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Abstract

Musculoskeletal disorders affecting the bones and joints are major health problems among children and
adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our
understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells
(human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal
diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and
have the potential to differentiate into any cell types in the body. In addition, they can carry one or more
mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our
work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive
(FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our
experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their applica-
tion to model skeletal diseases. A number of critical challenges and exciting new approaches are also
discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical
model system for understanding diseases of abnormal skeletal formation and bone regeneration.

Keywords: Human iPS cells, Mineralization, Fibrodysplasia ossificans progressiva, Ossification,
Skeletal diseases, Directed differentiation

1 Introduction

Musculoskeletal conditions such as osteoporosis, fractures, and
skeletal malformations are among the most frequently reported
medical conditions in the USA and are the second-greatest cause
of disability worldwide (1). Inherited skeletal disorders are among
the most common genetic diseases (2) and affect 2.4 in 10,000
births with 23 % of the affected presenting as stillbirths and 32 %
mortality in the first week of life (3). Adult osteoporosis alone
affects over ten million people in the United States and results in
over two million fractures each year (4). Being able to model these
conditions in a human model system is one critical tool for devel-
oping therapies for these medically important diseases.
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1.1 Major Challenges

Hinder Our

Understanding of

Human Skeletal

Diseases

Achieving a better understanding of human skeletal development
has several major challenges:

First, the genetic factors underlying skeletal diseases are
complex. Many of the traits and diseases we associate with the
skeleton (e.g., height; osteoporosis) are multigenic in origin
(5–7). In addition, some genes have distinct functions in humans
that vary significantly from what occurs in model organisms such as
rodents (8–10). Although model organisms provide valuable
insights into biology, these genetic complexities indicate that hav-
ing a continuous source of human tissues would be extremely
valuable for understanding disease pathophysiology and translating
our knowledge into new treatment strategies. Until recently, this
has been a major hurdle since obtaining large quantities of primary
tissues from humans can be very difficult or impossible.

Second, a surprisingly large number of severe skeletal and
nonskeletal medical conditions remain “undiagnosed” with only
rudimentary molecular understanding of the disease pathogenesis.
Patients with these rare or orphan conditions often face diagnostic
and treatment delays, which can be improved when the disease
process is discovered. Importantly, research into some of these
rare presentations has identified key pathways leading to break-
through discoveries and medications that benefit the wider popula-
tion (e.g., the role of SOST in regulating bone mass (11, 12)). This
demonstrates that rare disease models can highlight important
pathways and help address the unmet medical needs of more com-
plex polygenic diseases such as osteoporosis.

Third, during the past several decades, bone researchers have
focused on autologous cells such as mesenchymal stem cells
(MSCs) or adult stem cells (e.g., adipose-derived stem cells)
(13–16). These multipotent cell types are finding applications in
regenerative therapies. However, isolating large numbers of pri-
mary cells remains difficult: one report showed that 30 ml of
human bone marrow yielded only 7–22 � 106 phenotypic MSCs
after 4 weeks of culture, with some samples requiring extended
culture (17). In addition, multiple donors are needed as sources
for different cell types (i.e., MSCs, endothelial cells, muscle stem
cells), introducing different genetic backgrounds as a new con-
founder. This also decreases the likelihood that a composite allo-
graft could be created from a single donor and increases the risk of
allograft rejection if a multidonor allograft was used. Finally, other
cell types abundant in bone, such as neurons or hematopoietic cells,
cannot be easily generated fromMSCs and thus their contributions
are difficult to explore. Human iPS cells help address this challenge
by allowing us to potentially generate any cell type of interest.

1.2 Pluripotent Cells

Are Useful for Skeletal

Research

Stem cells are defined as having two basic properties: the ability to
self-renew and the potential to differentiate into one or more
specialized cell types. Stem cells are critical for maintaining tissues
that normally have high turnover such as skin and blood. However,
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it is increasingly recognized that many organs, even ones with
low proliferative capacity as can be found in the skeleton, contain
tissue-specific stem cells that contribute to their growth and main-
tenance (18). These tissue-specific cells are typically multipotent
and have limited differentiation potential to create only a subset of
cell types. In contrast, cells in the mammalian early embryo are
pluripotent and can contribute to any tissue in the body (19, 20).

