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Abstract Antibiotics are the bedrock of modern medicine but their efficacy is

rapidly eroding due to the alarming emergence of multi-drug resistant bacteria. To

begin to address this crisis, novel antibacterial agents that inhibit bacterial-specific

cellular functions essential for growth, viability, and/or pathogenesis are urgently

needed. Although the genomics era has contributed greatly to identifying novel

antibacterial targets, it has failed to appropriately characterize, prioritize, and

ultimately exploit such targets to significantly impact antibiotic discovery. Here

we describe a contemporary view of new antibacterial target discovery; one which

complements existing genomics strategies with a deeply rooted and fundamental

understanding of target biology in the context of genetic networks and environ-

mental conditions to rigorously identify high potential targets, and cognate inhib-

itors, for consideration as antibacterial leads.
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1 Introduction: An Evolving View of New and Legitimate

Antibacterial Targets

Antibiotics are extraordinarily valuable therapeutic agents whose widespread use

has transformed human health since the early twentieth century, largely relegating

historically uncontrollable and deadly bacterial infections to mild and conveniently

treatable illnesses due to the high efficacy, wide availability, and relatively low cost

of these antibiotics [1]. Their remarkable success is tempered by the increasing rise

of multi-drug resistant bacteria that are recalcitrant to our existing repertoire of

chemotherapies [2, 3], principally due to the lack of stewardship in health care and

overuse in livestock for food production [4, 5]. Alarmingly, the rate at which drug-

resistance is emerging is in stark contrast to the abrupt decline in the discovery of

novel antimicrobials with which to treat them [3, 6]. Existing antibiotics in clinical

use target a surprisingly small subset of essential processes [7], and the pipeline in

recent years has been awash in “me-too” inhibitors of similar classes that are

incremental modifications of existing compounds [8]. There is an obligation

among the research community to identify inhibitors from compound collections

that interdict novel targets in pathways essential for bacterial growth or infection for

which resistance has not yet been widely disseminated. Despite this clarion call and

the herculean efforts of many, success in the discovery of clinically relevant

antimicrobials to novel targets has remained elusive in recent decades despite the

dawn of the genomics era that has provided researchers detailed blueprints of

promising targets in countless bacterial organisms. The causes for this failure are

likelymulti-faceted and overcoming stagnationmay require (1) a paradigm shift that

will integrate modern approaches with lessons from the past; (2) a broader definition

of druggable targets to include those involved throughout the course of a bacterial

infection in the host-pathogen context rather than relying on targets that disrupt

growth in artificial environments in vitro; and (3) a shift away from the expectations

of a novel broad-spectrum panacea to a more narrow spectrum-focused effort to find

treatments for multi-drug resistant bacterial infections of high-priority.

In contrast to the scarcity of antibacterials with newmechanisms of action (MOA)

that meet or exceed standard of care antibiotic treatments in recent years, there is no

lack in the literature of the discovery of new and exciting antibacterial targets of

potential utility [8, 9]. However, defining the quality of any particular drug target and

its relative prioritization versus literally 1000s of other potential targets is difficult, and

is often considered from an antiquated and subjective perspective rooted in the idea

that any gene required for microbial growth and/or viability is considered a plausible

drug target. In fact, the genomes of most bacterial pathogens typically comprise

hundreds of essential genes (for example, E. coli contains ~300 essential genes)

[10, 11] required to facilitate fundamental cellular functions; fungal genomes contain

even more, typically approaching as many as ~1000 essential genes [12–14]. These

numbers can be whittled down considerably by introducing additional sensible drug

target prioritization criteria, such as conservation of the protein target amongst med-

ically significant microbial pathogens (i.e., genetically predicted achievable “spec-

trum” for the activity and efficacy of the cognate drug to the selected target) and
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absence of the target in the human genome, hence mitigating the possibility of target-

based cytotoxicity. This view, although seemingly necessary, is certainly not sufficient

and the last 20 years of antibacterial discovery efforts only underscores the frailty of

these simplistic considerations [15, 16]. Furthermore, such an approach neglects many

valuable targets that are conserved in humans and yet are selectively inhibited by

clinically successful antibiotics such as the ribosome, RNA polymerase, type II

topoisomerase, dihydrofolate reductase, and the tRNA synthetases. Instead, antibiotic

targets should be defined more rigorously and according to a continuum of validation

criteria that describes their likelihood to deliver new therapeutics. Identifying and

leveraging “high value” novel targets to discover new antibacterial leads requires a

much greater level of biological insight and innovation to efficiently and unequivo-

cally discover cognate small-molecule inhibitors. Here, we provide a contemporary

perspective on the topic of new antibacterial targets; one streamlined to empirically

identify and validate “druggable” targets and cognate inhibitors as antibiotic chemical

starting points with demonstrated efficacy in a disease model of infection.

