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Smoothened Inhibitors in Cancer

Martial Ruat and Lucile Hoch

Abstract Smoothened (Smo) inhibitors are under intense development for the

treatment of cancers linked to abnormal Hedgehog (Hh) signaling. The first inhib-

itor (vismodegib) was introduced in clinics for basal cell carcinoma and medullo-

blastomas associated with activating mutations of Hh signaling. In contrast,

disappointing data are reported for cancers related to ligand overexpression. Here,

we review recent preclinical and clinical data on the potential therapeutic impor-

tance of Smo and highlight the complexity of Smo pharmacology and its clinical

implications.
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Abbreviations

7TM 7-Transmembrane domain

BCC Basal cell carcinoma

Gli1–3 Glioma-associated oncogenes 1–3

GPCR G-protein-coupled receptor

Hh Hedgehog

PKA Protein kinase A

Ptc Patched

Smo Smoothened

Sufu Suppressor of fused

1 Introduction

Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) super-

family, is the main transducer of the Hedgehog (Hh) signaling pathway. This

pathway is implicated in the maintenance of stem cells and tissue repair in the

adult. However, aberrant control of this pathway is associated with tumorigenesis.

Thus, intense academic and clinical research has focused on designing potent Smo

inhibitors and determining their functionality for manipulating Smo activity in

various cancers. A major breakthrough in the Hh field is the recent approval of

Erivedge/vismodegib (GDC-0449, Genentech, Figure 1) by the FDA for treating

metastatic basal cell carcinoma (BCC) and locally advanced BCC untreatable by

surgery or radiation. Several clinical trials are underway in which Smo inhibitors

are combined with other therapeutics for the treatment of a wide variety of solid

tumors and blood malignancies [1–6]. Here, we discuss recent findings on Hh

pathway activation and data from various clinical trials with Smo inhibitors

targeted to blocking Hh signaling in cancer.

2 Smoothened, a Therapeutic Target for Cancer Therapy

2.1 Transduction of the Hedgehog Signal

In the absence of Hh ligands, the 12-pass transmembrane protein Patched (Ptc)

negatively regulates Smo presumably via transporter-like activity. The binding of

Hh to Ptc activates the canonical Hh signaling pathway by translocating Smo to the

primary cilium. This initiates a complex signaling cascade mediated by the activa-

tion of the zinc finger transcription factors, glioma-associated oncogenes 1–3 (Gli1,

Gli2, and Gli3), and translocation of their active forms to the nucleus leading to

gene transcription [2, 7]. Interestingly, the primary cilium recently emerged as an

important center for Hh pathway transduction in vertebrates (Figure 2). Trafficking
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Fig. 1 Chemical structures of Smo antagonists

Fig. 2 Hedgehog signaling pathway at the primary cilium. In the absence of Hedgehog ligand

(-Hh), the receptor Patched (Ptc), located in the cilium, inhibits Smoothened (Smo), a

7-transmembrane receptor mostly found outside the cilium, by a yet unknown mechanism.

Repressor factors such as suppressor of fused (Sufu) and kinases, including protein kinase A
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of Hh signaling proteins, along the cilia of stem and precursor cells, is the key

step in the neural development of several genetic diseases and cancer (reviewed in

[4, 8–10]).

2.2 Ligand-Independent Hh-Associated Cancers

The Hh signaling pathway is associated to cancer development due to the identifi-

cation of germline loss-of-function Ptc mutations in patients with Gorlin syndrome

(or nevoid basal cell carcinoma syndrome), an autosomal dominant disease

[11]. These patients are predisposed to developing medulloblastoma, BCC, rhab-

domyosarcoma, meningioma, as well as tumors localized to the jaw [1, 12,

13]. Somatic mutations of Ptc and Smo were identified in sporadic BCC and

medulloblastomas [14–19]. Somatic gain-of-function mutations of Smo are also

reported in meningiomas [20, 21] and are believed to increase tumorigenesis

through the aberrant activation of Hh signaling [18, 22]. Similarly, somatic and

germline mutations in Suppressor of fused (Sufu) are associated with medulloblas-

toma [23, 24]. The alteration of Hh signaling due to Ptc mutations was recently

identified using an integrative deep-sequencing analysis of children with medullo-

blastoma [25–27]. Somatic Ptc mutations were also identified in ovarian and

endometrial cancers, but their association with neoplasia requires further

investigation [1].

