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Evaluating Dual Hsp90 and Hsp70 Inhibition

as a Cancer Therapy

Laura K. Buckton, Yao Wang, Jeanette R. McConnell,

and Shelli R. McAlpine

Abstract The heat shock proteins (Hsps) are a family of highly conserved proteins

involved in the regulation of numerous cellular processes including those associ-

ated with cancer. Inhibiting the function of these Hsps, specifically Hsp70 and

Hsp90, is a major strategy used in the development of new cancer therapies.

Numerous Hsp90 inhibitors have been evaluated in the clinic, and while some

have experienced success, many have produced disappointing results. One reason

explaining their failure is that they induce a cytoprotective response that protects

cancer cells from the negative effects of Hsp90 inhibition. In order to maximise the

therapeutic outcomes, dual inhibition of Hsp70 and Hsp90 can be employed to

overcome cell rescue mechanisms induced by monotherapies. In this chapter, we

discuss dual inhibition of Hsp70 and Hsp90 using small molecules and evaluate the

potential of this strategy for the development of cancer therapeutics.
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1 Introduction

Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the mainte-

nance of protein homeostasis in the cell [1–3]. Hsp90 assists in the folding,

stabilisation, activation and degradation of numerous cellular proteins. Hsp90

interacts with over 400 client proteins [4], many of which are associated with

cancer [1]. Upon activation, these client proteins assist in disease progression,

which makes Hsp90 a regulator of many disease-causing pathways. Consequently,

Hsp90 inhibition has emerged as a promising strategy for the treatment of diseases

involving aberrant protein structure and function, including cancer.

Hsp90 exists as a homodimer, where each monomer contains an amino (N-)

terminus, a middle domain and a carboxy (C-) terminus (Fig. 1). The N-terminus

contains an ATP-binding site, the middle domain contains binding sites for client

proteins and co-chaperones, and the C-terminus serves as the dimerisation domain

and also contains binding sites for co-chaperones. It is well understood that clinical

Hsp90 inhibitors or “classical inhibitors” target the N-terminal ATP-binding site of

Hsp90, impacting Hsp90’s protein folding cycle (Fig. 1).

The first Hsp90 inhibitor, geldanamycin, was identified in 1994, and its deriv-

ative tanespimycin (17-AAG) entered the clinic as a cancer therapeutic in 1999 [5]

(Fig. 2). Both of these analogs are from the ansamycin class of compounds. Since

1995, Hsp90 inhibitor drug candidates have been steadily entering the clinic, with a

total of 15 different drugs being tested as monotherapies in clinical trials since 1999
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[6, 7]. The ansamycin molecules are reported to inhibit ATP from binding to Hsp90

(Fig. 1b). However, recent evidence shows that they are highly promiscuous and, as

such, are likely targeting many proteins, not just Hsp90, which would explain their

failure in clinical trials.

More recent Hsp90 inhibitor drug candidates mimic the ATP molecule (Fig. 2).

Several of these molecules are still in clinical trials and are being used to treat many

cancer types including breast cancer, non-small cell lung cancer (NSCLC), mela-

noma, renal cell carcinoma (RCC), multiple myeloma (MM), gastrointestinal

stromal tumour (GIST), castrate-resistant prostate cancer (CRPC) and several

types of leukaemia [6, 7]. Clinical inhibitors block ATP from binding, leading to

the inhibition of protein folding. However, clinical trial results showed that when

used as single agents, these Hsp90 inhibitors were not highly efficacious and have

generated disappointing patient outcomes.

As a single agent, 17-AAG had significant side effects [8] and was subsequently

dropped from clinical trials. Three other recent monotherapy regiments in clinical

trials involved (1) 17-DMAG to treat CRPC, melanoma or acute myeloid leukae-

mia; (2) ganetespib to treat breast cancer and NSCLC; and (3) IPI-504 to treat

NSCLC and GIST [9, 10] (Fig. 2). However, patient’s responses were modest,
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where 17-DMAG caused a response in 2 of 28 patients (7%) HER2+ breast cancer

patients, ganetespib caused a partial response (PR) in 2 of 22 (9%) breast cancer

patients, and IPI-504 caused a PR in 5 of 76 (7%) NSCLC patients and 1 in 36 (3%)

GIST patients [7, 10, 11]. 17-DMAG was also reported to cause a complete

response (CR) in a single patient that had CRPC, three CR in acute myeloid

leukaemia and one PR in melanoma [8, 11]. Thus, Hsp90 inhibitors have shown

positive clinical benefit for patients, although the low response rate is a significant

concern. Classical Hsp90 inhibitors continue to enter into clinical trials as both

single and combination therapies. Currently, there are 32 active studies evaluating

the effects of these drugs on numerous cancer types (Table 1).

The low response rate coupled with hepatotoxicity, ocular toxicity and in one

case mortality has caused the suspension of most clinical trials using Hsp90

inhibitors as single-agent chemotherapeutics [12, 13]. The limited effectiveness

of these Hsp90 inhibitors appears to be due to several key factors. The first is that

the ATP-binding site, where these clinical molecules interact with Hsp90, has a

binding pocket that is similar to several classes of proteins, specifically DNA

polymerases and tyrosine kinases [14]. Thus, classical inhibitors appear to bind to

other proteins in addition to Hsp90, thereby producing off-target effects [15–25]

and potentially contributing to the observed toxicity associated with these drugs.