A central dogma driving the definition of a novel antibacterial target is that it is

essential for the growth and/or viability of the pathogen(s) forwhich novel therapeutics

are needed. Accordingly, cognate inhibitors of such targets are predicted to disrupt

fundamental aspects of bacterial physiology and lead to cell death (i.e., bactericidal) or

a growth arrest (bacteriostatic). Indeed, all successful antibiotics past and present meet

this fundamental criterion. However, such successes whether pioneered by Fleming

and Waxman or later by large pharmaceutical companies were almost entirely based

on empiric screening of chemical collections (largely natural product extracts)

displaying intrinsic antimicrobial activity [17] with target and MOA elucidation

typically only achieved many years after their discovery and clinical use [7]. Decades

later, success derived from the continued application of this strategy has fallen

precipitously; whether resulting from (1) a diminishing return in discovering new

leads versus the inefficient and time consuming rediscovery of known natural product

compounds [18], (2) the perceived “undesirable” chemical space in which synthetic

compound libraries tend to exist versus the physicochemical properties of natural

products [16, 19, 20], and/or (3) the high therapeutic bar that clinically non-inferior

new agentsmust achieve versus>70 years of standard of care antibiotics towhich they

are compared [21]. Consequently, a target-centric approach – fueled by the genomic

era – has emerged where targets are first selected to screen and/or rationally design

small-molecule inhibitors whose potency, spectrum, and safety can be later chemically

optimized.

Defining robust validation criteria of a new antibiotic target spans three basic levels

(Level-1, -2, and -3) in their broad continuumof characterization,where Level-3 targets

are the most extensively substantiated. We propose defining Level-1 targets as having

(1) genetic evidence under in vitro conditions that inactivation/inhibition of their

function impairs growth and/or viability of the pathogen and (2) ideally, satisfy basic

bioinformatics criteria pertaining to their spectrum and absence from man. In addition

to these criteria, Level-2 targets also possess genetic verification that (1) abolishing

target function impairs pathogenesis in a relevant animal model of disease and (2) that

the target has been confirmed to be druggable by identifying whole-cell bioactive

target-selective inhibitor(s) supported with (3) unambiguous MOA evidence

Antibacterial New Target Discovery: Sentinel Examples, Strategies, and. . . 3
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(Table 1) [22–53]. Finally, Level-3 targets are those previously validated in a clinical

setting by currently marketed antibacterial therapeutics. Such benchmarks clearly

emphasize the enormous objectives sought within and between each level. Considering

the sheer number of Level-1 targets that can easily be identified by surveying the

scientific literature and perusing publically available databases, as well as the Level-3

targets which facilitate the developing of improved versions of existing agents (i.e., best

in class agents [54]) rather than entirely new classes of antibiotics, our review will

instead focus largely on new targets approaching or meeting Level-2 objectives.

2 Conditional Essentiality: Providing Novel Screens

and Cognate Inhibitors to Validate New Druggable

Targets

Although the importance of essential gene products serving as antibacterial drug

targets is undisputed, the identification of novel antibacterial targets can be signifi-

cantly expanded from this strict historical definition. Most important is to broaden the

conditional context in which gene essentiality is defined. Routinely, gene essentiality

is determined under rich nutritional conditions highly optimized for the growth of the

pathogen in a laboratory setting but which does not reflect themore extreme conditions

a pathogen must overcome during infection. To emphasize this point, large scale gene

disruption experiments in E. coli identify ~300 genes required for growth on rich

medium, whereas >100 additional genes are identified to be essential for growth

strictly on minimal growth media [11]. Similar conclusions are drawn in yeast

[55]. Indeed, anti-folates such as the early sulfa drugs and later, sulfamethoxazole

and trimethoprim target the conditionally essential proteins folP and folA, respectively,
and their activity is suppressed in vitro by exogenous addition of p-aminobenzoic acid

(PABA) and thymidine [7, 56]. Therapeutic efficacy of these agents is nonetheless

achieved because such metabolites are insufficiently low in an infectious setting to

suppress the antibiotic effects of these agents. Conversely, exogenous fatty acids are

present at sufficient concentrations in the host to support growth of type II fatty acid

synthesis null mutant bacteria of the order Lactobacillales, including Streptococcus
agalactiae and Streptococcus pneumoniae, illustrating that a precise understanding of
the host environment is paramount when selecting metabolite-suppressed targets

[57]. Considering the extent of additional biosynthetic pathways in which metabolite

suppression is achieved, a robust chemical genetic strategy to identify new

antibacterial inhibitors and empirically identify new druggable targets is certainly

achievable [56]. One notable example of this approach relates to the discovery of

ribocil, a synthetic mimic of the natural metabolite, flavin mononucleotide (FMN),

which selectively targets a non-coding mRNA structural element (termed a FMN

riboswitch) responsible for gene regulation within the riboflavin biosynthetic pathway

[52, 53]. The structure of ribocil C (and other representative compounds discussed in

this chapter) are given in Fig. 1. Here, ribocil and its cognate target, the FMN

6 H.A. Sutterlin et al.



riboswitch,were identified by screening a bioactive compound collection for inhibitors

whose bioactivity was specifically suppressed in the presence of exogenous riboflavin

supplemented to the growth medium. Despite a conditional essentiality for de novo

riboflavin biosynthesis by E. coli under in vitro conditions, genetic evidence demon-

strates an absolute essential requirement for this metabolic pathway in a murinemodel

of E. coli infection which is pharmacologically validated by demonstrating ribocil C

provides dose-dependent efficacy in this model [52].
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Temperature sensitive (TS) growth phenotypes of gene depletion mutants also

offer a simple strategy to consider both a wider array of drug targets and rapidly

identify cognate inhibitors. For example, ltaS encodes a lipoteichoic acid (LTA)

synthase responsible for the biogenesis of this basic cell-wall polymer common to

