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Abstract Mutated or dysregulated protein kinases represent major oncogenic
drivers in cancer. Due to the general druggability of these potential oncoproteins,
protein kinases have been regarded the most significant drug targets in cancer cells
for the past three decades. Starting with the approval of imatinib for targeting
BCR-ABL in leukemia positive for Philadelphia chromosome, a multitude of dif-
ferent kinase inhibitors have been developed and approved for the market so far.
Additionally, many new compounds with increased efficacy and target specificity
are under development and clinical testing. While several of these compounds allow
for an efficient temporary treatment success in different tumor entities, long-term
cancer control is often limited due to the development of therapy resistance. Thus,
overcoming drug resistance in tumors represents a major challenge for successful
cancer therapies in the future.
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Abbreviations

ALL Acute lymphoblastic leukemia
CEL Chronic eosinophilic leukemia
CLL Chronic lymphoblastic leukemia
CML Chronic myeloid leukemia
CNS Central nervous system
CRC Colorectal cancer
DFSP Dermatofibrosarcoma protuberans
ER Estrogen receptor
FDA Food and Drug Administration
GI Gastrointestinal
GIST Gastrointestinal stromal tumor
HCC Hepatocellular carcinoma
HES Hypereosinophilic syndrome
MDS/MDP Myelodysplastic/myeloproliferative diseases
NRY Non-receptor protein-tyrosine kinase
NSCLC Non-small cell lung carcinoma
PDAC Pancreatic ductal adenocarcinoma
PH Philadelphia chromosome
PNET Primitive neuroectodermal tumor
RCC Renal cell carcinoma
RY Receptor protein-tyrosine kinase
S/T Protein-serine/threonine protein kinase
SEGA Subependymal giant cell astrocytoma
shRNA Short hairpin RNA
T/Y Threonine/tyrosine dual specificity protein kinase

1 Introduction

Over the past 20 years, research revealed that many diseases emerge from impair-
ments in signal transduction. This insight has been used by scientists to unravel
molecular mechanisms that drive complex diseases such as solid tumors, leukemias,
systemic autoimmune diseases, and inflammatory diseases. Hence, biologists, chem-
ists, physicians, and pharmacologists have focused their clinical research toward
development of specific molecules targeting key signaling cascades of these dis-
eases. To this point, most molecules aiming to this direction of treatment represented
protein kinase inhibitors. Kinases are proteins that play a critical role in cellular
signal transduction by phosphorylating downstream targets. Because dysregulation
and mutations of protein kinases play major roles in human diseases, this family of
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enzymes has become one of the most significant drug targets over the past three
decades. It all started in 1978, when the protein kinase c-SRC was found to share
high similarity to a protein from sarcoma virus and act as an oncogene [1]. In
addition, studies in the early 1980s pointed out that hyperactivation of a protein
kinase (protein kinase C) represents a key mechanism for tumor promotion [2]. The
idea to target this group of enzymes therapeutically was also fueled by findings
showing that naphthalene-sulphonamides were able to block kinases [3]. These
molecules were used as a starting point to further synthetize drugs that inhibit protein
kinases.

One of the key experiments for the development of kinase inhibitors was the
crystallization of protein kinase A in 1991. Susan Taylor and colleagues revealed the
structure of the kinase core for the very first time, giving insight into a key element of
all kinases in the genome. This study demonstrated that residues involved in the
binding of ATP were conserved among kinases [4, 5]. The crystal structure of PKA
gave valuable information for the structural function of these enzymes. However,
since core domains of kinases are highly conserved, the idea of selective inhibition
of a protein kinase was also considered to be a major challenge.

Starting from the late 1980s, molecules targeting more than one kinase with
different efficacies were developed. Some years before that, the only purely isolated
tyrosine protein kinases were epidermal growth factor receptor (EGFR) and insulin
receptor. The new molecules were 1,000-fold more potent against EGFR than against
insulin receptor kinase. Interestingly, these drugs were found to be inactive against
serine/threonine kinases [6]. Based on this evidence, scientists could then develop
more inhibitors against these kinases that show structure/activity relationships.

Later on, new findings strengthened the idea of targeted kinase drug develop-
ment. In particular, ATP mimics were found to selectively inhibit platelet-derived
growth factor receptor (PDGFR), while they were not potent against other protein
kinases. In addition, a study in the mid-1990s showed that quinoxalines are potent
inhibitors of PDGFR though not able to interact with EGFR. Accordingly,
quinazolines showed the opposite effect [7, 8]. Based on this finding, years later,
Zeneca developed the inhibitor gefitinib that targets EGFR. Since 1988, when the
first study showing targeted inhibition of the catalytic activity of EGFR was
published, the number of protein kinase inhibitor agents developed climbed steadily.
It is interesting to note that although EGFR and receptor tyrosine-protein kinase
erbB-2 (HER2) share high homology, scientists were able to develop selective
molecules against these targets with low cross-reaction already since 1993 [9].

