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Normalization of Affymetrix miRNA Microarrays
for the Analysis of Cancer Samples
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Abstract

microRNA (miRNA) microarray normalization is a critical step for the identification of truly differentially
expressed miRNAs. This is particularly important when dealing with cancer samples that have a global
miRNA decrease. In this chapter, we provide a simple step-by-step procedure that can be used to normalize
Affymetrix miRNA microarrays, relying on robust normal-exponential background correction with cyclic
loess normalization.
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1 Introduction

Variation in microRNA (miRNA) levels is a common feature of
cancer cells (1). It can result from mutations leading to increased
expression or chromosomal amplification of the miRNA gene—as
seen with the miR-17–92 cluster amplified in diffuse large B-cell
lymphoma patients (2)—or defective expression, processing, and
export of miRNA precursors (3–6).

Interestingly, early contradictions rapidly arose regarding the
overall profile of miRNA expression in cancer cells, with a number
of reports published that suggested a global decrease (7, 8), while
others observed an equal distribution of upregulated and down-
regulated miRNAs (9, 10). It is now well established that a signifi-
cant proportion of cancer cells exhibit alteration of the miRNA
biogenesis machinery (4–6, 11), resulting in a global miRNA
decrease and poorer survival outcomes (6, 12, 13).

This suggested a potential bias of miRNA microarray technol-
ogies that failed to identify global miRNA decreases (9, 10), and
prompted us to investigate the reliability of miRNA microarrays to
correctly identify samples with a global miRNA decrease. Profiling
of mouse embryonic fibroblasts following the induced genetic
deletion of Dicer1, the last processing enzyme in the miRNA
biogenesis pathway, allowed us to assess the suitability of Affymetrix
miRNA microarrays to detect global miRNA decrease (14).
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Unexpectedly, we demonstrated that standard robust multichip
average (RMA) background correction and quantile normalization
of these miRNA microarrays, while aimed at decreasing the varia-
tions in log2 intensities between the replicate arrays, strongly biased
the identification of downregulated miRNAs (14). These observa-
tions underline the importance of array preprocessing in miRNA
microarray analyses. Critically, the previous lack of identification of
global miRNA decrease could have been, in fact, related to the
inappropriate use of normalization procedures, with the example
of median normalization assuming that few miRNAs are upregu-
lated or downregulated, thereby strongly biasing the possible
detection of a global decrease (9, 10).

In this chapter, we detail the step-by-step use of ‘R’ to apply
robust normal-exponential background correction with cyclic loess
normalization for the preprocessing of Affymetrix miRNA micro-
arrays, which was the best normalization procedure for detecting
global miRNA decreases in our mouse embryonic fibroblast model
and prostate cancer samples (14).

2 Materials

2.1 ‘R’ Software

and Bioconductor

‘R’ can be downloaded from http://cran.us.r-project.org. Once
the most recent version for your operating system is installed on
your computer, start ‘R’ (see Note 1). To install the statistical
packages, required for the analyses described below, type in:

install.packages

To install bioconductor (while connected to the internet), type
in the following:

source("http://bioconductor.org/biocLite.R")

biocLite()

If prompted: ‘Update all/some/none? [a/s/n]:’, type
in ‘a’. These commands will download and install the statistical
packages required for the microarray analyses presented hereafter.

2.2 miRNA

Affymetrix Microarray

(Version 1.0 or Later)

The command lines provided below are specifically designed for our
published dataset from Dicer-deficient cells, to be used as an exam-
ple of the overall normalization procedure. The nine .CEL files
(from GSM1118272_MG1.CEL to GSM1118280_MG9.CEL)
can be downloaded from Gene Expression Omnibus (GEO), acces-
sion number GSE45886. Briefly, miRNA levels were detected by
Affymetrix miRNA v1.0 microarray, at day 2, 3, and 4 after genetic
deletion ofDicer1. Each condition (t2, t3, and t4) was replicated in
biological triplicate (A, B, and C) (14). Our normalization proce-
dure relies on different weights being applied to different types of
probes present on the arrays. As such, the correct definition of the
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non-miRNA small RNA probes is critical, and the microarray anno-
tation files should be downloaded from Affymetrix’s ‘Support’
section (use ‘miRNA 1.0 Annotations, Unsupported, CSV format’
for our case study). Importantly, our method has also been used
with more recent versions of Affymetrix miRNA arrays, which also
contain non-miRNA small RNA probes.