Gram-positive pathogens [58, 59]. Genetic studies in S. aureus reveal that ltaS is

dispensable at 30�C, albeit resulting in severe cell division and morphological

defects. However, at elevated temperatures such as 37�C (the physiologically

relevant temperature of infection), ltaS depletion mutants are not viable [58]. Tak-

ing advantage of this TS phenotype, Richter et al. screened for compounds that

phenocopy the ltaS phenotype and thus inhibit S. aureus growth only at the elevated
temperature. One such compound resulting from this screen, compound 1771, is

proposed to inhibit LtaS by structurally mimicking the phosphatidylglycerol sub-

strate of the synthase [24]. Whereas the above examples of conditional essentiality

are straightforward, more innovative strategies to exploit this phenomenon are also

possible. One particularly intriguing opportunity relates to bacterial gene essenti-

ality in the context of host innate immunity. For over 50 years, it has been known

that the extracellular capsule and diverse O-antigen types that coat the surface of

Gram-negative bacteria protect these pathogens from the lethal effects of human

serum [60–64]. Recently, the Schembri lab has revisited this biology. Using a

genome-wide transposon mutagenesis strategy in clinical isolates of E. coli they
uncovered multiple non-essential genes involved in O-antigen biosynthesis and in

outer membrane (OM) biogenesis which when genetically inactivated, profoundly

sensitize the bacterium to the killing effects of serum [65–67]. The clever exploi-

tation of these (and other) phenotypes that are relevant to the infectious disease

setting offers the design of robust cellular screens to identify cognate inhibitors, and

so to expand the diversity of new antibacterial targets.

Beyond any particular growth condition and/or environmental context in which

gene function is essential, conditional essentiality may also manifest in a unique

genetic context. Synthetic lethality (SL) describes such a context in which a gene is

dispensable in a wild-type genetic background, but not in a particular mutant

background in which another gene has been inactivated [68]. Typically, this

phenomenon applies to genes either involved in a common biological process or

distinct but interdependent biological processes which partially compensate or

“buffer” the loss of the other [54]. The most extensive demonstration of the myriad

of intrinsic synthetic lethal genetic interactions within a microbial genome

undoubtedly has been characterized in the bakers’ yeast, Saccharomyces cerevisiae
[68–70]. However, SL is also emerging as an important approach to identifying new

antibacterial targets [45, 71–74] as well as mapping genetic interaction networks

between a known target (for example, a clinically validated antibiotic drug target)

and new targets that if inactivated, enhance the activity of the clinically used

antibiotic. Such chemical genetic interaction networks are highly analogous to SL

and provide a powerful means to rationally identify cognate inhibitors that are

chemically synergistic with the clinical antibiotic, thus offering a compelling

combination agent strategy to improve existing antibiotics [54, 75]. An elegant

implementation of this strategy has been applied rigorously to methicillin resistant
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S. aureus (MRSA) and methicillin resistant S. epidermidis (MRSE) as a means of

restoring potent β-lactam efficacy against otherwise β-lactam resistant Staphylo-
cocci [47, 75, 76]. Here, a β-lactam genetic interaction network was first identified

using antisense interference methodology [77, 78] to genetically deplete gene

expression of ~250 possible targets and identify 24 distinct genes, which if partially

inactivated render MRSA and MRSE specifically susceptible to β-lactam antibi-

otics [76]. Interestingly, many of these β-lactam potentiation targets contribute to

various aspects of cell-wall peptidoglycan (PG) and wall teichoic acid (WTA)

biosynthesis, offering a clear mechanistic basis for their SL when genetically

knocked down in expression specifically in the context of sub MIC levels of

β-lactams. Additionally, targets involved in other biologically significant processes,

most notably cell division (e.g., FtsA, FtsZ, and FtsW), secretion (SpsB), and PG

lipid II amidation were also revealed [76, 79]. Finally, the genetic prediction of

β-lactam potentiation provided by this genetic interaction network was robustly

verified by evaluating the effects of PC190723, a potent and highly selective

inhibitor of FtsZ [46] in combination with diverse β-lactam antibiotics and demon-

strating striking chemical synergy between these agents in vitro as well as in a

murine deep thigh infection model of MRSA [47]. Consequently, the therapeutic

context of PC190723 as a single-agent antibacterial lead targeting FtsZ [46] could

be expanded into a role as a validated adjuvant, with analogy to β-lactamase

inhibitors [80], as a result of its ability to restore the efficacy of β-lactams against

methicillin resistant Staphylococci albeit through an entirely novel mechanism

[47]. Subsequent examples reinforce this view, as demonstrated by the identifica-

tion of target-specific inhibitors of MurG and MurJ-mediated PG biosynthesis

[28, 29] and WTA-mediated biogenesis (see below).

Perhaps the most remarkable genetic context in which conditional essentiality

was exploited to identify new antibacterial targets and screening opportunities for

cognate inhibitors relates to the phenomenon of an “essential gene paradox.” First

identified by Eric Brown and colleagues in both S. aureus and Bacillus subtilis,
inactivation of genes involved in WTA biogenesis displays paradoxical growth

phenotypes [81, 82]. Whereas early genes in WTA polymer synthesis are dispens-

able for growth in vitro, later stage enzymes in the pathway are indispensable for

growth and result in a bacteriostatic terminal phenotype [83]. Remarkably, double

deletion mutant analysis revealed that genetic inactivation of early stage WTA

enzymes suppressed the essentiality of disrupting late stage enzymes in the path-

way, perhaps by preventing sequestration of the essential bactoprenyl phosphate

lipid carrier which otherwise accumulates in late stage mutants and which is also a

shared lipid carrier essential for PG synthesis [50]. Regardless, the unique gene

dispensability pattern within WTA biogenesis offers powerful whole-cell based

phenotypic screens to identify early and late stage inhibitors of discrete biochemical

enzymes within the pathway and their corresponding druggable targets

[84]. Whole-cell screens designed to phenocopy the conditional essentiality of

late stage lesions in WTA synthesis led to the discovery of targocil [33], targeting

the membrane-associated subunit (TarG) of the WTA “flippase” responsible for

transporting newly synthesized cytosolic WTA polymer to the cell surface
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[85]. Accordingly, targocil is bioactive against wild-type S. aureus (including

MRSA) but its bioactivity is dramatically suppressed when assayed against

S. aureus strains deleted of early stage enzymes, such as TarO. Underscoring the

robustness of TarG as a druggable target, similar screens have identified multiple

new chemotypes with broader Gram-positive bacterial spectrum targeting the WTA

transporter [34].

