
Top Med Chem (2018) 25: 69–88
DOI: 10.1007/7355_2017_23
© Springer International Publishing AG 2017
Published online: 26 July 2017

Synergistic Antibiotic Combinations

Karen Bush

Abstract Synergy between antibiotics is a strictly defined microbiological phe-

nomenon, requiring two bioactive agents to exhibit enhanced bacterial killing when

the two are combined. Because of increasing antibiotic resistance, and few new

drugs to treat multidrug-resistant bacteria, combination therapy is often used in the

clinical setting. Frequently, these combinations have demonstrated synergistic

activity both in vitro and in animal models before being used therapeutically.

Antibiotic combinations are more likely to be used in patients with drug-resistant

staphylococcal or enterococcal infections, as well as in patients whose diseases are

caused by carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa, or
Acinetobacter spp. Although well-defined combinations have been approved by

regulatory authorities as single agents, such as trimethoprim–sulfamethoxazole or

β-lactamase inhibitor combinations, many combinations are used empirically with

no clinical data to support their use. Because combination therapy will continue to

be used in the absence of supportive clinical data, it will be important in the future

to investigate mechanistic principles that may lead to predictive models for suc-

cessful patient outcomes.
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1 Introduction

Bacterial infections occur every day, in every country, in every age group, in every

ethnic population. For thousands of years the human race has struggled to combat

these infections, with limited success. The introduction of the sulfonamides in the

1930s [1], followed shortly thereafter by penicillin [2] and aminoglycosides [3],

began to make the world complacent about the ability to overcome bacterial

disease. However, following the use of these antibiotics, resistance arose more

rapidly than expected [4], beginning with yearly increases in penicillin resistance in

staphylococci in the 1940s [5, 6]. As novel resistance mechanisms to all antibiotics

continue to emerge, resistant bacteria are becoming one of the most critical threats

to human health worldwide. According to the Centers for Disease Control and

Prevention (CDC) “Antibiotic resistance has been called one of the world’s most

pressing public health problems” [7]. In 2016 the United Nations issued a declara-

tion addressing antibiotic resistance, with the UN Secretary General stating that

“Antimicrobial resistance (AMR) poses a fundamental, long-term threat to human

health, sustainable food production and development” [8].

In response to these concerns, the CDC provided a listing of those antibiotic-

resistant pathogens deemed to be serious or urgent threats to human health in 2013

[9]. Among the most prominent are the urgent threat of carbapenem-resistant

Enterobacteriaceae (CRE) and the serious threats of multidrug-resistant (MDR)

Pseudomonas aeruginosa, Acinetobacter spp., and methicillin-resistant Staphylo-
coccus aureus (MRSA) [9]. This document was followed in 2017 by the World

Health Organization (WHO) report identifying the three most critical priorities as

carbapenem-resistant Acinetobacter baumannii, P. aeruginosa, and Entero-
bacteriaceae, including extended-spectrum β-lactamase (ESBL)-producing as

well as carbapenemase-producing isolates [10]. The WHO noted specifically that

Mycobacterium tuberculosis was not included because it had already been identi-

fied as a global priority for which new treatments are urgently needed.

As the race between man and bug continues, fewer therapeutic options remain

for the treatment of antibiotic-resistant infections. Although novel antibacterial

drugs are both in development and have been introduced recently to the market,

many of these agents encounter resistance within a short time following their

introduction. Even with the new agents, monotherapy may not be sufficiently

effective to treat serious infections caused by pathogens that are multidrug- or

pan-resistant [11]. As a result, physicians have been relying on combination

therapies to address these issues. Curiously, in a large meta-analysis of 12 recent
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clinical studies that enrolled 3,571 patients treated empirically for ventilator-

associated pneumonia (VAP), no statistical difference was observed in outcomes

in patients treated with monotherapy compared to those who received combination

therapy when following the American Thoracic Society guidelines [12]. However,

these studies did not look at a subpopulation of patients with infections caused by

MDR pathogens. Many experts believe that combination therapy should always be

used as empiric therapy against MDR infections, especially when caused by CRE,

P. aeruginosa, or Acinetobacter spp. [13]. This approach is based on the well-

established principles used in the treatment of tuberculosis where monotherapy is

never indicated due to the rapid selection of resistance, and new combinations of

drugs are continually being tested in the clinic [14]. In addition to the enhanced

antibacterial effects that can be gained by using more than one agent, combinations

of known antibiotics may have the potential to reduce selection of resistance [15–

17]. However, a recent study by Vestergaard et al. showed that the combination of

ciprofloxacin and ceftazidime, when tested in vitro against P. aeruginosa, tended to
select for broad-spectrum resistance due to mutational inactivation of mexR, the
repressor gene that regulates expression of the multidrug efflux pump MexAB-

OprM [18].