Second, resistance and anti-apoptotic pathways are activated immediately upon

patient treatment with these clinical Hsp90 inhibitors. This resistance is a result of

the specific types of Hsp90 inhibitors activating the cellular heat shock response

(HSR) [26]. The HSR is an evolutionary response that is triggered when the cell is

under stress and was first discovered by subjecting cells to high temperatures.

Triggering a HSR induces high levels of heat shock proteins (Hsps), which are

responsible for refolding the aggregated and misfolded proteins that accumulate in

the stressed or rapidly growing cell, and they aid in protein degradation [27]. The

HSR facilitates cell survival by activating resistance mechanisms and anti-

apoptotic pathways [28, 29].

Specifically, cellular stress leads to releasing heat shock factor 1 (HSF-1) from

Hsp90 (Fig. 3b) [30–34]. Transport of HSF-1 into the cytoplasm is inhibited leading

to a build-up of HSF-1 in the nucleus [35]. HSF-1 then forms a trimer in the

nucleus, which is extensively phosphorylated [36]. The HSF-1 trimer binds to

specific sequences known as heat shock elements (HSE) in DNA promoters and

induces transcription of genes encoding for itself and multiple cellular chaperones,

including heat shock protein 27 (Hsp27), heat shock protein 40 (Hsp40) and heat

shock protein 70 (Hsp70), in order to rescue the cell from the accumulating

unfolded proteins [37, 38] (Fig. 3c). In the absence of stress, promoters for these

genes are occupied and unavailable [39, 40]. The mRNAs encoding for inducible

and constitutive Hsp70 (HSPA1A and HSPA8, respectively) are produced during

the HSR, as well as mRNA that encodes for HSF-1, Hsp40 and Hsp27 (Fig. 3d).

These Hsps attempt to rescue the cell from the unfolded protein that is accumulat-

ing. The high levels of Hsps refold the aggregated and misfolded proteins that

accumulate in the stressed cell, and selected Hsps can also aid in protein

degradation [27].
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Table 1 Active clinical trials involving Hsp90 inhibitors registered on clinicaltrials.gov

Molecule Condition Phase Started Treatment Other drugs

NVP-AUY-922 Non-small cell lung cancer II 2013 Single –

NVP-AUY-922 Lung cancer I 2014 Dual Pemetrexed

disodium

NVP-AUY-922 Non-small cell lung cancer I 2013 Dual LDK378

NVP-AUY-922 Lung cancer II 2015 Single –

NVP-AUY-922 GI stromal tumour II 2011 Single –

NVP-AUY-922 Non-small cell lung cancer II 2013 Single –

NVP-AUY-922 Non-small cell lung cancer II 2014 Single –

SNX-5422 HER2+ cancers I/II 2013 Single –

SNX-5422 Neuroendocrine tumours I 2014 Single –

SNX-5422 Haematological

malignancies

I 2014 Single –

SNX-5422 Solid tumours I 2013 Comb. Carboplatin,

paclitaxel

STA-9090 Rectal cancer I 2012 Dual Capecitabine

STA-9090 Ocular melanoma II 2010 Single –

STA-9090 Multiple myeloma I 2012 Comb. Bortezomib,

dexamethasone

STA-9090 Neurofibromatosis type 1 I/II 2013 Dual Sirolimus

STA-9090 Ovarian, fallopian, perito-

neal cancer

I/II 2013 Dual Paclitaxel

STA-9090 HER2+ breast cancer I 2014 Comb. Paclitaxel,

trastuzumab,

pertuzumab

STA-9090 Head and neck cancers I 2014 Single –

STA-9090 Breast cancer II 2012 Dual Fulvestrant

STA-9090 Non-small cell lung cancer III 2013 Dual Docetaxel

STA-9090 Ovarian, fallopian, perito-

neal cancer

I/II 2014 Dual Paclitaxel

STA-9090 Small cell lung cancer I/II 2014 Dual Doxorubicin

STA-9090 Lung cancer I/II 2013 Single –

STA-9090 Neoplasms I 2014 Dual Ziv-

Aflibercept

STA-9090 Breast cancer I 2010 Single –

STA-9090 Acute myeloid lymphoma,

myelodysplastic syndrome

III 2014 Single –

PU-H71 Lymphoma, solid tumour I 2011 Single –

PU-H71 Lymphoma, myeloma,

solid tumour

Pre 2010 Single –

AT13387 Non-small cell lung cancer I/II 2012 Dual Crizotinib

AT13387 Head and neck cancers I 2015 Dual Cisplatin

AT13387 Melanoma I 2014 Comb. Dabrafenib,

trametinib

XL888 Melanoma I 2012 Dual Vemurafenib
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Similar to the stress caused by high temperatures, the excessive growth of cancer

creates stress in cells, and thus cancer cells produce high levels of Hsps. These Hsps

maintain protein folding and protein degradation and repair the large quantity of

proteins required for rapid cell division, as well as stabilising mutated oncoproteins

[27, 41]. This high level of Hsps, including Hsp90, is why Hsp90 inhibitors are a

promising treatment for cancer. However, inhibiting Hsp90 function using the

clinical inhibitors is well established to produce high levels of Hsp70; indeed,

Hsp70 is often used as a pharmacodynamic marker to determine if Hsp90 is

being inhibited by classical inhibitors [42–44].