Pluripotent cells such as embryonic stem (ES) cells and induced
pluripotent stem (iPS) cells are well suited for modeling human
physiology, pathophysiology, and development since they can cre-
ate any cell types that are needed, if the appropriate differentiation
protocols are available. Although multipotent stem cells like MSCs
or adult stem cells are valuable for studying skeletal diseases, plu-
ripotent cells would allow us to generate lineages that may be
critical for bone formation, but outside of the normal repertoire
for lineage-restricted multipotent cells (i.e., neural crest cells, neu-
rons, immune cells). Since many of the pathways that regulate
skeletal development also have critical roles in other tissue types,
human pluripotent cells can be used to study these functions in
nonskeletal tissues. Furthermore, starting from a pluripotent cell
potentially allows us to create a continuous supply of isogenic cell
types, thus minimizing the effects of variations in genetic back-
ground that may occur with primary cells.

Human ES cells are derived from human embryos created from
eggs fertilized in vitro (21, 22). Briefly, these cell lines are derived
from blastocysts that have been plated on a tissue culture surface to
allow the inner cell mass to expand. The surviving cells grow to
create a renewable cell population. Cells that maintain a normal
genetic background, and remain in a pluripotent state (i.e., do not
differentiate into a terminal cell type), become an embryonic stem
cell line. A number of human ES cell lines are currently available.
NIH supports research using a select number of lines that have met
specific quality control and ethical standards (http://escr.nih.gov).

1.3 Induced

Pluripotent Stem Cells

Are Useful for

Modeling Human

Diseases

The discovery of mouse (23) and human iPS cells by Shinya Yama-
naka’s laboratory in 2007 (24) revolutionized the stem cell field by
providing a relatively straightforward method to create pluripotent
cells from a differentiated cell source. iPS cells allow us to create
unlimited numbers of isogenic cell types, providing a single, renew-
able source of human cells with a known genetic background.
These purified cell populations allow new detailed genetic, bio-
chemical, and functional studies not previously possible while
providing a high level of long-term consistency for robust experi-
ments and allowing us to link in vitro results to a patient phenotype.
The recent finding of putative pluripotent cells in somatic tissues
and the creation of stem cell banks from “superdonors” that are
immune-compatible with multiple recipients (25) increase the
possibility that our iPS cell studies will find rapid applications in
tissue engineering as immune tolerance improves.
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1.4 The Method of

Reprogramming May

Affect the Formation of

iPS Cells

All of the current methods for creating iPS cells activate a
pluripotency transcriptional network to convert a more differen-
tiated cell into a pluripotent-like cell. Many iPS cell induction
methods are now widely used and demonstrate that there are
many roads to pluripotency. Methods include retroviral transduc-
tion (24); DNA constructs (26); nonintegrating episomes (27);
nonintegrating Sendai viruses (28); nonintegrating modified
mRNA transduction (29, 30), transposons (31), and small mole-
cules (32). The field of reprogramming continues to innovate and
many new methods are constantly being made available. Many of
these techniques have been used to reprogram multiple types of
terminally differentiated cells.

In our own studies using iPS cells created from patients with
fibrodysplasia ossificans progressiva (FOP), we were concerned that
activated BMP signaling by the FOP R206H ACVR1 mutation
could adversely affect our ability to create FOP iPS cells since
BMPs can induce human ES cell differentiation (33). In addition,
prior reports using Sendai virus indicated that Sendai-derived FOP
iPS cells were not able to maintain their pluripotent state (34). In
our hands, we found that retroviral and episomal methods could
create FOP iPS cells (35); however, the FOP iPS cells tended to lose
their iPS cell-like morphology more often when cultured for long
durations in feeder-free conditions. These results indicated that
there are method-specific effects on iPS cell generation that are
yet to be elucidated. It also indicates that if one method of repro-
gramming doesn’t work, a different method may be more success-
ful to compensate for factors (genetic or otherwise) that may
influence iPS cell generation.

1.5 Directed

Differentiation of

Pluripotent Stem Cells

A tremendous library of protocols, too large to list here, is now
available describing many ways to create differentiated cell lines
from pluripotent stem cells. Over the past several years, new meth-
ods have been developed specifically for human iPS cells. These
methods use different approaches, including robust small
molecule-directed differentiation protocols (i.e., for cardiomyo-
cytes (36), neurons (37), and endothelial cells (38)); expression
of master transcription factors (i.e., for skeletal muscle (39)); and
culture in less well-defined conditions that are known to favor the
formation of specific lineages (i.e., for chondrocytes and mineraliz-
ing cells).