3 Methods

In this chapter, we present the microarray processing methods,
broken down into three major steps: background correction,
normalization, and summarization. Before proceeding to the first
step, however, the microarray files need to be loaded in ‘R’. This is
executed with the following:

library(limma)

library(affy)

library(MASS)

Importantly, the location of the .CEL files needs to be speci-
fied. In this example, the nine array files from GSE45886 have been
placed in the ‘/Documents’ directory.

setwd(’~/Documents/’)

affy2<-ReadAffy()

pm.raw<-pm(affy2,geneNames(affy2)) (see Note 2)

We can then proceed with the loading of the ‘design matrix’.
A design matrix defines how the microarrays are grouped in differ-
ent conditions/treatments. The design matrix relies on a .txt
‘target’ file, tabulated to identify the conditions of each array. In
our analysis of GSE45886, we use ‘targets-mirna.txt’ as the design
matrix. To create this file, we write the following in a blank text file:

Filename time dish

GSM1118272_MG1.CEL t2 A

GSM1118273_MG2.CEL t2 B

GSM1118274_MG3.CEL t2 C

GSM1118275_MG4.CEL t3 A

GSM1118276_MG5.CEL t3 B

GSM1118277_MG6.CEL t3 C

GSM1118278_MG7.CEL t4 A

GSM1118279_MG8.CEL t4 B

GSM1118280_MG9.CEL t4 C

This document is saved as a .txt file, named ‘targets-mirna.txt’
and placed in the same folder as the .CEL files, i.e., in the
~/Documents directory, before being loaded with the following
commands (see Note 3):
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{

targets <- read.delim("targets-mirna.txt",stringsAs

Factors¼FALSE, sep¼" ")

}

des<- model.matrix(~0+as.factor(time),

data¼targets)

3.1 Robust Normexp

Background

Correction

For background correction, our procedure relies on normexp back-
ground correction using the ‘nec’ function in ‘R’. In addition, we
use the ‘robust’ argument in ‘nec’ that determines background
mean and standard deviation, as we found it increased the sensitiv-
ity of the detection of differentially expressed miRNAs (14).
Nonetheless, robust can be disabled using ‘robust ¼ FALSE’ in
the command below.

Normexp background correction relies on the negative control
probes in the Affymetrix array—annotated as ‘BkGR’ in the man-
ufacturer’s annotation file. The following lines define which probes
are used as control probes, from the Affymetrix annotations.

bkgr.idx.pm<-grep("BkGr",rownames(pm.raw))

status<-rep("regular",nrow(pm.raw))

status[bkgr.idx.pm]<-"negative"

table(status)

This will print the amount of negative and regular probes in the
arrays (negative: 8221 and regular: 38006 when using GSE45886).

nec.pm.raw.r<-nec(pm(affy2),status¼status,negctrl¼
"negative",

regular¼"regular", offset¼16, robust¼TRUE)

summary(nec.pm.raw.r)

This will print the raw intensities for each microarray divided in:
Min./1st Qu./Median/Mean/3rd Qu./Max values.

3.2 Definition

of Non-miRNA Small

RNA Probes Used

in Cyclic Loess

Normalization

The first step is to obtain the probe annotations from the appropri-
ate annotation file from Affymetrix. The file should be placed in the
working directory—i.e., ‘/Documents’ in our case (see Note 4).

ann<-read.csv("miRNA-1_0.annotations.20081203.

csv",skip¼11)

data.frame(table(ann$Sequence.Type))

This will print the features present on the arrays.

idx.probe<-indexProbes(affy2)

probe.name<-probeNames(affy2)

table(geneNames(affy2) %in% as.character(ann$Probe.Set.