Hsp70 assists in the delivery of specific clients to Hsp90 [45], as well as

functioning as an independent chaperone that facilitates protein translocation;

stabilises anti-apoptotic proteins; plays a key role in cellular resistance; and pre-

vents apoptosis [46–49]. Thus, inducing high levels of Hsp70 (>6-fold over

background) such as those observed when treating cells and patients with the

classical Hsp90 inhibitors is problematic for killing cancer cells. Indeed, the high

production of Hsp70 likely plays a key role in the disappointing clinical results [20–

24]. In response to these poor results for classical inhibitors, two strategies have

been employed.

STRESS

N

C

HSF-1M

hsp70

hsp90

HSF-1

HSF-1
HSF-1
HSF-1

p
p
p
p
p
p

hsp70

hsp27

hsp40

HSF-1

=

(A) Unfolded protein
accumulation (B) HSF-1 released

from hsp90

(C) HSF-1 binds DNA

(D) mRNA of hsps
is transcribed

(E) Hsps are produced

Facilitate
protein
folding

Clinical
hsp90

Inhibitors

Heat 
Shock

Fig. 3 Depiction of the widely accepted model of heat shock and the induction of the heat shock

response (HSR). (a) Stress from heat shock or clinical Hsp90 inhibitors triggers an accumulation

of unfolded proteins in the cell. (b) The Hsp90 protein complex collects these unfolded proteins,

which causes the release of HSF-1 from the protein complex. (c) HSF-1 then forms an active

trimer, which translocates to the nucleus and binds to DNA. (d) The mRNA of the heat shock

proteins is transcribed from the DNA. (e) The mRNA is then translated into the heat shock

proteins, which can then facilitate folding of the previously accumulated unfolded proteins
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The first approach, which is the development of Hsp90 inhibitors that target sites

other than the ATP-binding site of Hsp90, offers alternative mechanisms for

blocking Hsp90’s activity. Specifically, inhibiting activity at the C-terminus of

Hsp90 does not induce a HSR, nor lead to the upregulation of the Hsps [20–24,

50–55]. Thus, this approach may succeed as a single treatment as it does not

produce the anti-apoptotic or resistance observed with the classical inhibitors.

The second approach, which is already being used in the clinic, is a combination

of classical Hsp90 inhibitors with other forms of therapy. This second approach is

discussed in this chapter.

Dual inhibition is a rapidly developing area, and there are a large number of

clinical trials and patents being reported in this field. Of the 32 active clinical trials,

17 are studying the effects of Hsp90 inhibitors with one or more other drugs (www.

clinicaltrials.gov database). Recent patents include the use of combination treat-

ments utilising Hsp90 inhibitors with Hsp27 or Hsp70 inhibitors (patent number

WO-2007041294). Yukimasa patented results using a classic Hsp90 inhibitor

(KW-2478) in combination with an Hsp70, Hsp27 or BCL2 cancer treatment

drug (patent number WO-2007028387). Kyowa Hakko Kogyo patented the treat-

ment of a classical inhibitor 17-AAG being used in combination with a kinase

inhibitor such as gefitinib or a proteasome inhibitor such as bortezomib (patent

number WO-2008108386). Astex Therapeutics has patented the drug combination

of the classical inhibitor AT9283 with cyclin-dependent kinase inhibitors or aurora

kinase inhibitors (WO2008044045). Patent activity on dual inhibitors shows that

this line of investigation is being vigorously pursued.

2 Hsp90 Inhibition-Based Combination Treatment

Hsp90 is vital for most cancer cells because of its pivotal role in modulating protein

conformation and maturation [56–60]. To date, more than 400 proteins are regu-

lated by or associated with Hsp90, and as such they are called Hsp90 client proteins

[4]. About half of these clients are critical for cancer cell growth [61], including

transmembrane tyrosine kinases (HER2 and EGFR), metastable signalling proteins

(Akt, K-ras and Raf-1), mutated signalling proteins (p53 and v-Src), chimeric

signalling proteins (Bcr-Abl), cell cycle regulators (Cdk4 and Cdk6) and steroid

receptors (androgen, oestrogen and progesterone receptors) [62–67]. When mutated

or deregulated, these clients promote cancer growth. Cancer cell proliferation and

survival [68, 69] are facilitated by Hsp90 by maintaining tumours and homeostasis

and helping cells to adapt to unfavourable or stressful microenvironments that

include heat, hypoxia, free radical production, radiation and chemotherapy [68–71].

Because of its key roles in tumour development, Hsp90 has emerged as a

promising target for cancer therapy [63, 72–74]. Inhibiting Hsp90 has involved

targeting all three domains: the N-, middle and C-domains as a paradigm of

network-oriented drug discovery [63, 71, 75, 76]. Indeed, success at suppressing

cancer cell growth has been reported in both preclinical and clinical studies [5, 50,
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51, 54, 61, 72–74, 77–80]. Although there are currently 32 clinical trials involving

Hsp90 inhibitors, only three unique structures are involved in these studies and are

being tested on patients. All three target the N-terminal ATP-binding site of Hsp90

[54] and more than half of these clinical trials are using the compounds in con-

junction with other therapies [81–84].