Directed differentiation methods continue to improve, partic-
ularly with the use of newer scaffolds and culture matrices. How-
ever, several factors need to be kept in mind: the specific protocols
used in directed differentiation methods may be cell type specific;
many commercial differentiation mediums are proprietary (i.e.,
osteogenic medium often contains BMPs, which may confound
an experiment if the disease already affects the BMP pathway);
and a detailed optimization process may be necessary when
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applying the method to different cell lines. In addition, the use of
specific medium conditions can make cocultures particularly chal-
lenging since the individual cell types may not survive together if
the culture conditions are not compatible. Finally, human iPS cells
appear to differentiate easily into immature cell types in a dish (40);
however, more mature cell types may require advanced 3D or
in vivo environments (41). Despite these limitations, the ability to
make specific cell types from iPS cells carrying a specific disease
mutation is exciting for disease modeling since in many cases, the
specific cell types that are affected by the mutation are not easily
identified or obtained from primary samples.

1.6 Osteogenic

Differentiation and

Mineralization

One of the major challenges when differentiating human iPS cells is
to obtain a large “pure” population of skeletal-lineage cells that are
functional in vitro and in vivo. Traditionally, cells are assayed for
their potential osteogenic capacity by detecting mineralization, a
relatively late step in the bone formation process. These types of
protocols were mostly adapted from methods developed for MSCs,
often used monolayers of cells cultured for 12–28 days, and were
dependent on fetal bovine serum (35, 42). Most of these miner-
alizing or osteogenic medium contain β-glycerol phosphate, ascor-
bic acid, and dexamethasone (35, 43). There are also a number of
commercial medium available for osteoblast differentiation or min-
eralization, mainly tested on MSCs. However, in each of these
cases, it remains important to distinguish whether the end mineral
deposition was associated with other indicators of osteogenesis
such as collagen fibril deposition and increased expression of oste-
ogenic genes (44).

Several protocols have recently emerged to differentiate human
iPS cells and human ES cells into osteoblasts (Fig. 1). Most proto-
cols utilize BMPs supplemented in the culture medium and directly
added to the human iPS cells (45) since BMPs are powerful pro-
moters of osteogenesis and regulate differentiation of pluripotent
cells (33, 46). Although BMPs in the medium may be useful for
directed differentiation, they may confound disease modeling
depending on whether BMPs are part of the disease pathogenesis
or phenotype. For example, our experience with the FOP iPS cells
requires using mineralization medium without BMPs to study how
the increased signaling activity of the mutated BMP receptor
ACVR1 affects the function of our FOP iPS cell lines (35). Similar
concerns may be important for conditions using small molecules or
substrates. These compounds may interact with the genetic muta-
tions found in the cell lines.

In vitro osteogenic differentiation of human iPS cells can also
be performed using embryoid body (EB) methods. A number of
these protocols were initially established in murine ES or iPS cells
(47, 48). Several authors have reported that treating human iPS
cell-derived EBs with all-trans retinoic acid, and subsequently
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culturing single-cell dissociated EBs in conditions that favor osteo-
genesis, can also lead to osteoblast differentiation in vitro and in
in vivo implants (43).

A recent protocol described the use of small molecules under
serum-free and feeder-free conditions to differentiate iPS cells into
osteoblasts in a stepwisemanner without the formation of EBs (49).
These small molecules include GSK3 inhibitors (CHIR999021) to
activate canonical WNT signaling cues to specify the differentiation
toward mesodermal layers (50); a smoothened agonist (SAG), a
hedgehog (HH) signaling activator which promotes early osteo-
blast differentiation in perichondrial cells consisting of osteo-
chondroprogenitors (51); and TH (4-(4-methoxyphenyl)pyrido
(40,30:4,5)thieno(2,3-b)pyridine-2carboxamide) for inducing
osteoblast maturation (52). These defined conditions are extremely
valuable as they will eventually provide more consistency, improve
our ability to delineate osteoblast development and function, and
facilitate more robust applications in drug screening and skeletal
regeneration.