ID))

identical(names(idx.probe),(geneNames(affy2)))

m<-match(names(idx.probe),as.character(ann$Probe.Set.

ID))

ann.m<-ann[m,]
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ann.miRNA<- which(ann.m$Sequence.Type¼¼"miRNA")

mirna<-as.character(ann.m$Probe.Set.ID[ann.miRNA])

ann.affyctlseq<- which(ann.m$Sequence.Type¼¼"Affymetrix

Control Sequence")

affyctlseq<-as.character(ann.m$Probe.Set.ID[ann.

affyctlseq])

ann.spikein<- which(ann.m$Sequence.Type¼¼"Oligonucleo

tide spike-in controls")

spikein<-as.character(ann.m$Probe.Set.ID[ann.spikein])

ann.rrna<- which(ann.m$Sequence.Type¼¼"5.8 s rRNA")

rrna<-as.character(ann.m$Probe.Set.ID[ann.rrna])

ann.cdbox<- which(ann.m$Sequence.Type¼¼"CDBox")

cdbox<-as.character(ann.m$Probe.Set.ID[ann.cdbox])

ann.hacabox<- which(ann.m$Sequence.Type¼¼"HAcaBox")

hacabox<-as.character(ann.m$Probe.Set.ID[ann.hacabox])

ann.scarna<- which(ann.m$Sequence.Type¼¼"scaRna")

scarna<-as.character(ann.m$Probe.Set.ID[ann.scarna])

ann.snorna<- which(ann.m$Sequence.Type¼¼"snoRNA")

snorna<-as.character(ann.m$Probe.Set.ID[ann.snorna])

idx.pm.mirna<-which(match(probe.name,mirna)!¼"NA")

length(idx.pm.mirna)

The last command will print the amount of miRNA probes on
the array—this is 26,812 for miRNA.1_0.

identical(unique(probe.name[idx.pm.mirna]),mirna)

o.sml<-c(cdbox,hacabox,scarna,snorna)

idx.pm.sml<-which(match(probe.name,o.sml)!¼"NA")

length(idx.pm.sml)

This will print the amount of non-miRNA ‘other small RNA’
probes on the array—this is 10,090 for miRNA.1_0.

identical(sort(unique(probe.name[idx.pm.sml])),sort(o.

sml))

idx.pm.spk<-which(match(probe.name,spikein)!¼"NA")

identical(unique(probe.name[idx.pm.spk]),spikein)

idx.pm.rrna<-which(match(probe.name,rrna)!¼"NA")

identical(unique(probe.name[idx.pm.rrna]),rrna)

idx.pm.ctls<-which(match(probe.name,

affyctlseq)!¼"NA")

identical(unique(probe.name[idx.pm.ctls]),affyctlseq)

idx.pm.ctls.hyb<-idx.pm.ctls[-grep("BkGr",probe.name

[idx.pm.ctls])]

status.spot<-rep("NA",nrow(pm.raw))

status.spot[idx.pm.mirna]<-"miRNA"

status.spot[idx.pm.sml]<-"other.small.RNA"

status.spot[bkgr.idx.pm]<-"BkGr.ctl"

status.spot[idx.pm.ctls.hyb]<-"hyb.ctl"

status.spot[idx.pm.spk]<-"spike.in"

status.spot[idx.pm.rrna]<-"human.5.8s.rRNA"

table(status.spot)
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This will print the different categories of probes now defined—
BkGr.ctl: 8221; human.5.8s.rRNA: 110; hyb.ctl: 774; miRNA:
26,812; other.small.RNA: 10,090; and spike.in: 220, for
miRNA_1.0.