Interestingly, Ptc heterozygous mice develop cerebellar tumors resembling

human medulloblastoma. These tumor cells were used to develop a mouse model

for investigating the potency of Smo inhibitors in blocking tumor progression

[28]. The presence of primary cilia in specific variants of human medulloblastoma

is also important from a therapeutic viewpoint. Ciliated medulloblastoma with

high Hh signaling might be responsive to treatments that target the primary

cilium [29].

Fig. 2 (continued) (PKA), promote Gli truncation and phosphorylation, respectively. These events

lead to the generation of Gli repressor forms (GliR) and inhibition of Hh target genes. In the

presence of Hh ligand (+Hh), Smo inhibition is relieved allowing its translocation and accumu-

lation in the cilium. This leads to Sufu inhibition and Gli conversion into their activated forms

(GliA). GliA enters the nucleus and activates transcription of Hh target genes including Ptc

and Gli1
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2.3 Ligand-Dependent Hh-Associated Cancers

Hh signaling is proposed to be responsible for the development of a variety of

tumors through autocrine or paracrine ligand-dependent mechanisms. Secretion of

one of the Hh peptides (Sonic, Indian, or Desert Hedgehog) from either the tumor or

the stromal environment is implicated in the transformed phenotype. These tumors

are called ligand dependent, and several Hh pathway activity models were discov-

ered with therapeutic implications [3, 4, 30]. The pathway was also associated to

blood malignancies. Several recent reviews describe the process of autocrine or

paracrine Hh pathway activation in different cancers, in detail [1, 4, 28, 31]. Phar-

macological treatment using Smo inhibitors (Figure 1) in mouse models of these

cancers is also reported. However, conflicting views on the molecular mechanisms

of action in tumor regression exist, including the potential off-target effects of some

of these drugs [30].

2.4 Development of Smoothened Antagonists for Cancer
Therapy

Cyclopamine, a natural and teratogenic alkaloid molecule, which can be purified

from corn lilies, slows down tumor growth in animal models [32–35]. This mole-

cule, which is well known for inducing cyclopia in newborn sheep, blocks canon-

ical Hh signaling presumably by binding to the 7-transmembrane (7TM) domain of

Smo [36, 37]. Cyclopamine was not developed for therapeutic use, but a more

soluble and potent derivative (IPI-926, saridegib) has entered clinical trials for

treating BCC and metastatic pancreatic cancer [38]. Several potent Smo inhibitors

of different chemical classes were developed in recent years, both by academia and

the pharmaceutical industry. Several of these molecules demonstrated efficacy in

mouse xenografts, leading to clinical trials on a large range of metastatic and

advanced cancers [1, 30, 32–35, 39, 40]. Data from five clinical trials suggest that

Smo inhibitor side effects include hair loss, muscle spasms, taste disturbance,

fatigue, nausea, and decrease in weight and appetite [1]. Although these side effects

are often moderate, they may result in treatment interruption in patients.

This extensive research led to the recent approval of GDC-0449 for treating BCC

and locally advanced BCC, untreatable by surgery and radiation [41, 42]. Vismodegib

is now authorized in several countries including the Europe Union, Australia, and

South Korea for treating metastatic and locally advanced BCC [5].