1.7 Assaying the

Osteogenic Properties

of Cell Lines

Determining if osteogenesis is increased in human iPS cell cultures
can be challenging. As for mesenchymal stem cells, there are several
surrogate markers that are commonly used including histology
assays (staining for alcian blue to indicate cartilage; alkaline phos-
phatase to detect early mineralization activity; and calcium/phos-
phorous staining with von Kossa or alizarin red to detect mineral
deposition). The direct assessment of osteoblast number also

WT FOP

Small molecules,
BMPs

Intermediate lineages 

Chondrocytes…

Assaying mineral 
deposition activity:
Von Kossa/Alizarin Red 
Alkaline Phosphatase
Bone formation in vivo

Osteogenic markers:
RUNX2, SP7, BGLAP, 

Monolayer

EBs

Mineralization Media:
β-GP, AA, DEX

Mineralization Culture of Human iPS cells

Human iPS cells Osteoblasts

MSCs, ECs,

COL1A1, IBSP, OPN

Fig. 1 Human iPS cells can be differentiated into osteoblasts via different protocols
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remains challenging mostly because of the dearth of cell surface
markers that clearly identify the specific lineages and stages of
skeletogenesis. Recently, several groups have created genetically
marked reporters for use in human ES and iPS cells (53, 54).
These types of constructs will be extremely valuable for assaying
osteoblast and chondrocyte formation directly as well as identifying
additional markers for these skeletal cell lineages.

One emerging direction is the expanded use of 3D cell culture
methods for studying the osteogenic micro-niche as well as com-
bining human iPS cells with in vivo bone regeneration models in
rodents. For example, critical-sized cranial defects that do not
spontaneously heal can be implanted with human iPS cells seeded
onto scaffolds constructed from hydroxyapatite-coated poly-L-lac-
tic acid engineered to release BMP2. The implanted cells can facili-
tate the repair of these bone lesions, suggesting that human iPS
cells directly contribute to osteogenesis in vivo when implanted in
the right setting (45). This type of model can be very useful to
acquire terminal cell fate by pluripotent cells in an in vivo setting as
a complement to in vitro functional analysis.

1.8 Directed

Differentiation into

Other Cell Lineages

Found in Bone

One significant benefit for using human iPS cells to study the
skeleton is the potential ability to create all of the cell types present
in bone, including endothelial cells (38), osteoclasts (55), macro-
phages (56), and skeletal muscle cells (39). A promising strategy is
to use pluripotent cells as a source of intermediate cell types or
osteoprogenitors, such asMSCs (57). Several papers have described
generation of MSCs from human iPS cells using a variety of differ-
ent methods, including EB formation (58, 59), small molecules
such as TGFβ pathway inhibitors (60), synthetic polymer substrates
(61), or coculture with murine cells (62, 63). These methods are
promising and will benefit from new methods that mark tissue-
specific MSCs and a better understanding of the different subsets of
tissue-specific MSC-like cells. In addition, the finding that endo-
thelial cells expressing the FOP ACVR1 R206H mutation can
undergo endothelial-to-mesenchymal transition (EndoMT) to
form MSC-like cells and mineralize (64) suggests that there are
likely multiple routes to create osteogenic precursors.

1.9 Future Directions Human iPS cells are a promising way to generate human cell types
from patients with genetic conditions, for disease modeling, for
drug screening, and for tissue engineering. iPS cells provide an
important complement to adult stem cells and mesenchymal stem
cells by allowing the creation of a broader array of cell types.

More widespread application of iPS cells to musculoskeletal
diseases is on the forefront and will be facilitated by the develop-
ment of better directed differentiation protocols that exhibit high
yield, cellular uniformity, and ease of use, particularly for lineages
directly relevant to musculoskeletal tissues. New approaches using
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directed nucleases such as TALENs (65) and CRISPRs (66) also
show great promise as a way to induce point mutations and reporter
constructs into human genomic DNA. These methods will help
speed the process of genomic targeting for both pluripotent and
differentiated cells on a uniform background or to create corrected
isogenic cell lines as research controls. Finally, new marker and
reporter lines for identifying skeletal gene expression, cell surface
markers for purifying mesenchymal lineages, and libraries of dis-
eased and genetically corrected human iPS cells will be extremely
valuable tools for advancing the application of pluripotent stem
cells for musculoskeletal diseases.

2 Materials

2.1 Feeder Cell

Preparation

1. SNL Feeder cells: Mouse fibroblast STO cell line (67), which
carries the neomycin resistance and murine leukemia inhibitory
factor (LIF) genes—S, STO; N, neomycin resistance; L, LIF
gene.