In this chapter, combinations of antibacterial agents are discussed using as the

primary focus the literature from 2015 to 2017 describing combinations of agents

shown to demonstrate microbiological synergy against pathogens of serious med-

ical concern. The emphasis is on combinations of approved antimicrobial drugs,

rather than proposed combinations with investigational agents such as the addition

of the novel oxadiazoles to potentiate the activity of β-lactams against MRSA [19],

or with agents that do not possess antibacterial activity. The use of adjuvants to

improve pharmacological properties of an active agent is not covered.

2 Microbiological Synergy

Synergy is a well-defined concept in microbiological terminology. It is defined as

the inhibition of microbial growth by two bioactive agents that exhibit a positive

interaction [20]. According to a consensus in the clinical microbiology field [20–

22], drug combinations may act in “synergy,” may show “antagonism,” or may

have “no interaction” or “indifference.” Investigators may test for synergism

in vitro using checkerboard assays in which the concentrations of the two drugs

are varied in a two-dimensional array and minimum inhibitory concentrations

(MICs) are recorded. Although disk-diffusion synergy testing has also been

described as a method to test for synergy, Sy et al. showed that broth dilution

assays were more predictive of synergy than assays using disk diffusion, based on

validation in time-kill studies of the combination of vancomycin (1) (Scheme 1)

and β-lactam antibiotics against MRSA [23]. Most microbiologists validate

checkerboard synergy results by monitoring the microbial growth of the target

organism in the presence of each agent alone and in combination over a 24 h period
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in time-kill studies. Interpretations of the results from checkerboard assays are

calculated using the “fractional inhibitory concentration” (FIC) index (FICI), as

shown in the following consensus agreed upon in the early 2000s.

FIC ¼ MIC for drug in combination/MIC for drug alone

FICI ¼ FIC for drug A + FIC for drug B

FICI � 0.5, Synergy

FICI > 0.5–4.0, No interaction/nonsynergistic/nonantagonistic

FICI > 4.0, Antagonism

These interpretations were accepted in order to avoid terms such as “additivity,”

“indifferent,” or “partial synergy” that were previously used to describe data

ranging from 0.5 to 4.0, within experimental error of an FICI value [20]. MIC
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Scheme 1 Structures of the glycopeptide vancomycin; the folate antagonists trimethoprim and

sulfamethoxazole; the fluoroquinolones gemifloxacin and ciprofloxacin; the cyclic lipopeptide

daptomycin, and the synergistic inhibitors of the streptogramin-class, quinupristin–dalfopristin
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values that are determined in assays using drug concentrations in a series of twofold

dilutions exhibit an inherent reading error of +/� one doubling dilution. Thus, valid

data may fall into a fourfold range of being accurate, e.g., an MIC of 1 μg/mL may

actually be 0.5 or 2 μg/mL and experimental variations of one twofold dilution for

the MICs for each drug would give FICI values that remained in the “no interac-

tion” range.

Data from killing curves, or time-kill assays, also have strict definitions for the

interpretation of synergy, and are often used to validate synergistic combinations

identified from checkerboard assays [24]. In these studies bacteria growing in log

phase are incubated in media containing each drug alone or the drugs in combina-

tion and compared to a growth control that has no drug added to the medium. The

concentration of at least one of the drugs should be low enough so as to not affect

the growth of the organism when tested alone. At selected time points aliquots are

removed and colony forming units (CFUs) are counted. Synergism is observed if

these two criteria are met: [1] a decrease of at least 2 log10 CFU/mL is observed

compared to the CFU/mL of the more active drug after 24 h; and [2] the final

bacterial count at 24 h must be at least 2 log10 CFU/mL lower than the starting

inoculum.