A breakthrough was the first approval of a protein kinase inhibitor by the FDA
(2001). This molecule was imatinib, firstly developed by Zeneca as a PDGFR
inhibitor. Interestingly, it was later shown that the drug had also high efficacy against
BCR-ABL, making it suitable for treatment of chronic myelogenous leukemia
(CML) and acute lymphocytic leukemia (ALL) patients positive for Philadelphia
chromosome [10, 11]. Since 2001, 48 kinase inhibitors have been approved to the
market (Table 1) [12]. The vast majority are drugs against tyrosine protein kinases
and receptors for the treatment of cancer. Only a few, ten of them, target serine/
threonine kinases. The main difficulty of developing selective agents against serine/
threonine kinases is the high similarity of the ATP-binding domain of these
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enzymes. In addition, more serine/threonine kinases (420) than tyrosine kinases
(90) were found in the human kinome. In the future, the use of different development
strategies along with alternative targeting domains might extend the numbers of
FDA-approved inhibitors [13, 14].

2 EGFR Inhibitors

The epidermal growth factor receptor (EGFR) is a transmembrane protein that acts
as a receptor for ligands of the epidermal growth factor (EGF) family [15]. The
EGFR gene is located at chromosome 7, and the encoding protein product encom-
passes 1,210 amino acids. EGFR is a member of the ErbB family, which is a family
of four similar receptors with tyrosine kinase activity. The family consists of EGFR
or HER1, HER2, HER3, and HER4. EGFR is a cell surface receptor and represents
the starting point of signal transduction mechanisms controlling diverse cellular
responses such as cell proliferation, migration, survival, and apoptosis [16]. Muta-
tions and amplification of the EGFR gene can lead to overexpression of the receptor.
This results in constant kinase activity and uncontrolled activation of downstream
pathways. In breast cancer patients, the incidence of overexpressed EGFR is approx-
imately 10–30% [17]. Apart from breast cancer, upregulated EGFR can also be
found in several other epithelial tumor entities such as lung cancer, prostate cancer,
and squamous carcinomas of head and neck [17–19] (Fig. 1).

In addition, deletion of EGFR can also be found in several malignancies. One of
the most common deletions in the EGFR locus is EGFRvIII, where exons 2–7 of
EGFR are deleted giving rise to a receptor lacking ligand-binding domain but
remaining constantly active [20, 21]. Amplification of this mutant is present in
gliomas such as glioblastomas with a frequency of 64% (grade IV) but also in
head and neck squamous carcinomas and medulloblastomas [21, 22]. High expres-
sion of EGFR has been also correlated with short survival time of cancer
patients [23].

Lapatinib is an inhibitor of both EGFR and Her2 receptor tyrosine kinases. It was
approved in 2007 for treatment of breast cancer, non-small cell lung cancer
(NSCLC), head and neck cancer, as well as gastric cancer. The use of lapatinib

Fig. 1 Chemical structures of EGFR inhibitors
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can inhibit the signaling of MAPK and PI3K pathways in patients with
overexpressing EGFR and HER2. In particular, the response to lapatinib is linked
to HER2 overexpression. The dual specificity of this drug results in inhibition of
phosphorylation of AKT, RAF, and ERK. Interestingly, breast cancer patients
positive for HER2 amplification with brain metastases are treated with lapatinib in
combination with capecitabine for improvement of survival rates [24–27]. Gefitinib
is an inhibitor targeting selectively EGFR (Fig. 1). Patients with locally advanced or
metastatic NSCLC experienced beneficial outcome when treated with gefitinib
[28]. In addition, treatment of EGFR mutation-positive NSCLC patients with
gefitinib improved progression-free survival in comparison with chemotherapy.
This was the first study that showed longer progression-free survival of patients
treated with selective therapy compared to classic chemotherapy [29, 30]. Erlotinib
(another kinase inhibitor targeting EGFR) is used for treatment of locally advanced
or metastatic NSCLC (Fig. 1). A clinical study published in 2011 revealed that use of
erlotinib prolongs survival of NSCLC patients, previously treated with first-line
chemotherapy, leading to its approval for this use [31]. In addition, erlotinib
combined with gemcitabine increases overall survival of patients with unresectable
pancreatic cancer positive for mutant EGFR [32]. Despite providing therapeutic
benefit, use of erlotinib has severe side effects such as breathing abnormalities, skin
rush, diarrhea, and cough, and the recommended dosage is close to the maximum
tolerated dose [33].

Afatinib is an irreversible inhibitor of ErbB family of kinase receptors (Fig. 1). As
a first-line treatment of patients with lung adenocarcinoma carrying activating
mutations in EGFR, afatinib increased progression-free survival but not overall
survival, when compared to gefitinib [34]. In addition, the LUX-Lung 6 trial
revealed that patients with advanced lung adenocarcinoma treated with afatinib
had prolonged progression-free survival and time to treatment failure in comparison
with those treated with gemcitabine in combination with cisplatin [35].