2. Gelatin 0.1 % (Sigma #G1393). Store at 4 �C.

3. Feeder Cell Maintenance Medium:

DMEM with Glutamax LifeTechnologies, #10566

10 % FBS Hyclone, characterized grade, #SH30910.03
Lot#AYK176955

Pen/Strep 10 U/ml LifeTechnologies, #15140

Sodium Pyruvate 1 mM LifeTechnologies, #11360

4. Feeder Cell Freezing Medium:

DMEM with Glutamax LifeTechnologies, #10566

10 % FBS Hyclone, characterized grade, #SH30910.03
Lot#AYK176955

Pen/Strep 10 U/ml LifeTechnologies, #15140

Sodium Pyruvate 1 mM LifeTechnologies, #11360

10 % DMSO Sigma, #D2650

2.2 Human iPS Cells

Maintenance on

Feeders and Transfer

onto Matrigel

1. mTesr Medium (StemCell Technologies cat #05850). Supple-
ment is stored at �20 �C. Thaw Supplement at 4 �C overnight.
Store reconstituted medium at 4 �C for up to 2 weeks maximum.

2. BD Matrigel Basement Membrane Matrix—GFR, High con-
centration (BD 354263). Keep Matrigel frozen at �80 �C in
aliquots of 500 μl in 50 mL conical tubes. Thaw vial overnight
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at 4 �C and dilute with KO DMEM (LifeTechnologies,
#19829) to a concentration of 300 μg/ml. Note: Matrigel
should always be kept cold as it will polymerize at room
temperature and then will not dissolve in KO DMEM.

3. Y-27632 ROCK Inhibitor (EMD cat #688000). Resuspend in
DMSO and store in 10 mM aliquots at �20 �C.

4. Human iPS Cell Freezing medium.

90 % mTeSR, reconstituted with supplement

10 % DMSO Sigma, #D2650

10 μM Y-27632 ROCK Inhibitor
(EMD cat #688000) in DMSO

2.3 Osteoblast

Differentiation from

Human iPS Cells

1. mTeSR reconstituted with supplement (Stem cell Technology
#05850), stable for 2 weeks at 4 �C, warm up only aliquots to
room temperature prior to use.

2. Y-27632 (ROCK Inhibitor, (EMD cat #688000)).

3. Accutase (Millipore #SCR005).

4. Gelatin 0.1 % (Sigma # G1393).

5. Ascorbic Acid 2 Phosphate (Sigma # A8960), 50 mg/ml in
sterile water, stable for 1 week at 4 �C.

6. Dexamethasone water soluble (Sigma #D2915), 4 mM stock
solution in sterile water. Store stock solution at �20 �C, stable
for 6 month. Store 4 μM working solution at 4 �C.

7. Glycerol-2-Phosphate (Sigma #G9422), 1 M stock solution in
sterile water. Store at 4 �C.

8. β-mercaptoethanol (Sigma #M6250) 0.143 M in sterile water,
stable for 2 weeks at 4 �C.

9. Osteoblastic base medium (OB):

KO DMEM LifeTechnologies, #19829

20 % FBS Characterized Hyclone, characterized
grade, #SH30396.03 Lot#AVC66310,
Filter sterilized

2 mM Glutamax LifeTechnologies, #35050

1 % NEAA Nonessential Amino-Acids,
LifeTechnologies, #11140

0.1 mM β-mercaptoethanol Sigma #6250

10 mM Dexamethasone Sigma #D2915

10 mM glycerol-2-phosphate Sigma #G9422
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2.4 Von Kossa/

Alcian Blue Staining

1. Silver Nitrate solution (Fisher #S181-25), 0.05 g/ml in dis-
tilled water. Must be prepared and stored in the dark at room
temperature. Filter the solution with funnel and filter paper
before use.

2. SodiumCarbonate-Formaldehyde solution, 0.05 g/ml sodium
carbonate (anhydrous, Fisher#S263-500), 0.37 % formalde-
hyde solution (Fisher #F79-500), prepared in distilled water.
Store at room temperature.

3. 1 % Alcian Blue solution (Sigma, #A3157) pH 2.5 in 3 % acetic
acid. Filter through a 0.4 μm syringe filter just prior to use. This
solution is stable for up to 6 months. The final dye concentra-
tion is approximately 0.65 %. Store at room temperature.

2.5 Alkaline

Phosphatase Staining

1. 95 % EtOH.

2. BCIP/NBT substrate solution (Sigma, #B5655). Keep the
substrate solution protected from light. Can be at RT for 1 h
max just prior to use.