3 Approved Antibiotic Combinations

3.1 Folate Pathway Inhibitors

Relatively early in the history of antibiotic development, trimethoprim (2), a

dihydrofolate reductase (DHFR) inhibitor, was shown to potentiate the activity of

sulfonamide drugs that block the conversion of p-aminobenzoic acid into

dihydrofolic acid [25]. Combination of trimethoprim with sulfamethoxazole (3)

results in broad-spectrum, synergistic, bactericidal activity against a wide range of

pathogens, which include MRSA, streptococci, E. faecalis, Neisseria spp., and

many enteric bacteria. This combination is a well-prescribed and orally active

therapy for the treatment of common infections such as urinary tract infections

(UTI) and otitis media, particularly in patients with allergies to other antibiotics

[26]. Although strong synergy is observed in vitro for the combination, clinical

practice suggested that this synergy did not always carry over to the treatment of

patients [27], except for the treatment of toxoplasmosis, brucellosis, nocardiosis,

chancroid, and pneumonia due to Pneumocystis carinii [28]. Resistance to trimeth-

oprim can occur as a result of several different events, including the acquisition of a

plasmid encoding a DHFR that confers high-level resistance [29]. Unfortunately,

the use of the combination did not tend to reduce the emergence of trimethoprim

resistance, but trimethoprim appears to reduce the incidence of sulfonamide

resistance [28]. Triple combinations including trimethoprim–sulfamethoxazole

have also been considered. Gemifloxacin (4) in combination with trimethoprim–
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sulfamethoxazole has demonstrated synergistic bactericidal activity against

community-acquired-MRSA (CA-MRSA) in both time-kill studies and animal

models [55]. Combinations of vancomycin or ciprofloxacin (5) tested in vitro in

time-kill assays with trimethoprim–sulfamethoxazole were also synergistic against

vancomycin-intermediate S. aureus (VISA) or heterogeneous vancomycin-

intermediate S. aureus (hVISA) [56]. In a clinical study (Table 1), the combination

of daptomycin (6) and trimethoprim–sulfamethoxazole resulted in microbiological

cures of 24 of the 28 patients infected with either daptomycin-susceptible or

daptomycin-resistant MRSA; 17 of the 17 isolates that could be recovered demon-

strated synergistic behavior in time-kill assays [54].

3.2 Streptogramins

Quinupristin–dalfopristin represents the only approved streptogramin combination.

Quinupristin (7) is a cyclic depsipeptide analog of the naturally occurring

pristinamycin IA, and dalfopristin (8) is a polyunsaturated cyclic macrolactone

derivative of the natural product pristinamycin IIA, all members of the

streptogramin family [57]. Combined in a molar ratio of 30:70, the combination

has potent synergistic activity against Gram-positive bacteria, including MRSA and

MDR-streptococci. In contrast to the behavior of many agents with Gram-positive

activity, E. faecalis demonstrates intrinsic resistance due to production of an ABC

(ATP-binding cassette) homologue, Lsa(A), whereas the generally more resistant

E. faecium is naturally susceptible. Resistance to the streptogramins in E. faecium
has been reported both in vitro and in vivo due to production of a variant of Lsa

(A) with a point mutation [58]. Over time, the drug combination has not been used

extensively in the clinic, due in part to a relatively high incidence of localized

phlebitis during infusion, and observed elevations in serum aminotransferase levels

in a small percentage of patients [57].

3.3 β-Lactamase Inhibitor Combinations

Probably the most commonly used antibiotic-combination therapy involves the

addition of a β-lactamase inhibitor (BLI) to a β-lactam that is labile to hydrolysis

by β-lactamases. Prescribing information reported for the years 2004–2014 shows

that 65% of all United States hospital prescriptions are for β-lactam antibiotics, and

of these over half are for BLI combinations [59]. Because this set of combinations

has been reviewed extensively in the past few years [59–61], particularly with

respect to newer combinations in clinical development, the following discussion is

centered on FDA-approved BLI combinations (Scheme 2).