Given Hsp90’s central regulating role in cancer development and its close

relationship with numerous key oncogenic proteins, studies are now exploring if

Hsp90 inhibitors can sensitise tumours to other chemotherapeutic agents. Devel-

oping combination therapies using Hsp90 inhibitors and other types of anticancer

agents with a distinct mechanism of action is one avenue that is currently being

investigated. Encouragingly, Hsp90 inhibition-based combination treatments of

cancer have proven to be more effective and more successful than monotherapies

in clinical trials, indicating a promising future for anticancer treatment. In this

section, we focus on the investigation and achievement of combination treatments

based on direct Hsp90 and Hsp70 dual inhibition.

2.1 Dual Hsp90 and Hsp70 Inhibition

The disappointing clinical results of Hsp90 inhibitors are likely connected to

induction of the HSR, which upregulates Hsp70 and Hsp27 as well as HSF-1

[74, 85, 86]. Induction of Hsp70 produces the undesirable effect of counteracting

the efficiency of Hsp90-based treatment, and it has been identified as a hallmark of

N-terminal Hsp90 inhibitors [87–97] (Fig. 4a). The C-terminal modulators, which

do not target the ATP site on Hsp90, do not induce HSF-1 nor the HSR [50, 51, 54,

77–80, 98] (Fig. 4b and c). Herein we discuss two approaches to dual inhibition of

Hsp70 and Hsp90 including combining small-molecule inhibitors of both Hsp70

and Hsp90 and combining Hsp70 silencing with Hsp90 inhibitors.

There are several rescue mechanisms that are induced with the HSR. First,

Hsp90 is induced and can still perform its protein folding and regulatory role.

Second, Hsp70 is also induced and may compensate for some of Hsp90’s inhibited
functions by assisting in protein folding, preventing protein aggregation and regu-

lating protein complex assembly or disassembly [99, 100]. Third, Hsp70 actively

participates in the protection of cancer cells from both extrinsic and intrinsic

apoptosis [99]. Ectopic overexpression or induced endogenous levels of Hsp70

promote cancer cell survival by effectively inhibiting lysosomal membrane

permeabilization [49], death receptor pathway [48], mitochondria-initiated signal-

ling for caspase-dependent apoptosis [46, 47, 101–104] as well as AIF-associated

caspase-independent apoptosis [105, 106].

Evidence of Hsp70’s critical role in apoptosis was seen when silencing Hsp70

expression using antisense oligonucleotides or ectopic transfection produced exten-

sive apoptotic cancer cell death [48, 107, 108]. Furthermore, Hsp70 inhibition

triggers an antitumour immune response by blocking the Hsp70-induced activation

of myeloid suppressive cells (MDSC), which have the capacity to suppress both the
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cytotoxic activities of natural killer (NK) and NKT cells and the adaptive immune

response mediated by CD4+ and CD8+ T cells [109–113]. All of these factors make

dual inhibition of Hsp90 and Hsp70 an optimal cancer therapy.

Using a combination treatment of Hsp90 and Hsp70 inhibitors may not only

neutralise the issues associated with N-terminal Hsp90 inhibition, but it may also

amplify their anticancer efficiency based on their multiple and independent mech-

anisms of action. Encouragingly, Hsp70 silencing using siRNA (small interfering

RNA), shRNA (small hairpin RNA) or cDNA (complementary DNA in the

reversed orientation) of Hsp70 has proven to successfully and synergistically

potentiate Hsp90-based anticancer treatment in both solid tumours and leukaemia

[48, 89, 90, 95]. However, only a few scientific studies on dual inhibition using

small-molecule inhibitors have been published, mainly because only a limited
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number of compounds effectively modulate Hsp70’s function [54, 90, 114]. MAL3-

101, Pifithrin-μ and VER-155008 (Fig. 5c) are the only three drugs that specifically

target Hsp70 and show synergism or an additive effect in combination treatment

with Hsp90 inhibitors both in vitro and in vivo [89, 93, 115–117].

VER-155008 binds to the ATP-binding site in Hsp70, blocking Hsp70’s access
to ATP and halting Hsp70’s function by denying it energy to perform (Fig. 5a).

VER-155008 was developed through a structure-based X-ray crystallographic

design [118]. It is also the first molecule to target the ATP-binding domain of

Hsp70 protein [116]. Treatment of cancer cells with VER-155008 showed antiproli-

ferative activity in many types of human cancer cells, including colon cancer [116],

breast cancer [118], multiple myeloma [89] and acute myeloid leukaemia [117]. As

expected, VER-155008 shows synergistic or additive combination effects with

Hsp90 inhibitors in preclinical cancer treatments [89, 116, 117].