3 Methods

3.1 Feeder Cell

Preparation

1. Thaw one vial of 1.5 � 106 of nonirradiated STO ECACC
SNL6/7 cells and plate onto one T225 with 50 ml Feeder
Medium. Culture 4–5 days, no medium change needed.

2. Once the cells are 90 % confluent (small cells, just touching
together), split 1:10 into ten new T225s (or use the multilayer
flasks, such as BD353144). Culture 4–5 days, until confluent.

3. Harvest cells by dissociating with 4 ml trypsin/T225 for
2–5 min. Quench with 4 ml Feeder Medium. Pool five flasks
together (40 ml total). Rinse the five flasks with 12 ml feeder
medium, recovering >10 ml. Repeat for other set of five flasks

4. Count cells. Expected yield is 240–300 � 106 cells total for ten
T225 flasks. Freeze down vials of nonirradiated cells here, if
needed. Irradiate remaining cells for 60 Gy total dose. Note
that many commercial sources use/suggest 40 Gy. We have had
a few cases of breakthrough growth at low doses. However, do
not overdose, as at >80 Gy the cells have low viability and will
not support iPS cell cultures.

5. Spin down cells at 200 � g for 10 min. Aspirate medium and
resuspend cells in Freezing Medium. Freeze in 1 ml aliquots of
3 � 106 cells slowly (1 �C/h, using cell freezing cooler) and
store long term in liquid nitrogen tank.

6. If needed, there are enough leftover cells in the TC flasks that
new medium can be added on and SNLs re-expanded once
(i.e., don’t throw the flasks away if you want to do a second
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expansion. More than two expansions reusing the same flasks
are not recommended).

3.2 Human iPS Cells

Maintenance on

Feeders and Transfer

onto Matrigel

1. SNL Feeder Cell Thawing

(a) Add 1 mL of 0.1 % gelatin to each well of a six-well plate
and incubate the six-well plate with gelatin at 37 �C for 15
min.

(b) Thaw a vial of irradiated SNLs (3 � 106 cells per vial) and
resuspend in MEF medium.

(c) Remove the gelatin from the six-well plate. Add 2mL of the
cell suspension to each well of the plate and incubate at
37 �C.

(d) Wait at least 24 h before seeding iPS cells (Note 1).

2. Thawing human iPS cells.

(a) Prepare an aliquot of complete mTeSR + 10 μM ROCK
inhibitor.

(b) Thaw human iPS cells in a 37 �C water bath and resuspend
KO DMEM.

(c) Centrifuge for 3 min at 100 � g, aspirate the supernatant,
and resuspend the iPS cells in 2 ml complete mTeSR
+10 μM ROCK inhibitor (final concentration).

(d) Remove the medium of the SNLs and plate cells into one to
three wells of a six-well SNLs plate.

3. Passaging iPS cells (generally 4–5 days after thawing or seeding).

(a) Prewarm complete mTeSR supplemented with ROCK
inhibitor final concentration 10 μM.

(b) Remove the medium from iPS cells and rinse with DPBS.
Add 0.5 mL of accutase to each well and incubate at 37 �C
for 3 min.

(c) While the cells are incubating, take a six-well plate with
SNLs from the 37 �C incubator and remove the medium.

(d) Transfer the iPS cells to a 15 mL conical tube and centri-
fuge for 3 min at 100 � g.

(e) Remove supernatant and resuspend the iPS cells in 2 mL
complete mTeSR supplemented with ROCK inhibitor.
Split the cells (typically 1:10, but high splits are generally
not tolerated well) to a new plate of SNLs with mTesr and
ROCKI; adjust the split ratio for each cell line.

(f) Change medium every 24 h with 2 mL of complete mTeSR
(no ROCKI).

(g) Human iPS cells should be split once they are 80 % conflu-
ent, generally 4–5 days after thawing or splitting. It is
important to check the phenotype and make sure that iPS
cells are not differentiated. (Human iPS cells may be plated
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on SNLs for maintenance or on Matrigel for further differ-
entiation experiments, if desired. See below.)

4. Matrigel-coated plates preparation.

(a) Prepare Matrigel plate. Frozen aliquots of Matrigel need to
be thawed overnight at 4 �C.

(b) Dilute Matrigel with cold KO DMEM (final concentration
approx. 300 μg/ml). (Check the concentration based on
the batch). Diluted Matrigel can be kept in the conical at
4 �C for 1–2 weeks.