3 ALK Inhibitors

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor. In 1994, ALK was
described for the first time as a component of a fusion protein derived from
translocation t2;5 in anaplastic large cell lymphoma [36]. Several years later, the
full length of ALK receptor tyrosine kinase was characterized. It consists of an
extracellular ligand-binding domain, a transmembrane domain, and an intracellular
kinase domain that shares high similarity with the insulin receptor
(ER) [37, 38]. Although the physiological function of ALK is not completely
revealed, it has been described to play a critical role in early embryo development
and neural system development [38–41]. Furthermore, activation of ALK is
involved in activation of PI3K-AKT, CRKL-C3G, MEKK2/3-MEK5-ERK5,
JAK-STAT, and MAPK signaling pathways [38, 42–45]. Around 3–7% of
NSCLC patients (usually non-smokers) have a particular mutation, where
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echinoderm microtubule-associated protein-like 4 (EML4) gene is fused to ALK
gene. This inversion of chromosome 2 results in the expression of the fusion protein
EML4-ALK consisting of the N-terminal region of EML4 and the intracellular/
kinase region of ALK [46, 47] (Fig. 2).

The first inhibitor of this category approved by FDA was crizotinib (2011) Fig. 2.
Initially, it was developed as a c-Met inhibitor but is also able to target ALK, proto-
oncogene tyrosine-protein kinase (ROS1), and hepatocyte growth factor receptor
(HGFR) [48]. Profile 10,019 phase-I clinical trial and profile 100,513 showed
significant objective response rates, prolonged progression-free survival, and median
progression-free survival in pretreated ALK-positive (EML4-ALK) NSCLC patients
[49, 50]. Based on this evidence, crizotinib received conditional approval for use
also in Canada, in 2012. Subsequently, phase-III trials revealed superior median
progression-free survival and greater reduction in symptoms related with lung cancer
when treated with crizotinib compared to chemotherapy [51, 52]. The results from
these studies led to full approval of crizotinib marking it as the “gold standard” of
ALK-positive NSCLC.

Ceritinib represents a next-generation ALK inhibitor and showed a higher
potency than first-generation inhibitors such as crizotinib (Fig. 2). Ceritinib showed
a potency in inhibiting ALK-positive NSCLC that were previously treated and
resistant to crizotinib [53]. This finding suggested potency in treatment of mutated
and therapy-resistant ALK tumors. Indeed, phase-I ASCEND-1 trial resulted in
significant overall response rates in patients pre-acquired with both identified and
non-identified resistance mechanisms to crizotinib [54]. An ASCEND-2 phase-II
trial showed beneficial response of ceritinib in patients pretreated with crizotinib or
chemotherapy and with or without brain metastases [55]. These data resulted in the
approval of ceritinib as the first-choice treatment for crizotinib-resistant,
ALK-positive NSCLC patients in 2014. In addition, an ASCEND-5 phase-III trial
confirmed superior response of ceritinib. In this trial, NSCLC patients with brain

Fig. 2 Chemical structures of ALK inhibitors

Exploiting Kinase Inhibitors for Cancer Treatment: An Overview of Clinical. . . 133



metastases that were previously treated either with crizotinib or platinum-based
chemotherapy were treated with ceritinib or chemotherapy [56]. Finally, ceritinib
demonstrated potency against naive ALK-inhibitor NSCLC patients. The ASCEND-4
study revealed a median progression-free survival of 16.6 months of patients with
advanced ALK-positive NSCLC treated with ceritinib versus 8.1 months of the
chemotherapy-treated group [57]. The results from this study led to approval of
ceritinib in 2017 by FDA as first-line treatment for patients with ALK-positive
NSCLC [58]. Alectinib is another selective ALK inhibitor (Fig. 2). It was approved
by FDA in 2015 for the treatment of NSCLC patients with acquired resistance to
crizotinib (NP28673 and NP28761 phase-II clinical trials) [59, 60]. Later, the
randomized phase-III clinical trial ALEX showed extended beneficial activity of
alectinib in ALK-positive NSCLC patients. In particular, results demonstrated a
superior progression-free survival rate of alectinib compared to crizotinib in naive
ALK-inhibitor patients. In addition, alectinib was found to be less toxic and more
active toward CNS. Only 12% of patients in the alectinib group showed a CNS
progression event compared to 45% of the crizotinib group. Taking into account the
previous results, FDA approved alectinib as first-line treatment of ALK-positive,
metastatic NSCLC in 2017 [58, 61]. Latest additions to the ALK inhibitors’ list
include brigatinib and lorlatinib. Brigatinib is an ALK inhibitor used for NSCLC
resistant to crizotinib (Fig. 2). It has received accelerated approval by the FDA in
2017 after phase-II clinical trial ALTA demonstrated significant results for the
treatment of patients with progressed NSCLC [62, 63]. Lorlatinib was accepted for
the same treatment in 2018 (Fig. 2). Both drugs demonstrate significant intracranial
activity making them very potent in decreasing the formation of brain metastasis
[63, 64]. Phase-III clinical trial CROWN is currently ongoing for comparison of
lorlatinib with crizotinib as first-line treatments [58, 65].