Recently, we have described a chemical suppression-based screen that similarly

relies on the opposing gene dispensability pattern of WTA genes to identity

inhibitors of early stage WTA enzymes [32]. Here, the entire Merck corporate

library was screened for compounds that restored growth of S. aureus bacteria that
were growth arrested due to the bacteriostatic effect of a TarG inhibitor. Com-

pounds that enable bacterial growth in this context phenocopy the restored growth

of WTA double mutants defective in both early and late polymer synthesis and are

predicted to target one of the early non-essential WTA biosynthetic enzymes. Two

structurally distinct, synthetically derived chemicals named tarocin A and B were

identified [32] and demonstrated to inhibit TarO, a glucosyltransferase responsible

for the initial step in WTA polymer synthesis and previously demonstrated to be

inhibited by the natural product, tunicamycin [27]. Thus TarO is uniquely

druggable by both synthetic chemistry and natural products. As TarO is not

essential for growth in a wild-type strain background, tarocins are non-bioactive

(MIC values >256 μg/mL). Moreover, tarocins resensitize MRSA and MRSE to a

broad diversity of β-lactams in vitro below the clinical breakpoint drug concentra-

tion defining β-lactam resistance and provide synergistic efficacy when paired with

β-lactams in a murine infection model of MRSA infection [32]. Consequently,

tarocins serve as novel and extensively validated non-bioactive adjuvants to pair

with such antibiotics that are conceptually highly analogous to β-lactamase inhib-

itors used to restore β-lactam efficacy against Gram-negative pathogens [80].

3 Alternative Approaches to New Target Discovery

Historically, phenotypic screens have been enormously successful in identifying

new classes of antibiotics. Best illustrative of this success is the discovery of

thienamycin (the progenitor of imipenem and the entire carbapenem class of

β-lactams), which was identified over 40 years ago from a natural product screen

using a fluorescence-based readout of cell lysis indicative of cell-wall inhibitors

[86]. Our reliance on phenotypic screens remains today. Recently, AstraZeneca

researchers employed a high-throughput phenotypic screen utilizing the

Citrobacter freundii AmpC β-lactamase, which when induced in E. coli serves as
a sensor for inhibition of cell-wall biosynthesis. Screening over 1.2 million com-

pounds against this reporter assay ultimately yielded specific whole-cell active

inhibitors targeting LpxH (catalyzing the fourth step in lipopolysaccharide (LPS)

biosynthesis) and the lipoprotein outer membrane localization (Lol) complex,

LolCDE [25]. Both LPS and bacterial lipoproteins contribute greatly to the
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composition of the Gram-negative OM, and the discovery by this approach under-

scores the functional interrelationship (think synthetic lethality!) between the OM

and PG synthesis. Importantly, this work also provides the first reported inhibitors

of these essential enzymes [25, 26]. Additional examples of phenotypic screening

campaigns discussed above and which similarly identify novel druggable targets

and cognate inhibitors emphasize the continued success of this approach [32, 33,

52].

Repurposing existing antibacterial leads in a new therapeutic context breathes

new life into old compounds (and targets) but requires novel biological insights to

either enhance the activity of the agent or circumvent previously perceived limita-

tions of the antibiotic. The discovery of PC190723 as a β-lactam potentiation

adjuvant that restores β-lactam efficacy against MRSA is one example [47]. Another

clever example is the repurposing of ClpP inhibitors in the context of chronic

S. aureus infections mediated by persister cells. Persister cells reflect a small minority

of planktonic cells in a bacterial community which are metabolically inactive or

dormant [87–89] and consequently resistant to antibiotics whose mode of action is

dependent on cell growth. In an elegant series of experiments, Lewis and colleagues

demonstrated that the semi-synthetic acyldepsipeptide, ADEP4, which was previ-

ously shown to activate ClpP-mediated proteolysis by the bacterial proteasome

[43, 90], effectively kills S. aureus persister cells within planktonic communities as

well as biofilms [42]. To circumvent the unacceptably high frequency of resistance

ADEP4 exhibits as a single agent (clpP null mutants are highly resistant) it was paired

with rifampicin. Remarkably, the ADEP4-rifampicin combination demonstrated

complete sterilization of both planktonic and persister cells in a murine chronic

infection model of S. aureus [42]. Conceptually, activating – rather than inhibiting

– the proteasome (or other proteases) provides a compelling new target and general

strategy to treat chronic infections refractory to standard antibiotics.

