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Microarray Analysis in Glioblastomas
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Abstract

Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A
survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-
based tissue microarrays as being the preferred methods of choice in cancers of neurological origin.
Microarray analysis may be carried out for various purposes including the following:

i. To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemo-
therapy (DeLay et al., Clin Cancer Res 18(10):2930–2942, 2012)

ii. To correlate gene expression patterns with biological features like proliferation or invasiveness of the
glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013)

iii. To discover new tumor classificatory systems based on gene expression signature, and to correlate
therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59–70,
2013; Verhaak et al., Cancer Cell 17(1):98–110, 2010)

While investigators can sometimes use archived tumor gene expression data available from repositories
such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to
adequately answer specific questions. Here, we provide a detailed description of microarray methodologies,
how to select the appropriate methodology for a given question, and analytical strategies that can be used.
Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample
preparation techniques for transcript-based microarrays are included here.
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1 Introduction

Glioblastoma, the most common malignant primary brain tumor,
carries an invariably poor prognosis (3, 5, 6). Targeting underlying
biological foundations of the disease will be crucial to developing
more effective treatment strategies (3, 5, 6). Transcriptional
profiling through microarray analysis and protein expression
profiling through immunohistochemistry (IHC)-based microar-
rays represent vital resources for researchers seeking to accomplish
these goals (3, 5, 6).

Here, we first describe protocols for gathering gene expression
data with transcript-based microarrays. Next, we review the various
methods of data analysis and clustering along with merits and
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demerits of each approach. Finally, we highlight important consid-
erations to keep in mind while selecting the optimal approach to
test your particular hypothesis.

2 Materials

2.1 Sample Types

and Associated

Culture Media and

Equipment

1. Cells.

a. Glioblastoma cells.

i. Types of cells.

1. Glioblastoma-derived tumor-initiating stem cells (7).

2. Glioma cell lines such as A172, CCF-SSTG1,T98G,
U373MG, U178MG, TP365MG, U118MG,
U251MG, GL15, U105MG, U251MG, U343MG,
U373MG, and SF767 (8, 9).

3. Primary glioblastoma cultures.

ii. Normal control cells for comparison.

1. Neural stem cells such as CB541 and CB660 (10).

2. Peripheral blood collected in blue-top monoject
tubes (3.5 % sodium citrate anticoagulant, Teromo
Corp., Japan) (10).

b. Medium.

i. Stem-cell medium (8) 9 made of DMEM/F-12 contain-
ing 20 % bovine serum albumin, insulin and transferrin
(BIT)-serum-free supplement, and basic fibroblast and
epidermal growth factors (Provitro, 20 ng/mL each) (8).

ii. DMEM, containing 10 % fetal bovine serum (FBS).

iii. RPMI-1640 Medium (Sigma-Aldrich Sweden AB,
Stockholm, Sweden) (9).

2. Tissue.

a. Patient glioblastoma specimens.

i. Flash-frozen paraffin-embedded (FFPE) tumor sections
[11)—poorer quality RNA fromparaffin sections requires
special preparatory protocols and stringent purity criteria.

ii. Frozen tumor pieces

b. Frozen pieces from subcutaneous or intracranial xenografts
treated with vehicle versus drug of interest.

2.2 Materials

for Transcript-Based

Microarrays

RNA Isolation

1. RecoverAll Total Nucleic Acid Isolation Kit (Ambion, Inc.) (1).

2. RNeasy kit (Qiagen).

3. TotalPrep RNA Amplification kit (Illumina).

4. Blood and Cell Culture Kit (Qiagen).

5. DNaseI (Invitrogen).
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6. Cesium chloride column.

7. Ultracentrifuge.

Assessment of RNA Quality

8. ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE) (9).