Pifithrin-μ binds to the substrate-binding domain of Hsp70 and blocks other

substrates from effectively interacting with that site (Fig. 5). Pifithrin-μ specifically

targets the inducible isoform of Hsp70, without binding to the constitutive Hsp70 or

to Hsp90 [119]. It interferes with the C-terminal substrate-binding domain of Hsp70

and disrupts its association with client proteins, causing cell cycle arrest and

significant apoptosis at low micromolar concentrations. This leads the loss of

Hsp70 function, as it can no longer interact with substrates.
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Like Pifithrin-μ, MAL3-101 (Fig. 5) binds to Hsp70 at the substrate-binding site.

It blocks Hsp70’s essential cellular function by inhibiting the ability of Hsp40

co-chaperones to stimulate Hsp70 ATPase activity [120, 121] (Fig. 5b). Hsp40

docks to Hsp70 during substrate transfer of unfolded client proteins (Fig. 1); thus,

inhibiting this binding event halts the transfer of unfolded proteins and impacts

protein homeostasis, thereby inducing cell death.

2.1.1 Combination of VER-155008 and NVP-AUY922 in Multiple

Myeloma Treatment

VER-155008-based Hsp70 inhibition has been relatively successful in the treatment

of multiple myeloma (MM) [89]. VER-155008 significantly decreased the cellular

viability in MM cell lines, including INA-6, MM.1S, L363, KMS11 and JJN-3. The

sensitivity of MM cells to VER-155008 differed between cell lines with IC50 values

from 2.5 to 17 μM, and the drug concentrations that induce near complete cell

demise in all studied cell lines are between 10 and 30 μM. VER-155008-induced

Hsp70 inhibition led to apoptosis in MM with substantial accumulation of

apoptosis-inducing factor (AIF) in the nucleus and with increased cleavage of

pro-caspases 9/3 and the caspase substrate poly(ADP-ribose) polymerase

1 (PARP 1). Additionally, VER-155008 treatment simultaneously degraded many

Hsp90 client proteins involved in a number of oncogenic signalling pathways

including Ras/Raf/MAPK, JAK/STAT3, PI3K/Akt and the IKK/NFkB pathways.

When a dual inhibition approach of VER-155008 and NVP-AUY-922 was

implemented into INA-6, MM.1S and primary MM cells, a synergistic mode of

action was observed [89]. Specifically, the combination treatment with two inhib-

itors significantly enhanced apoptosis induction, where the combination effect on

INA-6 cells and MM.1S cells was synergistic and additive, respectively, with

combination indices (CI) less than 1 for all effect levels calculated [89, 90]

(Table 2).

Table 2 Ranges of

combination indices

(CI) correspond to

synergistic, additive or

antagonistic activities

Range of CI Description

<0.10 Very strong synergism

0.1–0.3 Strong synergism

0.3–0.7 Synergism

0.7–0.85 Moderate synergism

0.85–0.9 Slight synergism

0.9–1.1 Nearly additive

1.1–1.2 Slight antagonism

1.2–1.45 Moderate antagonism

1.45–3.3 Antagonism

3.3–10 Strong antagonism

>10 Very strong antagonism

Evaluating Dual Hsp90 and Hsp70 Inhibition as a Cancer Therapy 65



2.1.2 Combination of VER-155008 and 17-DMAG in Leukaemia

Treatment

Acute myeloid leukaemia (AML) is a biologically heterogeneous malignancy

characterised by bone marrow infiltration of immature leukaemic blasts

[122]. Hsp90 has emerged as a potent therapeutic target in AML, and the Hsp90

inhibitor 17-DMAG is effective in killing AML cells in vitro preclinical tests

[117]. However, Hsp90 inhibition showed limited antileukaemic effects in phase

I clinical trials [11, 123]. One major reason for this is the compensatory Hsp70

upregulation, which is induced by HSF-1 [74, 95, 124]. This is supported by the

observation that, in a manner observed with other Hsp90 inhibitors that target the

ATP pocket, 17-DMAG-based AML treatment increased Hsp70 and Hsp90

production [11].

However, combination treatment with Hsp90 and Hsp70 inhibitors to neutralise

the induced Hsp70 proteins shows promise for human AML [117]. In primary

human AML cells from 19 unselected patients, the Hsp70 inhibitor VER-155008

itself showed significant antileukaemic activity at 10 μM, causing a dose-dependent

inhibition of cancer cell proliferation, where growth was inhibited by 72%. Addi-

tionally, Hsp90 inhibitor 17-DMAG was used to treat cells at 50 nM, which also

resulted in growth inhibition of 58%. The combination treatment with both inhib-

itors in primary AML cells decreased cell growth to 82%, indicating an additive

growth inhibition effect on AML cells. Moreover, although both VER-155008

(10 μM) and 17-DMAG (50 nM) were able to cause an inhibition in AML colony

formation for most patients, the strongest and most significant decrease in colony

number was observed when the two drugs were combined.

VER-155008-mediated Hsp70 inhibition in AML cells did not induce any

compensatory increase in other Hsps; in fact it caused a significant reduction of

both Hsp70 and Hsp90 expressions when used alone. In contrast, 17-DMAG-

mediated Hsp90 inhibition resulted in a significant increase in Hsp70 and Hsp90

levels. When VER-155008 was used in combination with 17-DMAG, Hsp90 and

Hsp70, expression levels increased to the same level as when cells were treated with

17-DMAG alone [117]. Thus, in contrast to silencing Hsp70 using siRNA, chemical

inhibition of Hsp70 by VER-155008 fails to regulate the Hsp70 and Hsp90 protein

increase that is induced by Hsp90 inhibition. These data explain why the combined

effect of VER-155008 and 17-DMAG is only additive and not synergistic. Further-

more, it is possible that given that VER-155008 targets an ATP-binding pocket, it

may have off-target effects.