Innovative strategies to optimize chemical libraries for antibacterial activity have

also demonstrated significant success. Starting with the host defense antimicrobial

peptide protegrin I, researchers at Polyphor have performed iterative synthesis of

this starting point for the design and optimization of a library of peptidomimetics

with improved antibacterial potency and reduced hemolytic activity [22]. One

optimized macrocyclic compound, POL7080, was demonstrated in Pseudomonas
aeruginosa to inhibit LPS biogenesis by targeting LptD, which functions in the final

step of LPS transport to the outer leaflet of the OM [91]. Based on drug resistant

mutant mapping studies to the target and significant protein sequence differences

between P. aeruginosa LptD and orthologs across other Gram-negative pathogens,

POL7080 is predicted to display a narrow antibiotic spectrum. However, a clear

unmet clinical need for novel and effective narrow spectrum anti-Pseudomonas

agents undoubtedly exists. Moreover, POL7080 displays impressive nanomolar

anti-Pseudomonas activity in vitro and robust efficacy against P. aeruginosa in a

lethal septicemia model of infection, achieving a median effective dose in the range

of 0.25–0.55 μg/mL [22].

Revisiting natural product libraries as a source of new antibacterial leads

involves clever methods to growing previously “unculturable” microorganisms,
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thereby potentially overcoming the asymptotic inefficiencies of natural product

rediscovery currently faced by conventional means [18, 92]. Domesticating such

microbes has recently been achieved utilizing a multichannel device (named an

iChip) where soil microorganisms are diluted into separate channels and enclosed

in a semi-permeable membrane to support diffusion of nutrients and growth when

incubated in a soil environment [35]. Screening ~10,000 natural products using this

method led to the discovery of teixobactin, an unusual depsipeptide demonstrated to

target both lipid II and lipid III precursors of PG and WTA biosynthesis, respec-

tively. Teixobactin displays potent Gram-positive activity, dramatic efficacy in

multiple murine infection models, and a highly favorable resistance profile

achieved by its dual targeting mechanism. Consistent with teixobactin’s unique

mechanism, it is structurally distinct from vancomycin and other glycopeptides,

lantibiotics, and defensins which solely target lipid II [93]. Unlike proteins

encoding an essential enzyme activity, however, lipid II, lipid III, and the FMN

riboswitch [52, 53] constitute non-conventional antibiotic targets. Whereas lipid II

and III are essentially immutable lipid substrates, substantial mutation-based plas-

ticity likely exists in non-coding RNA structural elements. Other successful anti-

biotics that interdict non-conventional targets include daptomycin and colistin,

which disrupt membrane lipids, and bacitracin, which binds and sequesters the

undecaprenylpyrophosphate lipid carrier from which PG and WTA are synthesized

and translocated to the cell surface. One cannot help but think other classes of

non-conventional antibiotic targets remain to be discovered.

In parallel to these efforts exploiting previously “unculturable” microbes, in

silico methods have been developed to facilitate the design of new natural products

for use as antimicrobials [94]. This approach utilizes bioinformatics to predict

natural product structures from primary genomic sequence data and chemical

synthesis to create these synthetic-bioinformatic natural products (syn-BNPs),

which can then be assayed for antibacterial activity. A major problem with natural

product drug discovery is the inability to access all biologically relevant chemical

diversity through typical laboratory growth conditions, and this recently discovered

method provides one potential solution to this issue. As a test case, Chu et al. show

that, using sequence data from human commensals and pathogens, they are able to

predict and synthesize a novel class of molecules, dubbed the humimycins, that

inhibit the S. aureus lipid II flippase [94].

Notwithstanding the current view that in vitro-based biochemical high through-

put screening (HTS) and downstream optimization of such synthetic chemistry hits

has been largely unsuccessful in the search for new antibacterial leads with whole-

cell potency [15, 16], there are quite compelling exceptions to this general rule,

particularly as it applies to new Gram-positive targets with cognate inhibitors. In

vitro HTS efforts against multiple isoforms of the CoaD enzyme, involved in the

synthesis of the essential cofactor, coenzyme A (CoA), combined with structure-

based optimization efforts has recently led to the discovery of a highly potent series

of antibacterials with broad Gram-positive spectrum, in vivo efficacy across mul-

tiple models of infection, and an acceptably low frequency of resistance

[41]. Although the further drug optimization of these compounds addressing
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solubility and tissue penetration was not achieved, both CoaD and the CoA bio-

synthetic pathway were rigorously validated and offer the potential for the discov-

ery of new series with superior physicochemical properties.

4 Structural Biology Advances Driving Target Discovery

Targeting OM biogenesis factors of Gram-negative bacteria remains a highly

attractive, yet underexploited approach in novel antibacterial drug discovery. The

OM is an asymmetric bilayer composed of phospholipids in the inner leaflet, LPS in

the outer leaflet, OM beta-barrel proteins (OMPs) integrated within the bilayer, and

lipoproteins anchored to the inner leaflet [95]. Because the OM is essential,

inhibiting its assembly by intervening in lipoprotein, β-barrel protein, or LPS

biogenesis will compromise the viability of the cell. Recent structural data for

proteins involved in OM biogenesis helps to prioritize such targets. A recently

solved P. aeruginosa co-crystal structure of LspA, the signal II peptidase respon-

sible for processing of lipoproteins, with its cognate inhibitor globomycin [40]

serves as a significant starting point for rational drug design against this target. The

β-barrel assembly machine (BamABCDE) and the LPS-transport subcomplex

located at the OM (LptDE) are particularly attractive targets because they are not

only druggable enzymes [22, 23] but also contain surface-accessible essential

proteins. The principal difficulty with discovering Gram-negative antibacterial

leads is identifying compounds that can cross the robust barrier created by the

LPS layer and avoid efflux once inside the cell; targeting a surface-exposed protein

would circumvent these issues. Additionally, targeting the LPS assembly machine

(LptDE) would not only kill the cell, but also permeabilize the OM to other agents

that normally have a difficult time traversing the membrane [22].