9. Agilent 2100 bioanalyzer (Agilent).

Hybridization-Ready Sample Preparation

10. SuperscriptII (Invitrogen).

11. Reference total RNA obtained from nonneoplastic human
brain tissue samples of five individuals (Bio-Chain) (8).

12. HybBag mixing system with 1� OneArray Hybridization
Buffer (Phalanx Biotech) (11).

13. Salmon sperm DNA (Promega) (11).

14. Molecular Dynamics™ Axon 4100A scanner (11).

15. ABI PRISM 7900 (Applied Biosystems) (8) for RT-PCR for
validating the transcript-based microarray data.

16. Absolute SYBR Green ROX Mix (ABgene).

17. Biotin-16-UTP.

18. Cy5 NHS ester (GE Healthcare Life Sciences) (11).

Microarrays and Signal Detection

19. Illumina Human whole-genome Sentrix-6V2 BeadChip array.

20. Affymetrix GeneChip expression arrays (Human Genome
U133 Plus 2.0 Array) (9).

21. Whole-Genome DASL Assay with HumanRef-8 BeadChips
(Illumina, Inc.; San Diego, CA) (1).

22. Whole Human Genome Oligo Microarray 4x44K (Agilent) (1).

23. Human HT-12 v4 Expression BeadChip Kits (Illumina; San
Diego, CA) (1).

24. Human Whole Genome OneArray v2 (Phalanx Biotech) (11).

25. GeneChip Expression Analysis Technical Manual (Rev. 5, Affy-
metrix Inc., Santa Clara, CA) (9).

26. Fluidics Station 450 (Affymetrix Inc.) for washing and staining
microarrays.

27. 45 �C incubator, capable of rotation up to 60 rpm.

28. Bead station array scanner.

29. GeneChip® Scanner 3000 7G (Affymetrix Inc.) (9).

2.3 Ways of

Classifying Transcript-

Based Microarrays

1. Length of probe—arrays can be classified into “complementary
DNA (cDNA) arrays,” which use long probes of hundreds or
thousands of base pairs (bps), and “oligonucleotide arrays,”
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which use short probes (usually 50 bps or less). Manufacturing
methods include “deposition” of previously synthesized
sequences and “in situ synthesis.”

2. Manufacturing technique—Usually, cDNA arrays are manufac-
tured using deposition, while oligonucleotide arrays are
manufactured using in situ technologies. In situ technologies
include “photolithography” (e.g., Affymetrix, SantaClara,CA),
“ink-jet printing” (e.g., Agilent, Palo Alto, CA), and “electro-
chemical synthesis” (e.g., Combimatrix, Mukilteo, WA) (12).

3. Number of samples— “Single-channel arrays” analyze a single
sample at a time, whereas “multiple-channel arrays” can ana-
lyze two or more samples simultaneously. An example of an
oligonucleotide, single-channel array is the Affymetrix Gene-
Chip (12).

2.4 Types of Protein

Microarrays

1. Analytical/capture microarrays, where a library of antibodies,
aptamers, or affibodies arrayed on the support surface act as
capture molecules since each binds specifically to a particular
protein: Samples such as cell lysates can be then applied to the
array, and a variety of detection methods can be used to deter-
mine the relative levels of array proteins found in the sample
solution (13).

2. Functional protein microarrays/target protein microarrays,
which are constructed by immobilizing large numbers of pur-
ified proteins and are used to identify protein–protein, pro-
tein–DNA, protein–RNA, protein–phospholipid, and
protein–small-molecule interactions, to assay enzymatic activity
and to detect antibodies and demonstrate their specificity. They
differ from analytical arrays in that they contain full-length
functional proteins or protein domains and can in some cases
be used to study the biochemical activities of the entire prote-
ome in a single experiment (13).

3. Reverse-phase protein arrays (RPPA), so called because in this
case, the sample, which can be cell lysate or complex tissue
lysate, is applied to the microarray, and then probed with anti-
bodies against the target proteins of interest. Methods of detec-
tion are usually chemiluminescence, fluorescence, or
colorimetry. Reference peptides are printed on the arrays to
allow for protein quantification of the sample lysates (13).

4. Tissue microarrays (TMA) probed using IHC protocols are
where laser-capture-microdissected tissue may be spotted in
an array format, and then assayed with a variety of antibodies
towards expressed proteins. The added benefit of IHC-based
arrays is the fact that expression and tissue localization of
proteins can be simultaneously studied. A significant drawback
is the lack of molecular weight verification of identified
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proteins, which means that the detection antibodies must be
thoroughly validated using western blotting prior to use in the
IHC technique.