4 VEGFR Inhibitors

More than 40 years ago, the hypothesis of targeting angiogenesis as a tumor therapy
was established [66]. Although many factors are involved in mechanisms leading to
blood vessel formation, activation of vascular endothelial growth factor (VEGF)
pathways was described to be critical in pro-angiogenic signaling. Several types of
solid cancers overexpress VEGF-A, making initially this protein to a highly relevant
target for selective antiangiogenic therapeutic strategy [67, 68]. Another strategy for
inhibiting angiogenesis is the blockage of tyrosine kinase activity of the
corresponding receptors VEGFR1, VEGFR2, and VEGFR3. Many receptor tyrosine
kinase inhibitors targeting VEGFR have been approved so far. Sorafenib, sunitinib,
axitinib, regorafenib, pazopanib, vandetanib, cabozantinib, and lenvatinib are used
for treatment of different solid carcinomas such as renal cell carcinoma (RCC),
hepatocellular carcinoma (HCC), thyroid cancer, pancreatic neuroendocrine tumor,
gastrointestinal stromal tumor (GIST), and metastatic colorectal cancer (CRC)
(Fig. 3). Sorafenib and sunitinib represent pioneer kinase inhibitors for the inhibition
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of angiogenic signaling in cancer. These multikinase inhibitors were initially
approved for the treatment of advanced renal cell carcinoma. The pivotal phase-III
study TARGET resulted in significantly prolonged progression-free survival time of
patients with resistant, advanced renal cell carcinoma when treated with sorafenib.
Sunitinib showed similar results in the randomized phase-III trial, where it was
compared as first-line treatment to subcutaneous injection of interferon-α for treat-
ment of metastatic RCC. Patients of sunitinib group showed improvement in median
progression-free survival and objective response rate [69–72]. Sorafenib and
sunitinib have been also accepted by FDA for treatment of HCC and advanced
pancreatic neuroendocrine tumors, respectively [73, 74] (Fig. 3).

Regorafenib was the first therapeutic agent to show improvement in the overall
survival of patients with metastatic CRC, previously progressed on classic therapies
[75]. Based on these results, regorafenib was approved by FDA in 2012 for treatment
of metastatic CRC. Half a year later, regorafenib was also accepted for the treatment
of advanced GIST [76]. Regorafenib also shows beneficial outcome when used as
treatment of HCC, significantly longer overall survival in second-line HCC patients,
leading to its approval by the FDA for this use in 2017 [77].

Fig. 3 Chemical structures of VEGFR inhibitors
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Second-generation VEGFR/multikinase inhibitors include pazopanib,
cabozantinib, lenvatinib, axitinib, and vandetanib (Fig. 3). All of them have been
approved by the FDA for the treatment of one or several cancer types including
thyroid cancer, RCC, soft tissue sarcoma, and medullary thyroid cancer [78].

5 BCR-ABL Inhibitors

The ABL protein family consists of two members: c-ABL and ARG.
Physiologically, c-ABL is involved in actin remodeling, cell adhesion, motility,
DNA damage response, and microbial pathogen response. In several types of cancer,
deregulation and uncontrolled expression of c-ABL kinase has been described
[79, 80]. When phosphorylated, c-ABL induces activity of downstream targets,
activating ERK5, RAC/JNK, and STAT 1/3 pathways. C-ABL is also a molecular
component driving CML. Translocation of part of chromosome 9 to chromosome
22 (Philadelphia chromosome) leads to the expression of oncogenic fusion protein
BCR-ABL [81] highlighting ABL is an important target for the development of
selective inhibitors. Imatinib was the first kinase inhibitor to be approved by FDA
(2001) (Fig. 4). It is an inhibitor of three different targets: ABL, mast/stem cell
growth factor receptor (tyrosine kinase KIT or CD117), and PDGFR [82]. After
phase-III clinical trial showed improved cytogenetic response rates of CML patients
treated with imatinib, the drug was accepted for treatment of CML in blast, accel-
erated, and chronic phases [83]. Later, in 2002 and 2008, imatinib was approved also
for treatment of GIST both for advanced, metastatic tumors and previously resected
tumors [84, 85]. Unfortunately, imatinib treatment is not successful in around 30%
of patients [86]. The reason is acquired resistance, based on either a reduced cellular
uptake of the drug, an increased activity of efflux transporters, or point mutations
leading to conformational changes of BCR-ABL and therefore to a reduced binding
to imatinib. In addition, resistance is acquired by amplification and overexpression
of BCR-ABL gene [87]. Second-generation ABL inhibitors such as nilotinib,
dasatinib, and bosutinib were developed, in order to overcome mutation-related
resistance (Fig. 4). They were all approved for the treatment of CML: nilotinib
and dasatinib as first- or second-line treatment and bosutinib as second-line therapy
[88]. Nilotinib showed highly promising results because it was potent against almost
all mutations resulting in BCR-ABL-dependent resistance [89]. Dasatinib showed
high potency in patients with chronic phase CML and a faster treatment response
when it was compared to imatinib [90]. Due to its unique structure, dasatinib is also
potent against some conformation-altering mutations of BCR-ABL
[91, 92]. Bosutinib has a much different structure. It was initially designed as a
SRC inhibitor but found to have activity against ABL [93]. Although bosutinib is not
potent against major resistant mutants and does not have high selectivity for
BCR-ABL, it has the benefit to be not sensitive to resistance efflux transporters
and remains in the cells [94, 95]. Therefore, bosutinib is approved for second-line
treatment of CML, while trials that test it as first-line treatment are ongoing [88, 96]
(Fig. 4).
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The only approved third-generation inhibitor against ABL is ponatinib (Fig. 4). It
is a dual SRC/ABL inhibitor that is accepted for the treatment of CML and Ph+ ALL.
The structure of ponatinib was modified accordingly so that is highly potent against
resistant mutants [97]. Clinically, it shows potency in the treatment of progressed
and pretreated Ph+ leukemias. In addition, patients with resistant mutations also
benefit from ponatinib treatment. In the corresponding study with 43 patients har-
boring the abovementioned characteristics, 98% showed a complete hematologic
response and 72% a major cytogenetic response [98]. Finally, ponatinib has proven
to be a valuable alternative to stem cell transplantation in patients with mutant,
advance CML and Ph+ ALL [88, 99].

