an overlap of 75 % or more, we remove the
smaller bicluster.

3.3 Combining

Correlation

Information

CPB often produces different resulting biclusters due to the ran-
dom selection of initial biclusters. Information from these biclus-
ters, each including the reference row rr, is merged to score each
row’s relationship with rr.

In [9], bicluster uniqueness (BU) measure was proposed to
calculate the correlation score of the genes. Although BU is able
to capture the information redundancy caused by overlapping
biclusters, we present a similar but more efficient scoring function
to be used instead.

Let  ¼ fB1,B2, . . . ,Bzg be the set of biclusters found by
different runs of CPB on a data matrix A, and with reference row
rr. Suppose IR(r) and IC(c) denote the maximal subset of  that
contain the given row and column, respectively.

Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering 63



Definition 2 (Correlation Score (CS)). A score is assigned to a row r
based on the number of experiments in which r is co-regulated with rr by:

CSðrÞ ¼
X
c∈C

j IRðrÞ \ ICðcÞ j : ð4Þ

To increase significance and consistency of our findings, we
apply our method on different datasets separately and combine
correlation scores. To achieve this in a meaningful way, we require
datasets to have the same row labels. In gene expression data
analysis, this requirement can be met by merging results only
from datasets obtained using the same microarray chip.

Definition 3 (Gene Correlation Score (GCS)). Let
 ¼ fA1,A2, . . . ,Apg be the set of (microarray) datasets with the same
row labels (genes). Given a reference row rr and datasets , gene
correlation score G C S of a row r is calculated with

GCSðr, rrÞ ¼
X
Av∈

CSðrÞ
CSðrrÞ : ð5Þ

4 Experimental Results

We test CPB on the probes of three tumor suppressor genes (i.e.,
BRCA1, BRCA2, and p53) as queries to reveal co-regulated genes
involved in the complex process of tumor formation. Experiments
on 40 large datasets, each with 22,283 probe sets, show that the
results are remarkably enriched for genes that have a role in cancer
progression, tumor growth and metastasis regulation, and DNA
degradation and repair. We also compare our results with another
query-based framework to see how successfully each method finds
known and unexplored genes co-regulated with tumor suppressors.
While the ratios of known cancer-related genes are similar, the
proposed framework finds more unexplored genes that are likely
to be missed by earlier clustering-based methods. CPB’s perfor-
mance for querying the microarray data is promising: it was able to
capture many genes that are highly correlated with BRCA1,
BRCA2, and p53. We observed that of those genes, half are already
known to be involved in cancer processes, and the others are
promising new candidates for further investigation.

We first define some evaluation metrics and test CPB on syn-
thetic datasets generated with biclusters with (1) different models,
(2) increasing noise levels, and (3) increasing overlaps between
embedded biclusters. We selected four other biclustering
algorithms; δ-biclusters [11], OPSM [1], BBC [17], and
BCCA [57], for comparison, due to their success at capturing
shift-scale biclusters.

We test CPB on a number of human microarray datasets using
four probes of breast cancer associated BRCA1 and BRCA2 genes,

64 Mehmet Deveci et al.



and two probes of p53 tumor suppressor gene as queries. The
correlation scores of the genes are combined, and the top-ranked
genes are further studied. We also compare our results with MEM
framework [8] in terms of the algorithms’ effectiveness of retrieving
undiscovered cancer-related genes.

4.1 Experiments on

Synthetic Datasets

We first define recovery and relevance metrics to evaluate the results
of biclustering algorithms. For each experiment, a synthetic dataset
is generated with 1000 rows and 200 samples. Then two 60 � 60
biclusters with the given model are embedded into the dataset. The
average score of 100 replication of the same experiment is reported.

4.1.1 Evaluation Metrics Similar to recall and precision metrics, recovery and relevance
scores are proposed to evaluate the biclustering results. These
measures can be defined to compare a single found bicluster against
an expected one, as well as a set of found biclusters against a set of
expected ones.

Let e and f be expected and found biclusters, respectively. The
recovery score of a found bicluster against an expected one is
calculated by dividing the intersection area by the area of the
expected bicluster:

recðe, f Þ ¼ j e \ f j
j e j , ð6Þ

where the recovery score reaches to 1 if and only if e � f .
Similarly, relevance score is calculated by dividing the intersec-

tion area by the area of the found bicluster:

relðe, f Þ ¼ j e \ f j
j f j , ð7Þ

where the relevance score reaches to 1 if and only if f � e. Examples
of how these scores are computed are given in Fig. 3.