2.5 Typical Workflow

of Microarray-Based

Experiments

Illustrated in Fig. 1 is the typical workflow of microarray-based
experiments. Note that although protein-based microarrays are
outside the scope of this chapter, the analysis methodologies
described here can be applied irrespective of whether expression
levels are measured based on transcript or protein.

2.6 Examples

of Software

and Databases Used

for Microarray Data

Clustering and

Analysis

2.6.1 Software

1. Bioconductor packages.

a. DESeq (normalizing tag counts for transcriptome tag
sequencing) (7).

b. Signaling pathway impact analysis (SPIA) (7).

c. Affy.

d. Org.Hs.,e.g.,(tests forenrichmentofgeneontologyterms)(7).

e. DNAcopy (7).

Fig. 1 A representative microarray-based experimental workflow. Shown are the
typical steps taken in microarray analysis from sample processing to data
analysis
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f. CGHcall.

g. CGHnormaliter (correction for intensity dependence).

h. Bead array R package (svn release 1.7.0) (8).

i. Lumi R package (release 1.1.0) for variance stabilizing and
spline normalizing (8).

2. Recount program (to correct for potential sequencing errors
during transcriptome tag sequencing) (7).

3. TagDust (7).

4. Bowtie short read aligner (to remove tags coming from mito-
chondrial RNA or rRNA) (7).

5. limma (comparing between microarrays) (7).

6. Ingenuity Pathways Knowledge Base and Analysis Software
(www.ingenuity.com) (8).

7. BLAT (Kent 2002) (14).

8. AltAnalyze (15, 16) for quintile normalization to look at dif-
ferential gene expression (14).

9. Partek genomic suite (http://www.partek.com/) for analysis of
the microarray data (14).

10. Significance Analysis of Microarrays (SAM) 3.0 (Stanford Uni-
versity) for statistical analyses (17).

11. Imagene 6.0 data extraction software (BioDiscovery Inc.) (17).

12. AROMA (18).

2.6.2 Databases 13. Gene Ontology.

14. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database.

15. The Cancer Genome Atlas (TCGA) dataset consisting of 397
glioblastoma cases.

16. NCI-60 expression data from CellMiner (9).

17. Database for Annotation, Visualization and Integrated Discov-
ery (DAVID) Bioinformatics Resources 6.7 (http://david.abcc.
ncifcrf.gov/home.jsp) for Gene Set Enrichment Analysis
(GSEA) (9).

18. Biocarta.

19. PANTHER.

20. SPSS 16.0 (SPSS Inc., Chicago) (17).

21. ArrayExpress database (accession no. E-MEXP-3296) (1).

22. GenePixPro™ Software (11).

23. C5.BP.V3.0 (gene ontology: biological processes) and C2.CP.
V3.0 (canonical pathways) MSigDB gene sets for GSEA (11).

24. Chinese glioma genome atlas (2).
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3 Methods for Transcript-Based Microarrays

1. Based on your initial sample, use the appropriate reagents for
isolating total RNA (items 1–4, Section 2.2). In most cases, the
specific instructions are given by the kit manufacturers.

2. Determine RNA quality and integrity utilizing an Agilent 2100
Bioanalyzer (Agilent Technologies) and absorbance at A260/
A280. Only high-quality RNA, having a RIN of >7.0 and an
A260/280 absorbance ratio of >1.8, should be utilized for
further experimentation. This step is particularly important
for RNA derived from paraffin-embedded tissue, whose purity
may be limited, often requiring re-purification (11).