6 RAF Inhibitors

The RAS/MAPK pathway controls cell growth, proliferation, and survival in a broad
range of different tumor entities. Activation of membrane-associated RAS proteins
(KRAS, NRAS, HRAS) results in a recruitment of RAF proteins (ARAF, BRAF,
and RAF1) leading to a phosphorylation of MEK1 and MEK2 which in turn
phosphorylate and activate extracellular signal-regulated kinase (ERK1 and
ERK2) (Fig. 5).

Fig. 4 Chemical structures of ABL inhibitors
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RAS represents an important proto-oncogene and a major oncogenic driver. It
was found mutated in around 30% of all human cancer entities [100]. Due to the fact
that RAS proteins do not harbor any cavities for small molecule interaction,
approaches to directly inhibit the function of RAS have not been successful so far.
Therefore, the inhibition of RAS downstream factors such as RAF, MEK, and ERK
has gained interest for the treatment of cancer [100].

RAF monomers are usually inactive, since the N-terminal domain of BRAF
triggers autoinhibition [101, 102]. Upon activation, RAF forms homo- and
heterodimers which induces downstream signaling to MEK. While physiological
RAS activation induces MEK activation mainly via the formation of BRAF dimers
[103], oncogenic RAS often triggers the formation of BRAF-RAF1 heterodimers
[101, 104, 105].

BRAF mutations are present in 8% of all human tumors [106]. They were found
in more than 50% of melanoma patients and were also identified in CRC (5–10%),
hairy cell leukemia (�100%), thyroid carcinomas (25–45%), and, as a rare event,
ovarian and lung cancer [106, 107]. Ninety percent of all BRAF mutations account
for a substitution of valine with glutamic acid at position 600 (V600E) [100]. This
mutation results in a constitutive kinase activity of BRAF monomers and protects
BRAF from ERK-mediated negative feedback signaling [102].

The identification of BRAF mutations as oncogenic drivers led to intensified
efforts in order to develop more selective and potent BRAF inhibitors. This work
yielded in the development of vemurafenib (Zelboraf) and dabrafenib (Tafinlar) as
FDA-approved drugs for the treatment of BRAFV600E-mutated advanced melanoma
[108–110] (Fig. 5).

Vemurafenib is a BRAFV600E inhibitor with an IC50 of 31 nM, which inhibits also
BRAF proteins with other mutations (V600D, V600K, and V600R) as well as RAF1
(IC50 ¼ 48 nM) [109]. It shows only a low affinity to wild-type BRAF
(IC50 ¼ 100 nM) [111]. In preclinical treatment studies, vemurafenib was effective
in xenograft models of BRAFV600E-mutated melanoma [108] and showed efficacy
against BRAF-mutated melanoma cell lines [112].

Upon successful phase-I and phase-II clinical trials, a phase-III clinical trial of
vemurafenib was initiated on 675 patients suffering from metastatic, BRAFV600E-
mutated melanomas (who did not receive any treatment before). This trial showed a
median overall survival of 13.2 months for patients under vemurafenib treatment,

Fig. 5 Chemical structures of RAF inhibitors
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while patients under dacarbazine (as a control) showed only a survival of 9.9 months.
Furthermore, vemurafenib resulted in a significant response in 48.4% of patients
(in comparison with 5.5% in the dacarbazine-treated group) [113, 114].

Although vemurafenib was in general well tolerated by patients, several adverse
symptoms were found upon treatment such as fatigue, nausea, alopecia,
lymphopenia, neutropenia, headache, and diarrhea [113, 115–118].