Using these rec and rel measures, we define recovery and rele-
vance scores to compare two sets. Let E and F be a set of expected

Fig. 3 Example expected/found biclusters with their recovery and relevance scores
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and found biclusters, respectively. The set-based recovery score is
calculated by taking the mean of the maximum recovery score for
each expected bicluster. An equivalent approach is used for
relevance.

RECðE, F Þ ¼ 1

j E j
X
e∈E

max
f ∈F

recðe, f Þ ð8Þ

RELðE,F Þ ¼ 1

j F j
X
f∈F

max
e∈E

relðe, f Þ ð9Þ

4.1.2 Effects of the

Bicluster Model

Biclustering methods often focus on detecting specific types of
biclusters, as mentioned in Background section. In this experiment,
we compare the success rate of CPB with other algorithms on
detecting biclusters generated with various models. Constant-row,
shift, scale, and shift-scale models were chosen for this experiment.
Examples of these models are given in Fig. 1.

The resulting recovery and relevance scores (see Fig. 4a–d)
show that CPB is the only algorithm that can fully recover biclusters
generated with all four models with a high relevance score. BBC
was able to find shifted and constant-row biclusters with a slightly
lower relevance score. BCCA was expected to display similar results
to CPB since they both use Pearson correlation; however, it was
only able to fully recover shift biclusters. OPSM could not identify
shift, scale, or shift-scale biclusters although they are all valid order-
preserving submatrices. Our experiments show that when a base
row is scaled with a value between �1 and 1, the expression rank-
ings of the columns of a bicluster row lie in a narrow range along
the row; therefore, OPSM fails to discover it. Despite this limita-
tion, OPSM was able to identify one of the shifted biclusters, since
it reports a single bicluster for each size of column. The δ-biclusters
algorithm performed poorly on all the datasets, among which it can
partially recover only constant-row biclusters. The other models are
not captured by the metric, which was previously discussed in [53].

For the noise and overlap experiments, CPB and other meth-
ods were compared on shift biclusters since the shift model is
successfully recovered by most of the algorithms (see Fig. 4b).

4.1.3 Effects of the Noise Microarrays results are perturbed by many sources of noise. In
order to measure the sensitivity of CPB to noise, an error value ε
was added to each element of the synthetic datasets. The experi-
ments were run with various noise levels: each error value was
drawn from a normal distribution with zero mean and variance
equal to the chosen noise level.

Figure 4e shows the recovery and relevance scores of the algo-
rithms on datasets with varying noise levels. OPSM is dramatically
affected by noise since it may violate the order-preserving structure.
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Fig. 4 Experiments on synthetic datasets: (a–d) with different bicluster models, (e) under noise, and (g) with
overlapping biclusters
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Since BCCA checks for pairwise correlation score for each row, this
method is more likely to be affected by the increasing noise.
Although BBC seems to be insensitive to noise in recovery plot,
its relevance score drops slightly with noise addition (see Fig. 4e).
CPB is the second best algorithm that is resistant to noise even
though it has a linear metric. Moreover, the noise resistance of CPB
can be improved by adjusting a better PCC threshold. We fixed
ρ ¼ 0. 9 in order to be consistent with the rest of the experiments.

We also experimented with relative noise, in which the noise is
added to each element with respect to its expression value, i.e.,
element x becomes x + x ε. We observed results similar to the
previous experiment.

4.1.4 Effects

of the Overlap

A gene may take roles in several functions in a cell, each of which
may be occurring simultaneously in a given sample; therefore, there
might be overlaps between biclusters. In this experiment we test
how CPB and other algorithms perform with increasing overlaps of
biclusters. The datasets are generated with two overlapping biclus-
ters. The overlapping regions of these biclusters are increased by 10
rows and 10 columns at each step. The expression values in the
these regions are not assumed to be additive; instead, shift values
for rows and base vector are chosen in a way to allow both of the
biclusters to have the same expression value at overlapping regions.

Figure 4f shows the results of the overlap test. We observe that
CPB and BCCA are both insensitive to increasing overlap, while
BCCA fails to recover a very small portion of the biclusters. BBC is
affected more than BCCA in terms of recovery; also, its relevance
score drops with increasing overlap. Although OPSM recovers only
one of the biclusters, it increases its recovery score by including
more of the overlapping region with increasing overlap.