Beginning in 1986 and proceeding until 2014, three BLIs were approved for

therapeutic use, with all the inhibitors matched with a penicillin counterpart:
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Table 1 Empiric antibiotic combinations using FDA-approved antibacterial agents

Antibiotic

Antibiotic in

combination Organism affected

Studies to support

synergy Reference

Colistin Azithromycin Acinetobacter
baumannii, Klebsi-
ella pneumoniae,
Pseudomonas
aeruginosa

Time-kill curves [30]

Chloramphenicol Klebsiella
pneumoniae

Time-kill curves [31]

Doripenem Pseudomonas
aeruginosa

In vitro, hollow fiber

studies

[17]

Rifampin Acinetobacter
baumannii

Checkerboard; time-

kill curves

[32]

Tazobactam Acinetobacter
baumannii

Time-kill curves [33]

Tigecycline Acinetobacter
baumannii, CREa,

Klebsiella
pneumoniae

Checkerboard; time-

kill curves clinical

data

[34–37]

Vancomycin Acinetobacter
baumannii

Checkerboard; time-

kill curves

[32]

Daptomycin Ceftaroline MRSA Bacteremic patients [38]

β-Lactams MRSA,

enterococci

Checkerboard; time-

kill curves

[39–41]

Dalbavancin MRSA Checkerboard [42]

Gentamicin MRSA,

enterococci

Checkerboard; time-

kill curves (variable

results)

[40, 43–45]

Linezolid MRSA Checkerboard [42]

Sulbactam,

tazobactam

MRSA, hVISA,

VISAb
Time-kill curves [33]

Tigecycline MRSA Checkerboard; time-

kill curves, surgical

site infection model

[46]

Levofloxacin Linezolid Bacillus anthracis Synergy in checker-

board against Sterne

strain; indifference or

antagonism in

models

[47]

Vancomycin β-Lactams MRSA 16 studies based on

in vitro and in vivo

animal models

Summarized

in [43, 48,

49]

Ceftaroline MRSA In vitro PK/PD

model; six clinical

case studies

[50, 51]

Flucloxacillin MRSA Bacteremic patients [48]

(continued)
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clavulanic acid (9) with amoxicillin (10) or ticarcillin (11); sulbactam (12) with

ampicillin (13); and tazobactam (14) with piperacillin (15). These inhibitors act as

suicide inactivators with inhibitory activity against class A penicillinases and

broad-spectrum β-lactamases that do not hydrolyze carbapenems or β-lactams

with aminothiazole oxime side chains such as ceftazidime (16) or aztreonam (17)

[62]. These BLI-penicillin combinations had broad-spectrum bactericidal activity

against MSSA, streptococci, and enteric bacteria. Piperacillin–tazobactam also was

efficacious against pseudomonal infections, primarily due to the antipseudomonal

activity of piperacillin. The three BLIs were developed during the time that ESBLs

were not known (clavulanic acid and sulbactam combinations), or during the time

that ESBLs were considered to be rarities in clinical practice (piperacillin–

tazobactam). However, that situation changed during the late 1990s when ESBLs

became global problems. Although the inhibitors usually demonstrated inhibitory

activities against most ESBLs when tested in vitro in isolated enzyme assays, they

fell down in efficacy when the combinations were tested against ESBL-producing

organisms that harbored additional β-lactamases. As early as 2000 in Canada, 71%

of organisms that produced an ESBL were reported to produce at least one other

β-lactamase, resulting in <31% susceptibility to either amoxicillin-clavulanic acid

or piperacillin–tazobactam [63]. In addition to the ESBLs, the emergence of

carbapenemases in the early 2000s posed additional problems for the inhibitors;

none of the inhibitors affected the activity of metallo-β-lactamases (MBLs), and

had poor activity when tested in penicillin combinations in whole cell assays with

organisms that produced serine carbapenemases such as the KPC enzymes [64], in

spite of comparable tazobactam concentrations that effectively inhibited either

isolated KPC or broad-spectrum TEM enzymes [65, 66]. Notably, almost all

carbapenemase-producing organisms also produce additional β-lactamases in a

similar manner as seen with the ESBLs [67], thus exacerbating the situation.

In an attempt to address the decreased response to BLI combinations in ESBL-

producing organisms, in 2014 the FDA approved the combination of ceftolozane

(18), a potent antipseudomonal cephalosporin, with tazobactam, using a different

tazobactam dosing regimen from that used for the piperacillin–tazobactam

Table 1 (continued)

Antibiotic

Antibiotic in

combination Organism affected

Studies to support

synergy Reference

Gentamicin MRSA Checkerboard; time-

kill curves; not

supported by clinical

studies

[52, 53]