3.3 Cyclic Loess

Normalization

The next step is cyclic loess normalization—which attributes
heavier weight to non-miRNA small RNA probes than miRNA
probes defined in the previous step to normalize the differences
between arrays. By using a much higher weight for non-miRNA
small RNA probes (100 vs. 0.01 for miRNAs), we found that we
greatly increased the accuracy of the normalization (14).

affy2.temp<-affy2

pm(affy2.temp)<-nec.pm.raw.r

w<-rep(1,nrow(pm(affy2.temp)))

w[status.spot¼¼"miRNA"]<- 0.001

w[status.spot¼¼"other.small.RNA"]<-100

norm3<- normalizeCyclicLoess(log2(pm(affy2.temp)),

weights¼w,

iteration¼5) (see Note 5)

pm(affy2.temp)<-2^(norm3)

3.4 RMA

Summarization

The last step of our procedure is RMA summarization—which
summarizes the previous normalization analyses in a data matrix
(‘exprs2’ in this case).

tmp2<-rma(affy2.temp,normalize¼FALSE,

background¼FALSE)

exprs2<-exprs(tmp2)

summary(exprs2)

This will print the quartile intensities for each normalized
microarray: Min./1st Qu./Median/Mean/3rd Qu./Max values.

Because human cancer samples are very heterogeneous, it is
advisable to introduce different estimated array weights in the
analysis of differentially expressed miRNAs. We have found that
the use of array weights gives a higher number of significantly
downregulated miRNAs in Dicer1-deficient samples than the pro-
cedure without array weights—consistent with a global impairment
of miRNA biogenesis (14). Therefore, we generally suggest the use
of array weights when analyzing microarrays from tumor samples.
Importantly, array weights are restricted to the miRNA probes of
the species of interest—mouse or ‘mmu’ in our Dicer1-deficient
samples. The ‘mmu’ should be changed to ‘hsa’ when looking at
human samples in the following command lines (see Note 6).

mmu.idx<-grep("mmu",rownames(exprs2))

w.des<-arrayWeightsSimple(exprs2[mmu.idx,],design¼des)

names(w.des)<-colnames(exprs2)
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To compare the samples on the basis of a given variable, for
example the ‘time’ afterDicer1 deletion in our case study, in a linear
model, we define the ‘contrast’ in the variable in which we are
interested. Refer to the ‘limma User Guide’ for more details on
how to define the contrast (see Note 7).

c.matrix<-cbind(T3vs2¼c(-1,1,0),T4vs2¼c(-1,0,1),

T4vs3¼c(0,-1,1))

The linear model is subsequently fitted with the array weights
determined previously.

fit.w<-lmFit(exprs2,design¼des, weights¼w.des)

fit.w<-contrasts.fit(fit.w,c.matrix)

fit.w<-eBayes(fit.w)

summary(decideTests(fit.w[mmu.idx,],p.value¼0.1))

This will print the number of miRNAs that are downregulated
(�1), unchanged (0), or upregulated (1) in the different conditions
of the experiment—in our case comparing T3vs2, T4vs2, and
T4vs3 as follows, with a p value of 0.1. In our example, the follow-
ing will be printed in ‘R’ (see Note 8):

T3vs2 T4vs2 T4vs3

-1 32 87 12

0 575 516 596

1 2 6 1

Finally, a table of differentially expressed miRNAs can be
retrieved with the following lines. Note that ‘top1’ corresponds
to differentially expressed probes (from mouse here as specified by
‘mmu’) between T3vs2—i.e., in the first column printed previously.
‘top2’ and ‘top3’ match the second and third columns, respectively.
The p value can also be changed—here set to p < 0.1.

top1<- topTable(fit.w[mmu.idx,],coef¼1,number¼Inf,p.

value¼0.1)

top2<- topTable(fit.w[mmu.idx,],coef¼2,number¼Inf,p.

value¼0.1)

top3<- topTable(fit.w[mmu.idx,],coef¼3,number¼Inf,p.

value¼0.1)

write.table(top1, file¼"topTab1.csv", row.names¼TRUE,

sep¼",")

write.table(top2, file¼"topTab2.csv", row.names¼TRUE,

sep¼",")

write.table(top3, file¼"topTab3.csv", row.names¼TRUE,

sep¼",")