Dabrafenib was shown to be in general a more potent Raf inhibitor than
vemurafenib. It inhibits BRAFV600E with an IC50 of 0.8 nM, wild-type BRAF with
an IC50 of 3.2 nM, and RAF1 with an IC50 of 5 nM [109, 119]. In preclinical assays,
dabrafenib also showed efficacy against BRAF-mutated cell lines and reduced tumor
development in xenograft melanoma mouse models [119]. A phase-III clinical trial
of dabrafenib was performed in a total of 250 patients suffering from BRAFV600E-
mutated metastatic melanoma. While 187 patients received 150 mg dabrafenib twice
per day, 63 patients received dacarbazine treatment [120]. In the dabrafenib-treated
group, 6 patients (3%) showed a complete and 87 patients (47%) partial response,
while 78 patients (42%) displayed a stable disease. In the dacarbazine group, one
patient (2%) showed a complete and three patients (5%) partial response. A stable
disease was seen in 30 patients (48%). The median progression-free survival in the
dabrafenib group was 5.1 months, while dacarbazine-treated patients showed a
progression-free survival rate of 2.7 months.

Side effects found often associated with dabrafenib treatment were pyrexia,
headache, neutropenia, fatigue, thrombocytopenia, leukopenia, asthenia,
hyponatremia, arthralgia, nausea, chills, myalgia, vomiting, diarrhea, and hair loss
[108, 109, 117, 118, 120].

Overall, vemurafenib and dabrafenib induced initial therapeutic effects against
BRAFV600 mutant melanomas. However, the long-term treatment success is limited
due to the development of secondary resistance. Thus, most patients relapse after
1 year of treatment [121]. In addition, other tumor entities with BRAFV600E muta-
tion, such as colorectal, pancreatic, and thyroid cancer, mostly show a primary
resistance to these drugs [122, 123]. It was hypothesized that long-term control of
tumor development by these inhibitors is limited by the fact that they do not
efficiently inhibit the dimerization of RAF and are partly unsuccessful in targeting
BRAF and RAF1 dimers. Thus, BRAF homodimeric or BRAF-RAF1 heterodimeric
signaling can trigger therapy resistance [100–102]. In addition, it was shown that
therapy resistance of RAF inhibition can be also induced by the formation of
different BRAFV600E splice variants which can form resistant dimers [124].

Of note, RAF inhibitors were also applied in tumors without BRAF mutation. For
example, the previously mentioned multikinase inhibitor sorafenib represents a RAF
inhibitor and showed certain efficacy in the treatment of patients with HCC and
RCC. Sorafenib was approved by the FDA for the treatment of these tumor types
[125–129]. However, development of resistance against sorafenib is a frequent
incident in treated patients.

Sorafenib inhibits RAF1 with an IC50 of 6 nM, wild-type BRAF with an IC50 of
25 nM, and BRAFV600E with an IC50 of 38 nM. Of note, it is hypothesized that the
effect of sorafenib is based on a combined inhibition of RAF and other kinases such
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as VEGFR. Sorafenib inhibits VEGFR1 with an IC50 of 26 nM and VEGFR2 with
an IC50 ¼ 90 nM. Other kinases that were found to be influenced by sorafenib are
FLT-3 (IC50 ¼ 33 nM), p38 (IC50 ¼ 38 nM), RET (IC50 ¼ 47 nM), c-KIT
(IC50 ¼ 68 nM), and FGFR1 (IC50 ¼ 580 nM) [109, 126, 130]. A phase-III clinical
trial testing sorafenib in advanced HCC (SHARP trial) was performed with
602 patients that were treated either with 400 mg sorafenib twice daily (299 patients)
or with placebo (303 patients) [74, 129]. In that trial, 7 patients (2%) showed partial
response, and 211 patients (71%) had a stable disease in the sorafenib group,
whereas 2 patients (1%) showed partial response and 204 patients (67%) had a
stable disease in placebo group. The median overall survival was 10.7 months upon
sorafenib and 7.9 months upon placebo treatment. Median time to symptomatic
progression was 4.1 months in the sorafenib group and 4.9 months in the placebo
group. In addition, median time to radiological progression was 5.5 months in the
sorafenib group and 2.8 months in the placebo group [109].

As mentioned before, phase-III clinical trials of sorafenib were also conducted
against other tumor entities such as RCC and thyroid carcinoma [74, 128, 131]. In a
trial against radioactive iodine refractory thyroid cancer (DECISION), 417 patients
were treated either with 400 mg sorafenib twice per day (207 patients) or with
placebo (210 patients) [132]. Sorafenib triggered a partial response in 12.2% of
patients which was seen in only 0.5% of patients treated with the placebo. Further-
more, the sorafenib-treated group showed a median overall survival of 10.8 months
compared to 5.8 months in the placebo-treated group.

Adverse effects associated with sorafenib were fatigue, anorexia, hypertension,
nausea, vomiting, alopecia, flushing, constipation, voice change, diarrhea, headache,
joint pain, pruritus, weight loss, hemorrhage (upper GI), neuropathy, stomatitis,
hypophosphatemia, musculoskeletal pain, and abdominal pain [74, 109, 118, 125,
129, 132].