Trimethoprim–

sulfamethoxazole

MRSA Clinical studies in

daptomycin-resistant

patients

[54]

aCRE carbapenem-resistant Enterobacteriaceae
bMRSA methicillin-resistant Staphylococcus aureus, hVISA heteroresistant vancomycin-

intermediate S. aureus, VISA vancomycin-intermediate S. aureus
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combination to allow for more favorable pharmacodynamics [68, 69]. Although the

combination had high susceptibility rates when tested against E. coli producing a

single CTX-M-14 or CTX-M-15 ESBL [70], the agent is probably most useful

as an antipseudomonal drug, exhibiting >90% susceptibility in contemporary

meropenem-resistant P. aeruginosa isolates [71].
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Scheme 2 Structures of the penicillin β-lactams amoxicillin, ticarcillin, ampicillin, and

piperacillin; the cephalosporins β ceftazidime and ceftolozane; the anti-MRSA cephalosporin

pro-drug ceftaroline fosamil; the monobactam aztreonam; the carbapenem imipenem; the classical

β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam; and the non-classical

DBO-class β-lactamase inhibitors avibactam, relebactam, nacubactam, zidebactam, and ETX2514
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The argument may be made that these combinations do not fit the classical

definition of synergism, in that a β-lactamase inhibitor is not necessarily considered

to have antibacterial activity in its own right. However, many BLIs are known to

bind to essential PBPs and may exhibit at least some weak growth inhibition.

Examples include clavulanic acid with MICs as low as 0.1 μg/mL for Neisseria
gonorrhoeae and 6.3 μg/mL for Haemophilus influenzae [72] and sulbactam that

inhibits PBPs 1 and 3 in A. baumannii. [73]. Some of the more recent BLIs have

even greater antibacterial activity on their own, thereby qualifying as legitimate

synergistic agents when combined with a companion β-lactam.

In 2015 the FDA and EMA approved the combination of ceftazidime with

avibactam (19), a non-β-lactam BLI with weak antibacterial activity due to binding

to PBP4 in S. aureus and PBP2 in Gram-negative bacteria [74]. Although

avibactam MICs as low as 4 μg/mL against E. coli have been reported, MICs

>64 μg/mL against non-enteric bacteria and S. aureus have been also detected

[74, 75]. Avibactam is a potent, covalent, reversible inhibitor of most class A, C,

and D β-lactamases [76, 77], and an irreversible inhibitor of the KPC-2

carbapenemase [77]. Combinations of avibactam at subinhibitory concentrations

were capable of potentiating ceftazidime such that MICs could be reduced as

much as 1,000-fold in enteric bacteria producing KPC and/or ESBL enzymes

[78, 79]. Avibactam may also be combined with the anti-MRSA cephalosporin

ceftaroline (20), potentially to provide efficacy against mixed infections that

include Gram-positive pathogens as well as ESBL- or KPC-producing Gram-

negative bacteria [80]. Avibactam is also being studied in combination with

aztreonam (a monobactam with stability against MBL hydrolysis) in Phase 2 clin-

ical studies (https://clinicaltrials.gov/ct2/home), thus potentially providing at least

some coverage of MBL-producing organisms [81].

After confirmation of the potent β-lactamase-inhibitory activity of avibactam,

its diazabicyclooctane (DBO) structure was modified extensively by medicinal

chemists at multiple pharmaceutical companies to provide “second generation”

DBO derivatives such as relebactam (21), being developed in combination with

imipenem (22) [82]. Some of these newer DBOs have enhanced antibacterial

activity, such as nacubactam (RG6080/OP0595) (23) [83], zidebactam (24) [84],

or ETX2514 (25) [85], again due to binding to PBP2 to provide a dual mechanism

of action in Gram-negative bacteria. The combination of the PBP2-binding inhib-

itors with cephalosporins or monobactams has been proposed to offer a selective

advantage in terms of the emergence of resistance [83]. The high affinity of these

β-lactams for PBP3 drives their antibacterial activity, so it is possible that resistance

due to target modifications will require mutations in both PBP2 and PBP3 to

achieve high-level resistance. However, in the short time in which the newer

combinations have been used clinically, resistance has been reported in patients

treated with ceftazidime–avibactam. Mutations have been reported in KPC-3

with multiple point mutations in different patients [86], conferring resistance to

avibactam combinations, but restoring susceptibility to meropenem. Mutations in

E. coli PBP3 have also been reported in historical clinical isolates, appearing as
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gene duplications resulting in four amino-acid insertions that result in 4- to 32-fold

increases in MICs for ceftazidime, as well as for ceftaroline and avibactam [87, 88].