2.1.3 Combination of VER-155008 and SM122 in Colon Cancer

Treatment

SM122 (Fig. 4b) is a unique Hsp90 inhibitor that modulates the C-terminus and

does not induce a HSR or produce an accumulation of Hsp70 in the human colon
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cancer cell line (HCT116). Recent work by Wang and McAlpine investigated the

effects of combining SM122 with Hsp70 inhibitor VER-155008 on chaperone-

mediated protein folding and the induction of apoptosis, compared to a combination

of 17-AAG and VER-155008 [20, 21]. Synergistic effects for both SM122/VER-

155008 and 17-AAG/VER-155008 treatments were observed in multiple cell lines

including HCT116, human lung adenocarcinoma epithelial cells (A549), human

cervical cancer cells (HeLa) and human pancreatic cancer cells (MiaPaca-2). In

addition to showing synergism, both combination treatments displayed tumour-

specific effects with an acceptable therapeutic window. Analysis of chaperone-

mediated protein folding was achieved using a rabbit reticulocyte lysate (RRL)-

based luciferase-refolding assay. Individually, SM122 and 17-AAG have a similar

impact on protein folding, where they both have an IC50 value of ~2 μM. However,

the most effective inhibition of protein folding was observed when Hsp90 and

Hsp70 were concomitantly inhibited. Combinations of 20 μM VER-155008 with

increasing concentrations of either SM122 or 17-AAG showed very strong syner-

gism. Interestingly, while 17-AAG and SM122 have very different GI50 values of

50 nM and 8 μM in HCT116 cells, respectively, they inhibit protein folding at a

similar concentration [20, 21].

Combination treatments of SM122 or 17-AAG with VER-155008 both showed

synergism in their ability to kill multiple cancer cell types and had a similar impact

on protein folding. However, each combination induced apoptosis via a unique

mechanism [20, 21]. HCT116 cells were treated with 50 μM VER-155008 and

either SM122 or 17-AAG at two- to threefold over their GI50. Apoptosis was

induced in 75% of the cells treated with SM122/VER-155008, while only 50%

apoptosis was induced in cells treated with 17-AAG/VER-155008. Cell death

occurred via a caspase 3/7-dependent pathway with PARP-1 cleavage in both

dual treatments. Interestingly, while the 17-AAG/VER-155008 treatment showed

a better capacity to activate caspase 3/7, SM122/VER-155008 induced higher

levels of early and late apoptosis [20, 21]. This data suggests that the primary

mechanism through which 17-AAG/VER-155008 induces cell death is via caspase

pathways; however, SM122/VER-155008 triggers cell death through additional

pathways simultaneously, which may be beneficial in reducing the chance of

tumour cells developing resistance.

The individual mechanisms by which SM122 and 17-AAG trigger cell death

explains the differences in the apoptosis observed as they induce apoptosis via

different cellular pathways when used in combination with VER-155008 [20–

24]. Each drug combination has distinct impacts on HSR pathways. Evaluating

the impact of SM122 and 17-AAG with VER-155008 on mRNA transcription,

translation and protein expression levels of Hsps provided evidence of their indi-

vidually unique mechanism of action [20, 21]. Activation of the HSR is

characterised by an accumulation of Hsps including Hsp70, Hsp40 and Hsp27.

When HCT116 cells were treated with 17-AAG and VER-155008 individually,

Hsp70 mRNA levels increased by 45- and 250-fold, respectively. In contrast,

SM122 produced a twofold decrease in Hsp70 mRNA [20]. These data show that
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Hsp70 inhibition and N-terminal Hsp90 inhibition triggers the HSR at a transcrip-

tional level.

When HCT116 cells were treated with 17-AAG/VER-155008 and SM122/VER-

155008, Hsp70 mRNA levels increased by 3,500- and 1,500-fold, respectively

[20, 21]. The SM122/VER-155008 treatment did not trigger the HSR as rapidly

as 17-AAG/VER-155008, which is likely because SM122 suppresses and/or delays

the transcription of Hsp70 mRNA when used in combination with VER-155008.

These phenotypic differences between SM122 and 17-AAG are also observed at

the translational level, where SM122/VER-155008 synergistically inhibits protein

translation, while 17-AAG/VER-155008 has no impact on translation [20]. Evalu-

ation of heat shock protein expression levels (Hsp27, Hsp70 and Hsp40) showed

that treating HCT116 cells with 17-AAG, VER-155008 or 17-AAG/VER-155008

in combination produced a large increase in Hsp70, Hsp40 and Hsp27. As discussed

earlier, cells treated with SM122 decreased these protein levels [20, 21]. Dual

treatment with SM122 and VER-155008 produced higher protein levels than

when cells were treated with SM122 alone; however, the levels were no higher

than cells treated with VER-155008 alone, showing that SM122 did not contribute

to the rescue mechanism.