The molecular mechanisms for resistance against sorafenib are complex. It was
shown that activation of p38alpha signaling during sorafenib therapy circumvents
sorafenib-mediated inhibition of Raf in HCC. In line with this, inhibition of
p38alpha improved the outcome of sorafenib in HCC mouse models [133].

For patients that show a progressive disease under sorafenib, recently the RAF
inhibitor regorafenib (which targets also several other kinases, such as VEGFR,
PDGFR) was approved by the FDA [77] (Fig. 5). In the RESORCE trial, 573 patients
that progressed under sorafenib received either 160 mg regorafenib or placebo. The
median survival under regorafenib was 10.6 months compared to 7.8 months under
placebo treatment [77]. Furthermore, regorafenib was approved by the FDA for the
treatment of metastatic colorectal cancer and advanced gastrointestinal stromal
tumor (GIST) [75, 76].
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7 MEK Inhibitors

The observation of therapy resistance and paradoxical ERK activation upon RAF
inhibition resulted in increased effort to develop inhibitors targeting MEK. Several
MEK inhibitors, such as refametinib, selumetinib, cobimetinib, and trametinib, have
been tested in clinical trials for different tumor entities, e.g., NSCLC and melanoma
[134, 135] (Fig. 6).

Also combination therapies of RAF and MEK inhibitors were tested and FDA
approved and were able to further increase the treatment responses in melanoma
patients [136]. In patients with metastatic melanoma, two phase-III trials were
performed in order to test the combination of BRAF inhibitors and MEK inhibitors.
In the COMBI-d trial, 423 patients with BRAFV600 mutations, which were not
treated before, received either dabrafenib in combination with trametinib or
dabrafenib alone [137]. The application of the combination therapy resulted in a
3-year overall survival of 44% compared to 32% in the group that received a
dabrafenib monotherapy. Adverse effects of the trametinib and dabrafenib combi-
nation were pyrexia, fatigue, nausea, headache, diarrhea, rash, and arthralgia
[137, 138].

In addition, also a combination of cobimetinib and vemurafenib was tested in
495 patients with untreated advanced BRAFV600-mutated melanoma (coBRIM trial)
[139]. In this trial, the 3-year rate of relapse-free survival was 58% in the group that
received the combination therapy compared to 39% in the placebo group. The 3-year
overall survival rate was 86% in the combination-therapy group compared to 77% in
the placebo group [139].

In addition, different studies tested also the combination of RAF/MEK inhibitors
with immunotherapies [140].

Fig. 6 Chemical structures of MEK inhibitors
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8 Next Clinical Developments

The human genome encodes for over 500 kinases which gives ample scope for novel
target finding and drug development in cancer therapy [141]. In addition to the
48 FDA-approved kinase inhibitors, a huge range of potential inhibitors are currently
in clinical or preclinical trials. For example, clinical phase-I trials of compounds
targeting nerve growth factor receptors [142], polo-like kinase 1 [143],
phosphatidylinositol 4,5-bisphosphate 3-kinase delta and gamma [144], protein
kinase B [145], focal adhesion kinase [146], casein kinase II [147], and Aurora
kinases [148] were performed within the last years (Fig. 7).

Notably, the Aurora A kinase inhibitor alisertib could finish two clinical phase-II
trials with promising responses in patients with neuroendocrine prostate cancer
[NCT01799278] as well as advanced breast cancer and small cell carcinoma of the
lung [NCT01045421] (Fig. 7). However, a phase-III trial in patients with relapsed/
refractory peripheral T-cell lymphoma [NCT01482962] was announced to be
discontinued based on a pre-specified interim analysis by Takeda.

In parallel, the research on PI3K and mTOR inhibiting compounds was heavily
impelled in recent years [13]. In addition to idelalisib which was the first
FDA-approved compound to inhibit a lipid kinase (PI3Kδ isoform) [149, 150], in
total seven dual PI3K/mTOR small molecule inhibitors are tested in advanced
clinical trials [13] (Fig. 7). These comprise PKI587 (advanced solid malignancies)
[151], quinacrine (various leukemias) [152, 153], GSK2126458 (colorectal, breast,
NSCLC, and pancreatic cancer) [154], PF04691502 (breast cancer) [155], GDC0980
(mRC) [156], XL765 (breast cancer) [157], and NVP-BEZ235
(glioblastomas) [158].

The oral pan-PI3K inhibitor buparlisib which targets all four isoforms of class I
PI3K was registered for three phase-III clinical trials against breast cancer.
Buparlisib was tested in combination with fulvestrant in an advanced breast cancer
study (Fig. 7). Due to the safety profile, the results do not endorse an expansion in
this clinical setting [159, 160].

Interestingly, patients with a PIK3CA mutation have shown a median
progression-free survival of 4.2 months (95% CI 2.8–6.7) after buparlisib treatment
compared to 1.6 months (95% CI 1.4–2.8) in the placebo group. These results

Fig. 7 Chemical structures of next clinical development
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support the application of PI3K inhibitors combined with endocrine therapy in this
genetic background [160].