(c) Add one 1 ml of diluted Matrigel per well of six-well plate
or 3 ml per 10 cm plate. Place in the incubator at 37 �C for
40 min.

Note: if the plates are left in the incubator for longer, it is
important to make sure that the wells don’t dry out. The
coated plates should be used the same day they were
coated.

(d) Before use, aspirate Matrigel, then immediately seed the
iPS cells.

5. Freezing Human iPS cell

(a) Centrifuge cells at 200 � g for 10min. Aspiratemedium and
resuspend cells in Human iPS cell Freezing Medium. Freeze
in 1 ml aliquots cooling cells slowly (1 �C/h, using cell
freezing cooler) and store long term in liquid nitrogen tank.

3.3 Osteoblast

Differentiation from

Human iPS Cells

1. Culture human iPS cells in 10 cm plates to 85 % confluence.
One 10 cm plate should allow preparing two 24-well plates.

2. Day 0: Gelatin coat plates based on expected number of cells.
For 24-well plates, use 400,000 cells/well. Wait at least 30 min
for gelatin to coat the surface at 37 �C.

3. iPS cells are washed with DPBS and then incubated with 2 ml
of prewarmed Accutase for 3 min at 37 �C. To completely
detach the cells you may tap the side of the plate or scrap them.

4. Add 5 volumes of KO DMEM (approx. 10 ml), gently pipette
up and down to detach all the iPS cells, transfer in a 15 or 50 ml
conical tube, and centrifuge at 100 � g for 3 min.

5. Resuspend the iPS cells in 15ml37 �Cprewarmedmixedmedium
90 % OB Medium (OB Base medium supplemented with
50 μg/ml of Ascorbic acid) / 10 % mTeSR, supplemented with
10 μM ROCK Inhibitor) for 1 � 10 cm2 dish (increase if more
dishes have been pooled).

6. Count cells. Remove the gelatin from the receiving plate.

7. Based on the amount of live cells, plate 400,000 cells/well in
1 ml of mixed medium and place the plates at 37 �C, 5 % CO2.
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8. Day1: Change medium to Osteoblastic base medium extempo-
raneously supplemented with 50 μg/ml of Ascorbic Acid.

9. Medium is changed every other day until day 24. The medium
should be changed very carefully as the cells may start to peel
off around day 10.

3.4 Von Kossa/

Alcian Blue Staining

for Tissue Culture

(Note 2)

1. All steps of this protocol should be performed in a chemical
hood.

2. Remove medium from wells and gently rinse with DPBS.

3. Fix the cells with 4 % PFA for 15 min and rinse three times with
water. Rinse wells carefully, as any residual PFA may cause the
subsequent staining steps to be spuriously positive.

4. Stain in Silver Nitrate solution for 15 min in dark (wrap with
aluminum foil) and wash three times with distilled water, 1 min
each.

5. Develop in Sodium Carbonate-Formaldehyde solution for
2 min (time is critical) and wash two times with distilled
water, 1 min each. At this time plates may be air-dried and
photographed or continue with the Alcian Blue staining.

6. Optional alcian blue staining: Add 1 % Alcian Blue solution
(pH 2.5) for 1 h (shorter is likely OK) and wash two times with
water, 1 min each.

7. Air-dry plate and photograph or scan.

3.5 Alkaline

Phosphatase Staining

1. Aspirate medium from the cell culture plates to fix and wash
once with PBS 1�.

2. Fix the cell by adding 95 % EtOH and incubate at RT for
10 min minimum (1 h max).

3. Rinse three times with DPBS and add NBT/BCIP substrate
solution to each well.

4. Incubate the cell culture plate for 5–10 min at 37 �C, 5 % CO2.

5. Rinse three times with water and dry in open air.

4 Notes

1. Feeder cell preparation.
Note: It is not required to change the medium every day since
the cells are irradiated and will not grow. However, if they are
going to stay on the plate for an extended period of time, it is
recommended to change the medium every 3–4 days.

2. Alcian blue staining.
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Generally, the two stains should be done separately at first to
make sure the process is working and robust.
Alcian blue pH can be adjusted to stain different mucins:
pH 2.5 ¼ most acid mucins (except strongly sulfated group)

(blue).

pH 1.0 ¼ only weekly and strongly sulfated acid mucins.

pH 0.2 ¼ strongly sulfated acid mucins only.

Mineral ¼ black
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