3. Most microarrays require 2 μg of high-quality total RNA from
each sample. Most microarrays require conversion of RNA to
biotinylated fragmented complementary RNA (cRNA). cRNA
is necessary because the oligonucleotides are in the sense direc-
tion and so one has to use antisense RNA. Amplification is
necessary since most microarrays require about 25–100 μg of
total RNA to be hybridized (14). Microarrays are generally
classified into two broad categories based on their method of
synthesis. The two categories are spotted microarrays and oli-
gonucleotide microarrays. In the case of spotted microarrays,
the probes can be oligonucleotides, cDNA, or small fragments
of PCR products corresponding to mRNAs, and they are
synthesized prior to deposition on the array surface and are
then “spotted” onto glass. For such spotted arrays one can use
either mRNA, cDNA, or cRNA because both strands are used
as probes on the microarray (13). In the case of oligonucleotide
microarrays, probes can be either produced by piezoelectric
deposition with full-length oligonucleotides or in situ synthe-
sis. While spotted microarrays are more amenable to in-house
printing for custom-made arrays, oligonucleotide microarrays
have higher probe density and also higher reproducibility from
one array to another in terms of experimental results. Biotinyla-
tion of the test sample is necessary when the microarray has
streptavidin to capture the RNA.

4. On any given microarray, once the capture probe is immobi-
lized to the substrate, it is important to perform two additional
steps prior to using the microarray. If a covalent chemistry was
used for immobilization, any residual reactive groups on the
surface should be removed. This is commonly called quenching
the surface. Under certain conditions, this is also referred to as
capping. For example, residual epoxide (EP) groups can be
reacted with an amine compound such as ethanolamine,
whereas aldehyde groups can be reduced to alcohols
using sodium borohydride. The second process is commonly
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called blocking. Once residual reactive groups are destroyed,
the issue of nonspecific adsorption will need to be addressed.
What you choose to block with depends on several factors such
as the treated surface, hybridization cocktail, and sample
matrix. Common blocking agents include detergents such as
Tween 20, salmon sperm DNA, tRNA, or proteins such as
bovine serum albumin (BSA) (19).

5. The key physicochemical process involved in microarrays is
hybridization. Samples are typically hybridized overnight
(12–16 h) at a temperature between 42 and 45 �C.

6. The arrays hybridized with sample must then be washed,
stained, and scanned with methods appropriate for the micro-
array of choice. For example, for Affymetrix microarrays, you
can use the Fluidics Station 450 (Affymetrix Inc.) and scan with
the GeneChip Scanner 3000 7G (Affymetrix Inc.) (9).

7. The first step in any analysis is to apply a background correction
which accounts for the percent of intensity coming from non-
specific binding to the microarray. Background correction can
be applied using the intensity levels in the vicinity of spots in the
case of spotted arrays. In the case of high-density arrays, mis-
match probes can be used to estimate the amount of signal
coming from nonspecific binding.

8. After background correction, the data is generally log-
transformed. The log transformation improves the characteristics
of the data distribution and allows the use of classical parametric
statistics for analysis.With two-channel arrays, the intensity values
of the twocompeting samples are expressedas ratios and then log-
transformed. In contrast, with single-channel technology (e.g.,
Affymetrix), the “absolute” expression level of the genes is log-
transformed. Logarithmic transformation also converts multipli-
cative error into additive error (12).

9. Normalization of the raw data is a subsequent necessary step so
that the final data can be compared across platforms. The aim of
normalization is to remove any systematic biases that may be
causing artifactual intensity variance between samples on
account of inherent differences in dye characteristics, array
manufacturing, and spatial location of the sample on a given
array. Some examples of freely available normalization tools are
Bioconductor packages such as MAS 5.0, Robust Microarray
Average (RMA), and GC-RMA33 for single-channel arrays,
and LOESS normalization for two-channel arrays (12).

10. Once the data is normalized, it can be used for hypothesis
testing. Analysis methods described from this point on can
also be used for meta-analysis of existing expression data in
databases such as KEGG, TCGA, DAVID, ArrayExpress data-
base, and others.
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11. Currently, there are three major types of applications of
transcript-based microarrays in medicine. The first involves
finding differences in expression levels between predefined
groups of samples. This is called a “class comparison” experi-
ment. A second application, “class prediction,” involves identi-
fying the class membership of a sample based on its gene
expression profile. This requires the construction of a classifier
(a mathematical model) able to analyze the gene expression
profile of a sample and predict its class membership. The classi-
fier is constructed based on a representative set of samples with
known class membership. This classifier will then be used to
assess the likelihood of developing glioblastoma in patients not
included in construction of the classifier. The third type of
application involves analyzing a given set of gene expression
profiles with the goal of discovering subgroups that share com-
mon features. This application is known as “class discovery.”
For example, the expression profiles of a large number of
patients with glioblastoma will be measured with the goal of
identifying subgroups of patients who have a similar gene
expression profile. This effort is conducted to generate a
molecular taxonomy of disease. In other words, how many
molecular types of glioblastoma are in a sample of patients
affected by the disease? (12).