Nearly all hallmarks of cancer can be targeted by approved protein kinase
inhibitors. However, there are currently no FDA-accepted kinase inhibitors influenc-
ing genome instability and DNA damage response. The success story of olaparib, a
Poly [ADP-ribose] polymerase 1 (PARP-1) inhibitor, underlines the high potential
of small molecules in this field. In general, the incidence of DNA single- or double-
strand breaks is mainly controlled by the network of ATR/ATM and CHK1/CHK2
signaling pathways leading to active DNA repair mechanisms and cell cycle check-
point regulation [161]. At the moment, two different ATR inhibitors, AZD6738 and
M6620, are tested in clinical phase-II trials with four and six studies. They are
administered in prostate cancer, CLL, recurrent ovarian cancer, progressive meta-
static gastric or gastroesophageal junction cancer, small cell lung carcinoma, as well
as metastatic tumors including RCC, urothelial carcinoma, ovarian cancer, and
PDAC [NCT03787680, NCT03328273, NCT03641313, NCT03517969,
NCT03682289, NCT02595892, NCT02567409, NCT03462342, NCT02627443,
NCT02487095].

Furthermore, checkpoint kinases are valid targets in DNA damage response. The
CHK1/CHK2 inhibitor prexasertib is tested in small cell lung cancer, ovarian cancer,
breast cancer, and prostate cancer in phase-II clinical trials [NCT02735980,
NCT03414047, NCT02873975, NCT02203513] (Fig. 7).

In BRCA wild-type recurrent high-grade serous ovarian cancer, prexasertib could
exhibit clinical activity and was in general well tolerated by treated patients
[162]. Particularly patients with platinum-resistant or platinum-refractory cancer
could profit here from further drug development [162].

9 Challenges

Beside numerous advances of kinase inhibitors, profound understanding of mecha-
nisms in vivo is needed to overcome actual limitations in clinical oncology [13].

Secondary therapy resistance based on kinase mutations is an abundant phenom-
enon arising after kinase inhibition [163]. The diversity of such mutations among
different kinases hampers the overall treatment success in cancer patients
[164]. Acquired resistance is the most common resistance type caused by kinase
inhibitors and relates to tumors that respond to therapy initially but show posterior
resistance to permanent delivered therapy [13]. Secondary resistance can be induced
by changes in the kinase gatekeeper residue since hydrophobic interactions in the
sub-pocket are decisive for the inhibitor binding affinity [165, 166]. The gatekeeper
residue interacts with Type I and Type II kinase inhibitors and sterically influences
inhibitor binding to the hydrophobic region in the binding pocket [167]. In addition
to gatekeeper mutations in BCR-ABL kinases inducing imatinib resistance, numer-
ous other targets are affected by gatekeeper mutations [168–173]. A prominent
example is the T790M mutation in EGFR kinase leading to boosted affinity toward
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ATP that triggers resistance to quinazoline inhibitors as well as gefitinib and
erlotinib [174–176]. To circumvent drug resistance in the clinic, structural
optimization of small molecule inhibitors is required [13]. In case of mutated
EGFR-induced resistance to gefitinib and erlotinib, newly developed EGFR inhib-
itors can covalently bind to the ATP-binding site of EGFR [177, 178]. That repre-
sents an example for highly selective inhibitors against mutated targets [13].

To further counter kinase inhibitor resistance, scientists break fresh ground with
innovative strategies. In the context of gatekeeper mutations, currently developed
inhibitors are going to accept varying amino acids at the gatekeeper mutation site
[179, 180]. In a second approach, kinases will be targeted at alternative binding sites
to avoid the ubiquitous ATP-binding pocket by a presumable unique cavity
[181, 182]. Apart from that, also indirect kinase targeting via inhibition of kinase
transformers would be a valid option to overcome resistance [183].

An additional clinical challenge represents the reduction or elimination of critical
toxicities associated with kinase inhibitors, such as proteinuria, skin reactions,
hypertension, or cardiotoxicity [184, 185].

Well-known examples are associated side effects of BCR-ABL inhibitors, includ-
ing cytopenia, cardiotoxicity, and cardiac sequela. HER2 and ALK inhibition cause
gastric problems and dermatological irregularities. EGFR inhibition is linked to
dermatological issues, and VEGFR inhibition can trigger cardiotoxicity [186, 187].

To exclude toxicities triggered by off-target binding of the inhibitor, more
specific therapeutic strategies are required. RNA interference is not only a powerful
tool for specific gene knockdown in basic research, but it also raises expectations as a
therapeutic approach to inhibit crucial players in cancer such as kinases [13]. How-
ever, since important drug targets cannot be efficiently eradicated by RNA interfer-
ence so far, clinical resistance to kinase inhibitors will continue to be an important
challenge to kinase-associated therapies [13, 188].

Altogether, the development of clinical relevant kinase inhibition has just started,
but the rapid progress in the development of molecular technologies and engineering
raises confidence for further success stories.
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