4.2 Identifying Genes

Co-regulated with

BRCA1, BRCA2, p53

In this experiment, we employ CPB to identify the most correlated
genes with BRCA1, BRCA2, and p53, which are highly penetrant
cancer specific tumor suppressors. CPB was run on 40 different
datasets obtained from the GPL96 series (GDS{1064, 1284, 1615,
2113, 2362, 2649, 2954, 3116, 3312, 3716, 1067, 1329, 1815,
2190, 2373, 2736, 3057, 3128, 3471, 534, 1209, 1375, 1956,
2255, 2519, 2767, 3096, 3233, 3514, 596, 1220, 1479, 1975,
2297, 2643, 2771, 3097, 3257, 3517, 987}), all of which have the
same set of probes. The results of each dataset are then combined
with Gene Correlation Score function.

Table 1 gives the top-ranked genes for the probes of BRCA1,
BRCA2, and p53. We observe that more than 50 % of the
genes found by our framework are already investigated in cancer
research, suggesting that CPB is indeed finding genes involved
with cancer.
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Among those, for example, MBD2 is shown to have a role in
cancer progression and can be therapeutically targeted in aggressive
breast cancers [59]. KLK10 provides important prognostic infor-
mation in early breast cancer patients [60]. CHRNA4 polymorph-
isms are found to activate factors that participate in DNA

Table 1
Associated top-ranked genes for 6 probes of BRCA1, BRCA2, and p53

BRCA1 BRCA2 p53

204531_s_at 211851_x_at 208368_s_at 214727_at 201746_at 211300_s_at

1 C1orf105 H49077 CHRNA4 C1orf105 C1orf105 C1orf105

2 GPR98 C1orf105 C1orf105 ACRV1 H49077 PCNXL2

3 H49077 ARID4B MTMR8 GFRA4 GFRA4 GFRA4

4 CHRNA4 MTMR8 ACRV1 MTMR8 ARID4B U88898

5 SLC17A1 MBD2 GFRA4 AGTR2 MTMR8 H49077

6 GPX5 AK022006 H49077 PRO2958 AK022006 CHRNA4

7 PCNXL2 SLC17A1 PCNXL2 H49077 UBQLN3 ACRV1

8 MTMR8 CSRP3 PRO2958 ACRV1 ACRV1 MTMR8

9 ARID4B PRO2958 U88898 U88898 GNRHR PPP3CC

10 GFRA4 GFRA4 SLC17A1 SLC17A1 CHRNA4 NKX3-1

11 MBD2 NOS1 NKX3-1 GNRHR GPR98 GNRHR

12 IL17A PPP3CC ACRV1 PPP3CC RNF185 ACRV1

13 AK022006 CHRNB3 PPP3CC MBD2 SLC17A1 MBD2

14 NOS1 MAPK11 AGTR2 SPINLW1 KLK10 GNPTAB

15 ALPI ACRV1 FAM55D GNPTAB U05589 CHRNB3

16 KLK10 GNPTAB SNX1 AK000787 GPX5 ACRV1

17 PRO2958 IL17A TREX2 AK023690 OR7C2 AK000787

18 CSRP3 NEK1 GPR98 OR5I1 P2RY4 GPR98

19 PPP1R3A U05589 LEP BTNL8 PPP3CC SPINLW1

20 ACRV1 IFNA5 M78162 EPAG PCNXL2 AL162044

21 GNPTAB GPX5 CSRP3 C22orf33 AK023690 ARID4B

22 AL117549 GNA11 KRT38 RPS6KA6 TREX2 ACRV1

23 NEK1 KLK10 TBR1 GPR98 PRO2958 AW139195

24 AK023690 GJB3 EPAG MYL1 RBMY2FP GPX5

25 MYL1 SLC7A11 MBD2 PCNXL2 IL17A AK022006

Genes that have cancer-related studies found in PubMed are highlighted
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degradation and repair, specifically the level of p53 participating in
DNA repair [61].

Some genes, highly correlated with p53 in the list, are also
investigated in other cancer types. For instance, 4 messenger
RNA biomarkers, including ACRV1, may differentiate pancreatic
cancer patients from noncancer subjects [62]. GFRA4 is predomi-
nantly expressed in normal and malignant thyroid medullary
cells [63]. Of those, which are also correlated with BRCA1 and
BRCA2 genes, can be further studied to see if they are up- or down-
regulated in cancer patients.

The genes that have not already appeared in the literature may
play an as-yet unknown role in cancer-related processes. These
genes are open for further research.