Bam complex structural data now provide significant insight into the mechanics

behind β-barrel protein assembly into the OM in Gram-negative bacteria. The

recently solved BamACDE crystal structure overlaid with a previously solved

BamAB subcomplex crystal structure permitted the first structural model of a

fully assembled Bam complex from E. coli [96]. This BamABCDE structure

confirmed previously reported interactions amongst the Bam components as well

as revealed new interactions and Bam protein conformations to allow for specula-

tion of a mechanism of β-barrel assembly. Of note, Bakelar et al. found that when

the lipoprotein subcomplex BamCDE binds, the essential β-barrel component

BamA undergoes a conformational change opening the exit pore and lateral gate

in the barrel. This opening may serve to destabilize the membrane locally (near the

lateral gate) to allow for OMP insertion through reduction of the kinetic barrier,

rather than the threading of nascent OMPs through the lumen of the barrel and out

the lateral gate [97], since the BamA N-terminal soluble POTRA domains occlude

the lumen of the barrel when the exit pore and lateral gate are open in this crystal

structure. Recent genetic studies demonstrating that periplasmic components of the

assembly process interact with substrate after much of the β-barrel has formed also
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support this mechanism of OMP insertion [98]. Another recent study has demon-

strated that the only essential lipoprotein in the Bam complex, BamD, can be

targeted with a peptide that mimics a substrate protein to which BamD normally

binds in the assembly process, validating the druggability of this complex

[23]. Understanding the critical points of interaction amongst the Bam components

and movement of the Bam machine should enable the discovery of additional

inhibitors of OM β-barrel protein assembly.

Like recent advances in the Bam complex structure dataset, the first crystal

structures of the LPS-assembly subcomplex LptDE have shed light on a mechanism

of LPS insertion into the outer leaflet of the OM [99, 100]. The crystal structures

revealed a β-jellyroll N-terminal domain of LptD and an enormous 26-β-stranded
C-terminal barrel domain, the largest β-barrel discovered to date. The barrel

contains two lobes, one adjacent to the N-terminal domain and one occupied by

the essential lipoprotein LptE. LptE not only acts as a plug in the barrel, but also

plays a role in LptD assembly as well as LPS assembly [101, 102]. Based on

crystallographic and genetic data, the authors speculate that the hydrophilic portion

of LPS (O-antigen and core sugars) traverse the lumen of the open lobe of the

barrel, while that the lipid component is shielded from the aqueous periplasm by the

N-terminal domain of LptD and shuttled through a lateral gate opening between the

first and last β-strands of LptD, ensuring specific insertion into the outer leaflet of

the OM [99]. Blocking this lateral gate with a peptide or small molecule may be one

way to disrupt the function of this essential LptDE translocon. Validation of this

hypothesis would highlight how these structural advances can facilitate design of

novel antimicrobials.

5 Considering Antibacterial Drug Resistance as Contextual

A general theme to most new targets and cognate antibacterial leads highlighted in

this review is their propensity for target-based drug resistance (Table 1). Often, this

resistance likely reflects their single-target mode of action [103, 104]. We are also

mindful of the disastrous impact drug resistance can have on antibacterial clinical

development [105]. The likelihood that acceptable resistance profiles for Level-2

targets described here are achievable, however, either by structure-based design to

improve and/or change drug-target binding contacts and/or increase potency should

be considered on a case by case basis. One such example is that of antibiotic 2, a

non-β-lactam inhibitor which not only inhibits the classic targets of penicillin,

PBP1, but also allosterically inhibits the target responsible for β-lactam resistance

in MRSA and MRSE, PBP2a [31]. It is also appropriate to be mindful that in vitro-

based resistance studies may not always reflect the prevalence of resistance in an

infectious setting. The broad-spectrum β-lactam mecillinam serves as an important

example of the potential paradoxical resistance profiles of an antibiotic observed by

in vitro testing versus that encountered in a clinical setting. Multiple different

mecillinam resistance mechanisms in E. coli are commonly identified in vitro,
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ranging from target-based (pbpB) mutations to other processes including cell-wall

synthesis, cell division, tRNA synthetases, and the ppGpp stringent response

pathway [106]. Conversely, mecillinam-resistant E. coli from patients treated for

a urinary tract infection are very rarely identified and reflect a single type of

mutation: inactivation of cysB, a gene involved in cysteine biosynthesis

[106]. Whereas all mutant classes selected in vitro share similar fitness costs, the

cysB mutations uniquely lack a fitness cost in a more relevant urine-rich growth

condition. Thus amongst a broad set of mutations that can confer mecillinam

resistance under standard in vitro growth conditions, only cysB mutants are suffi-

ciently fit to potentially persist in the urinary tract. Moreover, considering the high

exposure level of the drug in the urine, few of these mutants cause resistance to the

antibiotic in a clinical setting, likely because high mecillinam levels sufficiently

impact the fitness of the pathogen in an environment where robust growth of the

pathogen is required to offset their natural expulsion from the urinary tract. There-

fore, understanding drug resistance in a more therapeutically relevant context is

critical to avoid the risk of potentially deprioritizing new targets and antimicrobial

leads solely based on their in vitro resistance profile.