These results show that C-terminal modulators and N-terminal Hsp90 inhibitors

have distinct mechanisms when used in combination with an Hsp70 inhibitor. Dual

treatments are synergistic and induce rapid cell death in numerous cancer cell lines

far more effectively than monotherapies. Thus, dual therapies have great potential

as cancer treatment regimens, particularly those involving C-terminal Hsp90 mod-

ulators like SM122, which has the added benefit of reducing the HSR and limiting

the ability of the cancer cell to rescue itself following treatment.

2.1.4 Combination Treatment of MAL3-101 with 17-AAG

MAL3-101 binds to an interface between Hsp40 and Hsp70, thereby impacting

Hsp40-mediated stimulation of Hsp70’s ATPase activity [120, 125]. Using MAL3-

101 to inhibit Hsp70 alone has successfully treated preclinical MM primary tumour

cells and endothelial progenitor cells (EPCs) obtained fromMMpatients [126]. Spe-

cifically, MAL3-101 treatment led to the inhibition of proliferation and survival in

NCI-H929 cells with an IC50 value of 8.3 μM at 40-h exposure using an MTS assay.

Cell cycle analysis showed that after 48-h treatment, MAL3-101 caused a 2.5-fold

decrease at G2/M phase, with a nearly threefold increase at sub-G0/G1 phase in

NCI-H929 cells, which indicated an activation of an apoptotic pathway. Confirma-

tion by FACS analysis showed that cells treated with MAL3-101 increased apo-

ptosis, cleavage of caspase-3 and PARP in a time-dependent manner.

In contrast to MM cells being treated with VER 155008 and 17-DMAG inhib-

itors, treatment of MM cells with MAL3-101 and 17-AAG led to apoptosis

[126]. Specifically, in NCI-H929 MM cell line, 10 μM of MAL3-101 significantly

decreased the IC50 of 17-AAG from 400 to 30 nM. The isobologram analysis of

10 μMMAL3-101 and 17-AAG with five different concentrations (25, 50, 100, 500
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and 1,000 nM) showed tremendous synergistic effect, with combination index

(CI) values from 0.008 to 0.12, where CI< 0.1 is “very strong synergism” and

0.1�CI� 0.3 is “strong synergism” (Table 2). These data support the hypothesis

that VER-155008 may have off-target effects and is not only targeting Hsp70,

whereas MAL3-101s may have a more selective impact on Hsp70’s activity.

2.1.5 Combination Treatment of PFT-μ with 17-AAG

Pifithrin-μ (PFT-μ) has been identified as a potent Hsp70 inhibitor specifically

targeting the inducible isoform of Hsp70, without binding to Hsp90 [119]. It

interferes with the C-terminal substrate-binding domain of Hsp70 and disrupts its

association with client proteins, causing cell cycle arrest and significant apoptosis at

low micromolar concentrations in acute myeloid leukaemia (AML), acute lympho-

blastic leukaemia (ALL) and primary AML blasts [119]. Importantly, normal

haematopoietic cells and stromal cells exhibited a remarkably high resistance to

PFT-μ compared to leukaemic blasts [115]. In bone marrow stromal cells (BMSC),

the median IC50 value was ~4-fold higher than that in leukaemic blast cancer cells

[115], which indicates that a therapeutic index can be achieved using PFT-μ.
Combination treatment with PFT-μ and the Hsp90 inhibitor 17-AAG showed

synergism in reducing cell viability of all studied acute leukaemia cells including

NALM-6, TOM-1 and KG-1a. Among the three cell lines, KG-1a was the least

sensitive to PFT-μ and 17-AAG individual treatment, with 81% and 72% cell

viability after exposure to 10 μM of PFT-μ and 5 μM of 17-AAG, respectively.

However, this cell line had the most significant response to treatment by both

inhibitors, showing only 29% cell viability upon treatment with these two concen-

trations. For the NALM-6 leukaemia cell line, their viability when treated with

PFT-μ and 17-AAG monotherapies was 70% (2 μM of PFT-μ) and 70% (2 μM of

17-AAG), respectively, versus 42% when used in combination. For the TOM-1 cell

line, viability was 85% (3 μM of PFT-μ) and 57% (1 μM of 17-AAG) when using

monotherapies versus 36% when treating cells with both drugs.

2.1.6 Combination Treatment of AIF-Derived Peptide with 17-AAG

ADD70 is a designed peptide constructed from the amino acid residues in the AIF

protein that bind to Hsp70 (amino acids 150–228) (Fig. 6). ADD70 sensitises cancer

cells to apoptosis induction by capturing and neutralising the endogenous Hsp70

protein in the cytosol. ADD70 does not exert any apoptotic effects by itself

[105, 127, 128]. ADD70 displayed significant anti-tumorigenic and anti-metastatic

properties, as well as the ability to enhance cancer cell immunogenicity by facili-

tating the induction of a tumour-specific immune response, which increased the

number and cytotoxic activity of CD8+ tumour-infiltrating T cells [127].