4 Empirical Antibiotic Combinations

Empirical antibiotic combinations refer to combinations used clinically in the

absence of an approved indication by a regulatory agency. In vitro microbiological

synergy data may exist to support the use of combination, but there are few, if any,

controlled clinical trials that support the use of these agents as effective therapies.

These combinations are listed in Table 1.

4.1 Gram-Negative Infections

Gram-negative bacteria are frequently named among the greatest threats to human

health [9, 10]. Among the most worrisome are the nonfermentative bacteria

Acinetobacter spp. and P. aeruginosa, as well as the carbapenem-resistant

Enterobacteriaceae (CRE). Combination therapy is frequently recommended for

initial empiric treatment of patients infected with these organisms [13, 89]. In vitro

studies have even suggested that two carbapenems may be synergistic against KPC-

or OXA-48-producing Enterobacteriaceae [90]. Limited clinical data based on

retrospective data have suggested that a carbapenem (meropenem) in combination

with another sensitive drug may be successful in treating CRE infections if the

meropenem MIC was <8 μg/mL [91]. In another set of retrospective clinical data

from 26 published studies, CRE-infected patients treated with a tigecycline (26)

combination were statistically more likely to have lower mortality, both in the

ICU and at a 30-day follow-up evaluation, compared to patients treated with

monotherapy [34] (Scheme 3).

Antimicrobial peptides, especially colistin (27), a member of the polymyxin

class, have become drugs of last resort for the treatment of infections caused by

MDR Gram-negative pathogens. However, liabilities associated with colistin are

the perception of increased nephrotoxicity compared to the β-lactams and

macrolides, and increasing colistin-resistance [17, 30]. For this reason, combina-

tions with other, safer antibiotics have been examined. One of the more unusual

combinations involves a colistin-azithromycin (28) duo that demonstrated syner-

gistic activity by time-kill assays against A. baumannii, K. pneumoniae, and

P. aeruginosa. The macrolide with poor antibacterial activity against Gram-

negative bacteria is presumed to be synergized due to the membrane-

permeabilizing properties of colistin [30].

Other colistin combinations that have been studied in vitro include combinations

with β-lactams against A. baumannii (tazobactam) [33] and P. aeruginosa
(doripenem) (29) [17]. In the latter combination, suppression of resistance was
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noted for both colistin and doripenem [17]. Against A. baumannii, colistin also

synergized the antibacterial activity of rifampicin (30) or vancomycin [32] or

tigecycline [35, 36]. The latter combination also demonstrated synergy against

K. pneumoniae, both in vitro and in clinical studies [37]. Triple combinations of

colistin with meropenem (31) and tigecycline demonstrated synergistic activity

against MDR K. pneumoniae, but it was no greater than that observed with double

colistin combinations with either agent alone [92]. Similar to the observed behavior

with colistin, polymyxin B (32) was able to synergize the activity of chloramphen-

icol (33) in vitro against MDR K. pneumoniae [31]. However, the additive possi-

bilities for toxicity probably do not warrant serious consideration for clinical usage

[93]. Clinical data to support combinations therapy to treat infections caused by

MDR Gram-negative bacteria are still sparse, especially with regard to controlled

trials [34, 89], and further efforts to correlate in vitro synergy with clinical out-

comes are needed.
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4.2 Gram-Positive Infections

Combination therapy for treatment of Gram-positive infections has been discussed

extensively in the literature, with recent reviews tackling the issue with respect to

MDR infections caused by MRSA [43] and vancomycin-resistant enterococci

(VRE) [94]. Combinations that have been studied either in vitro or in clinical

studies are summarized in Table 1. The anti-MRSA cephalosporin ceftaroline has

been used successfully as a companion to vancomycin, based on in vitro pharma-

codynamic studies and on retrospective case reports [50, 51]. Ceftaroline in com-

bination with daptomycin to treat 20 patients with MRSA bacteremia resulted in a

shortened time to eradication compared to standard therapy; in addition, the

combination caused a sensitization to bacterial killing by neutrophils [38]. Mecha-

nistically ceftaroline has been shown to bind to a specific allosteric site as well as

the active site of PBP2a in MRSA, thus allowing for the possibility of ceftaroline

allosteric binding to enhance the binding of other β-lactams to the active site [95].