It is also interesting to consider how a fundamental understanding of the genetic

interactions within a single biological process combined with the discovery of

multiple inhibitors to distinct targets within such a process can be leveraged in a

systems biology-based combination agent strategy to mitigate drug resistance.

Consider the WTA biosynthetic pathway (Fig. 2) [34, 48, 107, 108]. Tarocins

restore the efficacy of β-lactams against MRSA with target-based resistance map-

ping to tarO [32]. Addition of a TarG inhibitor as a third component to this

combination substantially reduced tarO-mediated resistance [32]. However, mech-

anistically this is not achieved by simply adding another antibiotic since the growth

inhibitory activity of the TarG inhibitor is robustly suppressed by TarO inhibitors

(Fig. 2a). Instead, in this three-way combination context the TarG inhibitor is

inactive against the bacterial population sensitive to a tarocin-dicloxacillin combi-

nation (where TarO is inhibited) and only bioactive against tarocin-resistant tarO
mutants (i.e., target-based mutations) (Fig. 2b) in the population that maintain TarO

functional activity [33, 34]. Conversely, pre-existing tarO loss-of-function muta-

tions which would suppress the activity of the TarG inhibitor are broadly and highly

sensitive to β-lactams [27, 34] as well as strikingly attenuated in virulence across

diverse animal infection studies [34, 108–110] (Fig. 2c). Consequently, such a three

component combination therapeutic elegantly exploits a circuitry of genetic inter-

actions and antibiotic hypersensitivities within the cell-wall network as well as

avirulent phenotypes of tarO mutants to provide an integrated and interdependent

means of mitigating target-based resistance of the β-lactam potentiator.
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6 Target Discovery Parallels Between Gram-positive WTA

and Gram-negative OM Biogenesis

Recent progress made in the discovery of Level-2 targets participating in Gram-

positive WTA biosynthesis also serves as an instructive example for how new

targets may similarly be discovered in other critical biological processes, particu-

larly OM biogenesis amongst Gram-negative pathogens (Fig. 3) [111–113]. Central
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Fig. 2 Triple combination strategy provides an interdependent mechanism of mitigating target-

based resistance. The illustration depicts multiple scenarios in which of a triple combination of TarO

and TarG inhibitors paired with a β-lactam antibiotic overcomes various potential mechanisms of

resistance. (a) Synergistic activity of tarocin and β-lactam re-sensitizes β-lactam-resistant Gram-

positive bacterial pathogens to provide broad Gram-positive antibacterial coverage; simultaneously

inactivating L-638 such that it is non-bioactive in this context. (b) In this scenario, acquisition of TarO

target-mediated mutations will confer resistance to tarocin but consequently “activate” L-638

antibacterial activity to re-establish broad Gram-positive coverage by the combination cocktail. In

addition, Sakoulas et al. have demonstrated that β-lactams (e.g., nafcillin) enhance innate-immune

mediated killing of MRSA despite its elevated MIC to the antibiotic [107]. (c) In this scenario,

acquisition of Pbp target-mediatedmutations that confer resistance to the β-lactam (a very rare event*)

may occur but still allows for tarocin to inhibit WTA synthesis, which has been demonstrated to

reduce virulence and biofilm formation ofmethicillin-sensitive S. aureus (MSSA),MRSA, andMRSE

during infection [34, 48, 108]. (d) In this final scenario, resistance that may arise due to mutations to

both Pbp and TarO targets (an extremely rare event) also activates L-638 antibiotic activity MSSA,

MRSA, and MRSE as well as potentially providing broader Gram-positive coverage
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to this success is a deep functional understanding of WTA biogenesis and cell

surface assembly from a genetic, biochemical, structural, and pathogenesis per-

spective [83, 108, 114] and from which an integrated systems biology mindset can

be applied. Discovery of robust WTA Level-2 targets such as TarG and TarO,

whether “essential” or “non-essential” are actually conditionally essential in the

context of an unorthodox gene dispensability pattern and β-lactam exposure

[115]. Exploiting WTA genetics provides elegant whole-cell target-based screens

to efficiently identify target-specific inhibitors of the pathway [32–34] as well as

other biochemical pathways impinging on WTA biogenesis (UppS) [50, 51] or by

leveraging synthetic lethal interactions within the WTA genetic interaction network
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Fig. 3 (a) Select Gram-positive cell-wall associated targets and cognate inhibitors. Representa-

tive diagram of a prototypical S. aureus bacterial cell surface displaying color-coded biologically

relevant biosynthetic pathways: lipoteichoic acid (yellow); wall teichoic acid (salmon); peptido-
glycan (blue); cell division (green). New antibacterial targets and cognate inhibitors described in

the main text and Table 1 are highlighted. The potential antimicrobial spectrum for the reported

inhibitors is designated: potential broad Gram-positive spectrum (red box); potential broad Gram-

positive and Gram-negative spectrum (blue box). (b) Select Gram-negative OM-associated targets

and cognate inhibitors. Representative diagram of Gram-negative bacteria and their relevant

biosynthetic pathways: The Lpt pathway (in salmon), Lipoprotein processing and assembly

(yellow), and OMP assembly (purple). Much of the machinery used in the biosynthesis of the

peptidoglycan is conserved among Gram-negatives and Gram-positives (see (a) for potential

targets). In Gram-negatives, tunicamycin has been demonstrated to additionally target WecA, an

IM protein involved in the biosynthesis of O-antigen [111]. Potential Gram-negative spectrum

targets (green boxes) and potential broad Gram-positive and Gram-negative spectrum (blue boxes)
are indicated [112, 113]. OM outer membrane, IM inner membrane, PG peptidoglycan, PL
phospholipid, LPS lipopolysaccharide, OMP OM β-barrel protein
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(DltB) [45]. Such targets and cognate inhibitors can also be considered as adjuvants

for developing synergistic antibiotic combination agents from a rational biology-

based perspective [32, 47] and mindful of virulence phenotypes that may augment

efficacy. Finally, entirely new anti-infective approaches may be derived from such

a fundamental understanding of WTA biology, as elegantly shown by Lehar et al. at

Genentech who report an efficacious WTA antibody-antibiotic conjugate to target

intracellular reservoirs of S. aureus associated with chronic infections [36].