Files with the indicated names will appear in the working
directory—‘/Documents’ in our case—containing the lists of
miRNAs differentially expressed, with normalized log2 fold change.
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4 Notes

1. In this analysis we rely on ‘R’ version 3.1.0 (2014-04-10),
‘Spring Dance’. ‘R’ relies on command lines, which you need
to type after the ‘>’ symbol. Importantly, several lines of
commands can be copied and pasted at the same time in ‘R’,
and successively executed by pressing ‘enter/return’. When
doing so, care should be taken with quotes (‘’ and “”), which
can be modified by your operating system and alter the mean-
ing of the ‘R’ command—generally resulting in an error
message.

2. The last command might result in warning messages such as:
‘replacing previous import by ‘utils::head’ when loading ‘mir-
na10cdf” This indicates that the same names were included in
the different packages loaded. However, this can be ignored:
warnings in ‘R’ can usually be ignoredwithout impacting on the
processing of the data.

3. The variable studied in our example is identified by the “time”
column from our targets-mirna.txt file, while the “dish” col-
umn refers to replicates. When creating another design matrix,
the previous command should be altered to reflect the variable
in the ‘as.factor(variable)’ expression.

4. Because the files for each version of miRNA arrays are slightly
different, the argument ‘skip’ has to be changed as follows:
skip ¼ 11 for ‘miRNA-1_0.annotations.20081203.csv’;
skip ¼ 13 for ‘miRNA-2_0.annotations.20101222.csv’; skip ¼
4 for ‘miRNA-3_0-st-v1.annotations.20140513.csv’ and
‘miRNA-4_0-st-v1.annotations.20140513.csv’.

5. This step will take about a minute to run, depending on your
processor, due to the five iterations.

6. The Affymetrix miRNA arrays contain many other species in
addition to human and mouse. You can check the nomencla-
ture for each species (for instance, ‘mmu’ for mouse, ‘has’ for
human, ‘gga’ for chicken, ‘eca’ for horse) at miRbase.org.

7. The following section will detail how to define the ‘design
matrix’ and ‘contrast’ of a variable when dealing with only
two groups of samples, which is particularly useful when com-
paring normal and tumor samples. For this purpose, we remove
the files GSM1118275_MG4.CEL, GSM1118276_MG5.
CEL, and GSM1118277_MG6.CEL from the working folder
(/Documents). In addition, we modify the targets-mirna.txt
file by deleting the lines corresponding to time 3 (t3). As such,
we will now detail how to compare samples with decreased
miRNA levels (t4) versus more normal samples (t2), mimicking
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tumor versus normal samples. We make a design matrix that
contains the contrast data as follows:

a<-c("t2","t2","t2","t4","t4","t4")

designMatrix<-model.matrix(~0+as.factor(a))

colnames(designMatrix)

colnames(designMatrix)<-c("t2","t4")

contrast.matrix<- makeContrasts(t4-t2, levels¼
designMatrix)

contrast.matrix

Thiswill print the contrasts (i.e.,�1 for level t2 and1 for level t4).

fit.w<-lmFit(exprs2,design¼designMatrix, weights¼
w.des)

fit.w<-contrasts.fit(fit.w, contrast.matrix)

fit.w<-eBayes(fit.w)

summary(decideTests(fit.w[mmu.idx,],p.value¼0.1))

This will print the following results for p < 0.1 (where �1
defines the number of probes downregulated at t4 versus t2;
0 defines the number of unchanged probes; +1 defines the
number of upregulated probes). Noteworthy, these differ
slightly from what is obtained with the analyses of the nine
microarrays due to statistical variations with fewer arrays.
t4 - t2

-1 68

0 538

1 3

Finally, the miRNAs that are significantly different at the two
time points can be retrieved with the following commands:

top1<- topTable(fit.w[mmu.idx,],coef¼1,number¼
Inf,p.value¼0.1)

write.table(top1, file¼"topTab1.csv", row.names¼
TRUE, sep¼",")

8. Please note that the values stated might change slightly with
the different releases of the statistical packages used.
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