12. An unsupervised clustering analysis can be carried out in order
to search for obvious patterns. Clusters identified in such a
manner can then be further validated (1). These clusters can
be graphically illustrated in the form of “heatmaps” showing
upregulated and downregulated gene sets from one sample to
the next (Fig. 2).

13. If there is no clustering detected then an unbiased gene selec-
tion approach may be used, where the samples to be compared
are clustered on high-variance probes (top 98th percentile and
above) (1), and then examined for correlations with any classes
established through other means such as histopathology or
imaging.

14. In class comparison and class discovery studies, the expression
characterization of the groups (e.g., health vs. disease) is often
followed by “functional profiling.” The purpose of this task is
to gain insight into the biological processes that are altered in
disease. GSEA is currently the most widely used method of
functional profiling. GSEA is a computational method that
determines whether an a priori-defined set of genes shows
statistically significant, concordant differences between two
biological states (e.g., phenotypes) (19). When comparing
two distinct biological phenotypes, there are some major lim-
itations to the simple approach of identifying the genes that
show the largest expression differences across the phenotypes
in question. The limitations are as follows:
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i. No individual gene may meet the threshold for statistical
significance, due to a small signal-to-noise ratio.

ii. In case of a long list of statistically significant genes without
known biological connections between them, it becomes
difficult to interpret the data meaningfully.

iii. Since cellular processes typically involve a large number of
genes acting in concert, seemingly minor expression
changes in a set of related genes may be more interesting
to follow up on as compared to a small set of unrelated
genes that show largely statistically significant differences in
expression levels between the groups compared.

iv. When different groups study the same biological system,
the list of statistically significant genes from the two studies
may show very little overlap while there may be identical
genetic pathways being affected that remain undetected
because of a limitation in the analysis methodology.

GSEA is a computational protocol that seeks to get around the
limitations listed above (20).

Fig. 2 A representative heatmap of gene expression obtained by microarray analysis. Shown is an unpublished
heatmap showing differentially expressed genes in a glioblastoma cell engineered to express shRNA targeting
autophagy gene ATG7
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4 Notes

1. The sample preparation technique greatly limits the range of
microarrays that can be used for a given study. Most transla-
tional studies begin with FFPE samples, while studies aimed at
deciphering underlying molecular pathways might use cell lines
as beginning material. Cell line-derived samples are invariably
of higher quality than frozen tissue-derived samples, which in
turn are of significantly higher quality than FFPE samples.
While cell line-derived samples or frozen tissue-derived samples
can be used directly as starting material for most commercially
available arrays, FFPE material, on the other hand, suffers from
having degraded and low-quality RNA. As a result, specialized
microarray assays such as the cDNA-mediated annealing, selec-
tion, extension, and ligation (DASL) assay by Illumina must be
used when working with FFPE samples. The DASL assay uses
random priming in the cDNA synthesis, and therefore does not
depend on an intact poly(A) tail for T7-oligo-d(T) priming. In
addition, the assay requires a relatively short target sequence of
about 50 nucleotides for query oligonucleotide annealing,
allowing the assay to perform well with significantly degraded
RNAs (21).

2. The subsequent algorithms and software packages used for
analysis are usually linked to the particular microarray of choice.
However the underlying analysis strategies are common across
software packages, and need to be chosen based on the type of
statistical analysis deemed necessary to answer the questions
posed by the researchers. Here we have presented in detail a
prototypical microarray experimental workflow. Depending on
sample type, microarray choice, and software used, readers
must draw parallels or make choices based on their own unique
research goals.
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