Similarly remarkable advances in our understanding of Gram-negative OM

biogenesis have also emerged over the last decade. Beyond the fundamental

architecture and composition of the OM, we are gaining a deep functional under-

standing of the distinct biological assembly processes (i.e., Bam, Lpt, Lol, LPS, PG,

capsule, and stress response signaling pathways) [116–126] contributing to its

biogenesis and homeostasis as well as their functional interconnectivity

[127, 128]. Synthetic lethal-based genetic strategies are also being employed to

identify new OM targets such as LpoA and LpoB, two PBP accessory proteins

central to PG biogenesis [71, 129], as well as to map genetic interactions within and

between these biological processes [72, 102, 130, 131]. Such synthetic lethal

interactions could be exploited to develop whole-cell pathway-based screens for

novel OM biogenesis inhibitors. Parallels between the WTA essential gene paradox

and analogous genetic dispensability patterns in O-antigen biogenesis also exist

[132], suggesting similar whole-cell screening opportunities to identify inhibitors

of O-antigen assembly are possible. Finally, recent work re-emphasizing the
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importance of O-antigen and other aspects of the OM in protecting E. coli from the

lytic effects of human serum provide exciting new avenues of conditionally essen-

tial targets and screens to impair Gram-negative virulence [66, 67].

7 Conclusions

Table 1 summarizes multiple new antibacterial targets discovered in recent years

that approach or satisfy Level-2 criteria of (1) bioinformatics-based pathogen

spectrum and target-based cytotoxicity predictions; (2) druggable with cognate

inhibitor(s) identified with compelling MOA validation; and (3) pharmacological

and/or genetic demonstration that target inactivation provides efficacy in a relevant

animal model of infection. Surveying this list illustrates a number of emerging

trends. For example, many of the druggable targets are multi-spanning membrane

proteins localized to the cytoplasmic membrane in Gram-positive bacteria, or

resident in the periplasm or OM of Gram-negatives where they functionally serve

as biosynthetic enzymes or transporters involved in cell-surface biogenesis. In part,

their druggable nature likely reflects their cell-surface location and ability of small

molecules to engage such targets without confronting cell permeability and/or

efflux issues. The highly hydrophobic nature of such druggable targets does how-

ever “select” for cognate inhibitors with high cLogP values and physicochemical

properties incompatible with high solubility and drug-like properties [20]. Multi-

spanning membrane proteins are also highly challenging from the perspective of

target X-ray crystal structure determination, compound co-crystallization, and

hence structure-based design and compound optimization. In this way, bacterial

druggable targets resemble the majority of known therapeutic targets in human

disease (e.g., G-protein coupled receptors, ion channels, and other cell-surface

targets), emphasizing the need for technical improvements and greater focus

towards X-ray crystallography of complex bacterial membrane proteins. It is also

evident that the level of small molecule MOA validation in many of these studies

can vary considerably and mechanistic evidence in a whole-cell context is often

overly weighted by phenomenological evidence rather than direct target engage-

ment within the cellular milieu. We suggest that in addition to in vitro-based

biochemical studies and structural biology evidence, isolation and characterization

of causal drug resistant mutations are critically needed to unambiguously validate

the MOA of cognate inhibitors of such privileged antibacterial drug targets. Evident

also in Table 1 are Level-2 targets with often an unattractive frequency of resistance

observed by cognate inhibitors. However, with few exceptions [22] these are lead

candidate molecules, not pre-clinical or clinical candidate therapeutics. Consider-

able medicinal chemistry optimization is required and substantial attrition is cer-

tain. Identifying new series with more favorable resistance profiles is also possible

and often warranted considering the importance of such targets. Identifying more

dual-target opportunities would also likely mitigate resistance development [35, 44,

103, 104]. A greater understanding of drug resistance in a relevant infectious setting
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as well as potential genetic interaction circuits that can be pharmacologically

interdicted to mitigate drug resistance also deserves greater consideration. Finally,

a survey of Table 1 emphasizes a strong bias towards Gram-positive targets meeting

Level-2 criteria despite the urgent need for new Gram-negative antibacterials.

Perhaps in small part this reflects a lag time required to catch up to a growing

government, industry and (and importantly) clinical perspective collectively

shifting focus to addressing Gram-negative pathogens in recent years. In large

part, however, this asymmetry is based on the OM barrier and extensive efflux

pumps shared by Gram-negative bacteria that thwart the entry and concentration of

potent and selective inhibitors; hence compounding the difficulty to identify and

validate druggable targets [20, 133]. The recent commitments made by the Pew

Charitable Trust, Welcome Trust, BARDA, NIAID, and most recently CARB-X to

fund research centered around OM biogenesis, small molecule permeability, and

drug efflux is timely and much needed to address this fundamental issue.
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