The expression of ADD70 showed an additive effect when 17-AGG was used in

the rat colon cancer ProB cells and mouse melanoma cancer B16F10 cells. These
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two distinct models of tumours were developed in syngeneic rodents. The additive

effect observed when using ADD70 and 17-AAG appears to be related to the

reduction of inducible Hsp70 protein by ADD70, where low levels of Hsp70 protein

allowed AIF-mediated caspase-independent apoptotic pathways (Fig. 6) to induce

pro-apoptotic functions [105, 106, 129]. Inducing AIF-mediated apoptosis is unique

to ADD70 and is not seen with any of the small molecules described above. It is

thought that, since ADD70 contains the AIF sequence that binds to Hsp70, ADD70

disrupts the AIF-Hsp70-binding event inducing apoptosis via the AIF pathway.

Release of AIF facilitates apoptosis and an indirect induction of the Apaf-1-

mediated caspase-dependent apoptosis (Fig. 6).

Interestingly, ADD70 significantly enhanced the chemosensitizing effect of

17-AAG on cisplatin-mediated chemotherapy [127]. For example, the combination

of 17-AAG and cisplatin only showed additive anticancer effects on several cancer

cells. However, in the presence of ADD70, the impact of cisplatin on cell death was

strongly enhanced in both cell lines, indicating that the expression of ADD70 can

efficaciously potentiate the chemosensitizing effect of 17-AAG. Thus, the study of

ADD70 and 17-AAG provided evidence that simultaneous targeting Hsp70 and

Hsp90 can effectively provide anticancer therapy.

2.1.7 Combining Hsp70 Silencing with Hsp90 Inhibition in Human

Solid Tumours

Constitutive heat shock cognate 70 (Hsc70) and inducible heat shock protein

72 (Hsp72) are two major cytoplasmic isoforms of the Hsp70 multigene family,

and they have different expression patterns in mammalian cells. In non-tumour

tissues, Hsc70 is abundantly and ubiquitously expressed, whereas Hsp72 is present

at relatively low levels. However, under stressed conditions, Hsp72 is

overexpressed, while Hsc70 is minimally impacted [89, 95, 130–132]. Selectively

knocking down either Hsp72 or Hsc70 isoform using siRNA had no impact on cell

proliferation in multiple cancer cells [95]. However, silencing Hsp72 significantly

enhanced the antiproliferative effect of 17-AAG-mediated Hsp90 inhibition on

colon cancer HCT116 cells, inducing a fivefold increase in apoptosis [95]. In

contrast, when Hsc70 was silenced, there was no improved apoptosis or response

to 17-AAG in any cancer cell line [95].

1 613

150 228

Apoptosis-Inducing Factor (AIF)

ADD70

Fig. 6 Apoptosis-inducing
factor is 613 amino acids in
length. The region between

amino acids 150 and 228 is

essential for AIF to bind to

Hsp70. ADD70 is a

truncated version of AIF,

where it only contains

amino acids 150–228
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The differential effects of selective Hsp70 isoform silencing on the combination

treatment with 17-AAG indicate that although both Hsc70 and Hsp72 can bind to

Hsp90, both are induced after 17-AAG-mediated Hsp90 inhibition [92, 133–

136]. Hsp72 appears to play the most important role in maintaining cell viability.

These data are supported by recent evidence that 17-AAG induces 80–100-fold

increases in Hsp72 mRNA levels, but only ~6-fold increase in Hsc70

[21, 23]. Thus, it appears the cell protection effects are primarily produced by an

increase in Hsp72, and this isoform is heavily induced by 17-AAG. The protective

effects can be silenced by knocking down Hsp72, and indeed this is the most

a) 

b) 

Fig. 7 (a) Using N-terminal inhibitors (i.e. classical inhibitors) promotes production of Hsp70 and

the heat shock response, whereas using a C-terminal modulator inhibits co-chaperones from

binding to Hsp90 and induces cell death. (b) Inhibiting both Hsp90 and Hsp70 stops the function

of both proteins simultaneously, blocking the rescue response and inducing massive cancer cell

death
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effective route for enhancing Hsp90 inhibitors [48, 137]. Furthermore, coupling

treatment of Hsp72/Hsc70 inhibition with 17-AAG also shows no effect on

non-tumour cells. This observation suggests that inhibiting Hsp72 in combination

with an Hsp90 inhibitor may offer a reasonable treatment with a potential thera-

peutic window [138].

3 Conclusions

Highlighted in this chapter are examples that indicate Hsp90 inhibition is a more

effective treatment when used in combination with other chemotherapies. Success-

fully combining Hsp90 inhibitors with other chemotherapy drugs including mole-

cules that target Hsps produces rapid apoptosis and cell death, which can avoid

resistance and cancer metastasis. Specifically, combining Hsp90 and Hsp70 inhib-

itors produces large increases in apoptosis and potency of up to 92% compared to

using single inhibitors. A major reason for this combination being so effective is

that inhibiting Hsp90 using classical inhibitors increases the production of Hsp70

protein, which is pro-survival. We also describe how using C-terminal Hsp90

inhibitors is more effective than a classical N-terminal inhibitor when used as a

dual therapy. Thus, targeting multiple points in the cell protection mechanism

known as the HSR is likely to produce a highly effective new therapeutic approach

(Fig. 7).
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