4.3 Comparison with

Other Query-Based

Frameworks

There are a limited number of studies on query-based discovery of
co-regulated genes in the literature. Gene recommender [5] ana-
lyzed Rb protein complex to find new co-regulated genes in worms
(specifically C. elegans) using a technique similar to biclustering.
SPELL [6], a PCC-based clustering framework was tested on S.
cerevisiae datasets, where several genes were categorized and anno-
tated. A probabilistic biclustering framework, QDB [7], was tested
on some synthetic and yeast microarray datasets. Adler et al. [8]
propose a query engine (MEM) to search for correlated genes
across many datasets. Zhao et al. proposed ProBic [10], a probabi-
listic biclustering algorithm, and tested on E. coli to detect high
quality biclusters in the presence of noise.

Among those query-driven search methods, we could compare
our framework on cancer-related genes with only MEM [8],
because the other studies are either specialized in non-human
organisms, or resource is not accessible. Using MEM framework,
we retrieved the genes correlated with the selected probes of
BRCA1, BRCA2, and p53 genes with Pearson correlation. Top-
ranked genes are then investigated to find whether the gene is
claimed to be cancer-related in a research study in medical
literature.

In Table 2 we compare our results with MEM’s based on how
successful each method is on finding known and unexplored genes.
Since all samples (columns) of a microarray dataset were included in
similarity calculations before biclustering, the top-ranked genes
discovered by MEM are expected to be investigated before. While
the ratios of known cancer-related genes are similar, we argue that
our framework finds more unexplored genes that are likely to be
missed by earlier clustering-based methods.

Although PCC is the default similarity measure, we also run
MEM with absolute Pearson correlation, which is expected to
capture negative correlations as in our pcc function (see Eq. (1)).
However, the results on six probes between two runs of MEM
framework are 87 % overlapping. Absolute PCC could only
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introduce 20 new genes, where 60 % of them are already found to
be cancer-related. We conclude that altering the similarity measure
(in this case, taking the absolute value to capture negative correla-
tions) is not as effective for finding undiscovered correlated genes as
applying biclustering.

5 Conclusion

In this chapter, we briefly survey the biclustering algorithms in the
literature and introduce a method for querying co-regulated genes
using a novel biclustering method, the CPB. Initial testing on
artificial data confirms that CPB is capable of finding such biclusters
and that it outperforms other biclustering methods in finding
multiple types of biclusters. CPB’s performance for querying the
microarray data is promising: it finds many genes that have high
correlations with BRCA1, BRCA2, and p53. Of those genes, half
are already known to be involved in cancer processes, and the others
are promising new candidates for further investigation.

There are many possible extensions to CPB that may yet be
explored. For instance, PCC is only one of the well-known metrics
for evaluating similarity. CPB approach may be extended to use
other metrics and benefit from their unique properties. CPB’s
iterative optimization process may likewise be improved by

Table 2
Ratio of known and unexplored genes found within top-25 results of MEM (with Pearson and absolute
Pearson correlation) and our framework

BRCA1 BRCA2 p53

204531
_s_at (%)

211851
_x_at (%)

208368
_s_at (%)

214727
_at (%)

201746
_at (%)

211300
_s_at (%)

Average
(%)

MEM Known 56 64 64 64 68 68 64.0
Pearson New 32 16 28 32 24 24 26.0

Duplicate 12 20 8 4 8 8 10.0

MEM Known 64 64 72 68 76 72 69.3
jPearsonj New 32 16 24 32 20 20 24.0

Duplicate 4 20 4 0 4 8 6.6

CPB Known 60 64 52 32 48 48 50.6
New 40 36 44 64 52 40 46.0
Duplicate 0 0 4 4 0 12 3.3

Only the unique gene names are considered. Probes of the same gene after the first one are counted as redundant
(duplicate) information
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choosing initial biclusters differently or using a mathematical opti-
mization method to avoid the local maximas.
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41. Erten C, Sözdinler M (2009) Biclustering
expression data based on expanding localized
substructures. In: Rajasekaran S (ed) Bioinfor-
matics and computational biology. Lecture
Notes in Computer Science, vol 5462,
pp 224–235. Springer, Berlin/Heidelberg

42. Tanay A, Sharan R, Shamir R (2002) Discover-
ing statistically significant biclusters in gene
expression data. Bioinformatics 18(Supple-
ment 1):136–144

43. Bergmann S, Ihmels J, Barkai N (2003) Itera-
tive signature algorithm for the analysis of
large-scale gene expression data. Phys Rev E
Stat Nonlinear Soft Matter Phys 67:031902

44. Kluger Y, Basri R, Chang JT, Gerstein M
(2003) Spectral biclustering of microarray
data: coclustering genes and conditions.
Genome Res 13(4):703–716
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