Daptomycin combinations with drugs in various antibacterial classes have also

been studied. Synergy has been observed in time-kill studies with daptomycin

combinations containing sulfone-containing β-lactamase inhibitors against MRSA

[33, 96] or for combinations with other β-lactams [39–41], especially β-lactams

such as meropenem and imipenem that bind preferentially to PBP1 [39]. The

combination of daptomycin with dalbavancin (34), molecules with similar chemical

structures and functions with respect to bacterial killing, was synergistic for MRSA

using checkerboard assays; likewise, the protein synthesis inhibitor linezolid (35)

was also synergistic in the same study [42]. For the synergistic daptomycin-

gentamicin (36) combination, resistance rates were lower in vitro when tested

against MRSA [44]. The daptomycin–tigecycline was synergistic in vitro in check-

erboard and time-kill assays, in addition to a surgical site infection model [46]

(Scheme 4).

Other antibiotics that kill bacteria by interfering with cell-wall assembly include

vancomycin and the β-lactam antibiotics, agents with variable activity against

MDR Gram-positive bacteria. Vancomycin, a commonly prescribed agent for

treatment of infections caused by MRSA and vancomycin-susceptible enterococci,

has demonstrated synergy against these organisms with a number of agents both

in vitro and in clinical trials to treat the most serious of these infections. In clinical

studies, vancomycin combined with the antistaphylococcal flucloxacillin (37)

shortened the duration of bacteremia caused by MRSA [48] and was successfully

combined with trimethoprim–sulfamethoxazole to treat patients infected with

daptomycin-resistant MRSA [54]. Triple β-lactam combinations with in vitro syn-

ergistic activity against MRSA include meropenem–piperacillin–tazobactam, a

combination shown to suppress the emergence of resistance [49]. This finding is

notable in that each of these β-lactams individually has limited anti-MRSA activity.

Linezolid (35), a bacteriostatic protein synthesis inhibitor, has been studied in

combinations with bactericidal drugs for potential treatment of infections caused by

toxin-producing or spore-forming Gram-positive bacteria. These combinations are
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based on the hypothesis that linezolid could inhibit the formation of toxins or

spores, at the same time that the organism is being killed by the companion drug.

However, the results for these combinations have been mixed. The combination of

vancomycin with linezolid has resulted in conflicting reports about synergistic

activity against staphylococci [43]. Although in vitro studies demonstrated that

linezolid could inhibit toxin production by S. aureus [52, 53], possibly serving to

decrease virulence, this result has not been validated in animal infection models

[43]. Similarly, in studies with Bacillus anthracis, linezolid inhibited toxin produc-
tion when used alone, but the combination with levofloxacin that was synergistic in

time-kill studies did not significantly affect spore or toxin formation compared to

linezolid alone [47].

Combinations of the aminoglycoside gentamicin with a variety of other agents

have also been examined against MRSA. However, clinical data based on patients

who received gentamicin together with vancomycin showed no significant

improvement in 6-month recurrence rates [45]. When low dose gentamicin was

administered with either vancomycin, daptomycin, or an antistaphylococcal peni-

cillin to treat patients suspected to have S. aureus native valve endocarditis, a

significant decrease in creatinine clearance was reported [97]. Thus, this combina-

tion is not clinically advisable.
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5 Future Directions

Antibiotic combinations will continue to be used to treat seriously ill patients,

because any delay in providing appropriate therapy increases morbidity and mor-

tality [98, 99]. Many of these combinations will be used empirically based on

in vitro synergy testing or sporadic case reports, because of the lack of controlled

randomized clinical trial data. In vitro synergy testing of newer agents with reduced

antimicrobial activity against resistant organisms will undoubtedly lead to the

identification of effective combinations with established antibiotics. However, at

this time, mechanistic explanations for many of the synergistic combinations are

lacking. It is hoped that further studies delineating the biochemical or microbio-

logical explanations for the observed synergies will be undertaken, so as to guide

the identification of additional useful combinations of drugs that may be used to

treat the most deleterious and life-threatening pathogens. Perhaps, in the process,

the selection of resistance to these agents will be diminished as a result of multiple

targets that must be mutated in order for resistance to emerge. The study of

antibiotic combinations, therefore, will continue to be of high interest in the pursuit

of treatment options for MDR and pan-resistant bacteria.
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