Smo inhibition by vismodegib blocks the transcription of tumor mediating genes

associated to the Hh pathway [43, 44]. However, a patient with a metastatic form of

medulloblastoma had a relapse after initially responding to the drug. This was due

to an Smo mutation (D473H6.55) in the sixth transmembrane domain that disrupted

vismodegib binding [45]. Likewise, a mutation occurring at a homologous position
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in mouse Smo was also observed in a vismodegib-resistant mouse model for

medulloblastoma [46]. Furthermore, acquired resistance was also reported in

BCC patients under vismodegib treatment [47–49]. Several Smo inhibitors such

as sonidegib (LDE225, Novartis, Figure 1), BMS-833923, and saridegib are effec-

tive in BCC treatment and might be useful for treating Smo resistance. BCC

patients, who had improved following vismodegib treatment, demonstrated limited

benefit from saridegib. These results suggest an overlapping resistance mechanism,

which is not yet investigated [38]. Analysis of resistance mechanisms in a medul-

loblastoma mouse model treated with LDE225 demonstrated activating Smo muta-

tions, phosphatidylinositol 3-kinase upregulation, and Gli2 amplification [50]. This

suggests that besides resistance at the level of Smo itself, downstream Hh target

gene amplification might also have clinical relevance. Thus, monitoring and

establishing the resistance mechanisms associated with Smo inhibitor treatments

in the ongoing trials will be important.

Sonidegib is currently in Phase III trials on medulloblastoma patients, selected

for Smo inhibitor therapy based on a five-gene Hh signature [1]. Such an approach is

expected to increase the number of patients positively responding to the treatment.

Smo inhibitors are being investigated in clinical trials on a variety of ligand-

dependent tumors, but results are less successful (see also trial numbers

NCT00822458, NCT01601184, NCT01239316, NCT01125800, NCT01208831,

and NCT00880308, at ClinicalTrials.gov). Most of these trials are evaluating the

effects of an Smo inhibitor with other therapeutic modalities. For example, treat-

ment of metastatic pancreatic cancer patients with saridegib and gemcitabine

revealed shorter median survival compared to those treated with gemcitabine

alone [51]. Saridegib and TAK-441 have been discontinued, and negative results

were obtained with vismodegib in patients with metastatic colorectal carcinoma

and ovarian cancers [51–53]. It is important to understand the reasons for these

failures, which might be linked to the mode of action of these compounds on Smo,

Hh activation mechanisms in the tumor and trial design.

The antifungal compound itraconazole, an FDA-approved drug, inhibits Hh

signaling and delays tumor growth, presumably by binding to hSmo at a site

different from that of cyclopamine [54, 55]. This molecule is under investigation

for BCC treatment [56].

3 Future Directions

X-ray structures of hSmo bound to several ligands have revealed two types of

7TM-directed antagonists: those binding mostly to extracellular loops (site 1, e.g.,

LY2940680) and those deeply penetrating the 7TM cavity (site 2, e.g., SANT-1).

However, the existence of a third type of Smo antagonist was recently demon-

strated. This class entirely fills the Smo binding cavity from the upper extracellular

part to the lower cytoplasmic-proximal subpocket. One of these Smo inhibitors is
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the acylguanidine, MRT-92, which was shown to inhibit the Hh canonical signaling

pathway and rodent cerebellar granule cell proliferation induced by Hh pathway

activation [55]. MRT-92 is one of the most potent Smo inhibitors known to date and

displays low sensitivity to block the effects of Smo conformational states associated

to noncanonical pathways [55, 57]. To better understand the failures of Smo

inhibitors observed in the clinic, it is of utmost importance to relate the clinical

efficacy of Smo antagonists to their binding mode and to check whether a highly

potent type 3 antagonist like MRT-92 may confer some advantages over the

existing type 1 or type 2 Smo antagonists.

The identification of canonical and noncanonical pathways mediated through

Smo culminates with the hypothesis that Smo antagonists of one pathway can act as

agonists in another pathway [2, 58, 59]. This is reminiscent of the signaling bias

reported for an increasing number of molecules acting on GPCRs [60]. The recog-

nition that several agonists do not stabilize the same active site, but rather unique

active states of a given receptor, fits with most Smo modulator pharmacological

data. Smo interacts with Gi family members, presumably to decrease cAMP levels

[61, 62], and might be associated with multiple cellular signaling proteins [2]. Thus,

it will be important to better understand Smo regulation by small molecules, biased

signaling, and associated pathways, which should help identify potential therapeu-

tic effects of Smo modulators.
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