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Abstract Within the biofilm, the bacteria use cell-to-cell communication systems to
pool their activities and act in a multicellular organized manner. One such activity
is to launch their arsenal of virulence factors at the strategically right moment, and
hence coordinate the progressive attack on the host. This process is termed quorum
sensing (QS), whereby bacteria produce diffusible chemical signals (autoinducers)
that interact with specific receptors on itself and on neighboring cells, which in
turn regulate the expression of specific target genes. By integrating this with other
environmental stimuli, bacteria are capable of exhibiting complex responses and
take part in sophisticated interactions, allowing them to survive in most adverse
environments. This chapter describes the molecular mechanisms of QS in Gram-
negative and gram positive bacteria, and QS in a biofilm, leading to what is described
in subsequent chapters that QS is a highly attractive target for therapy against biofilm
chronic infections.

Well within the biofilm, the bacteria use cell-to-cell communication systems to pool
their activities and act in a multicellular organized manner. One such activity is to
launch their arsenal of virulence factors at the strategically right moment and hence
coordinate the progressive attack on the host. The view of bacterial biofilms as sanc-
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tuaries in a hostile environment has gained momentum over the last decade. Bac-
teria released from these protected areas are then able to spark systemic infections
(Costerton et al. 2003). The ability of coordinating gene expression in accordance
with population density and hence to act as a group is a process termed quorum
sensing (QS) (Fuqua et al. 1994; Withers et al. 2001) (see Fig. 1). The amount of
bacteria needed to activate QS-controlled genes are known as the “quorum” or the
“quorum size,” reflecting the number of individual cells needed to make a qualified
decision.

The underlying mechanism of QS is the production of diffusible chemical signal
molecules by the bacteria (autoinducers) that interact with specific receptors on self
and on neighboring cells, which in turn regulate expression of specific target genes.
By integrating this with other environmental signals and stimuli, bacteria are capable
of exhibiting complex responses and taking part in sophisticated interactions (Gray
1997).

QS is implicated in the regulation of phenotypes that are also involved in interac-
tions with higher organisms. These interactions can be beneficial to the host, or they
can be pathogenic. From an evolutionary point of view, it makes sense that the un-
derlying factors are produced only when the bacterial population is sufficiently large
to confer a significant effect (Velicer 2003). QS systems form the command line of
opportunistic pathogens such as P. aeruginosa and S. aureus (Winzer and Williams
2001). Expressing the battery of antigenic determinants such as host-damaging viru-
lence factors only when the bacterial population has reached a high level is believed
to be a “stealthy strategy”; by the time the host organism realizes it is under at-
tack, it has been left with a poor possibility of mounting an effective defense against
the intruder (Donabedian 2003; de Kievit and Iglewski 2000; Parsek and Greenberg
2000).

To date, several types of QS systems are known: one for gram-positive bacteria
relying on polypeptides (Abraham 2006; Balaban et al. 1998; Waters and Bassler
2005) and another for gram-negative bacteria mediated by N-acyl homoserine lac-
tone (AHL) derivatives (Eberhard et al. 1981; Nasser and Reverchon 2007). A third
type of QS system, AI-2, has been proposed as a global signaling system common
to all bacteria (Winans and Bassler 2002; Waters and Bassler 2005).

Fig. 1 Bacterial cell-to-cell communication (quorum sensing) (Illustration by Mike Beshiri, Tufts
University, Cummings School of Veterinary Medicine, Department of Biomedical Sciences, Divi-
sion of Infectious Diseases, North Grafton, MA, USA)
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1 AHL-mediated Quorum Sensing
in Gram-negative Bacteria11–4

The core elements of all AHL-based QS systems are a gene termed the luxI ho-
molog encoding an AHL synthetase and a luxR homolog encoding the signal re-
ceptor protein, which also acts as a response regulator. At low cell densities, the
luxI homolog is expressed constitutively at a low level; hence, AHLs are synthe-
sized in small quantities, which slowly accumulate in the environment around the
bacteria, depending on the diffusion restraints (Fuqua and Greenberg 2002). Ac-
cordingly, there is a correlation between AHL concentration and population den-
sity – more cells results in more signal molecules per volume. Work on the Vib-
rio fischeri QS system has given rise to a “QS dogma,” which states that when
a sufficient population density has been attained, QS target genes become activated.
The signal molecules bind to the LuxR homolog receptor proteins, inducing a con-
formational change and allowing the proteins to form dimers or multimers. This
in turn enables the receptor multimer to bind to DNA and act as a transcriptional
regulator. The activity of a QS-controlled gene is determined by the concentration
of activated LuxR homolog multimer, which in turn is dependent on the concen-
tration of AHL signal, which again is dependent on the population size/density.
In other words, activation of QS-controlled genes relies on both the concentra-
tion of AHL signal molecules and the amount of available LuxR homolog receptor
protein.

Gram-negative bacteria that are unable to synthesize signal molecules are still
able to perceive and respond to the AHL signal molecules. These include Salmonella
typhimurium and Escherichia coli, which both posses a gene, sdiA, that is a LuxR
homolog. The SdiA receptor is responsive to 3-oxo-C6 and 3-oxo-C8 signal
molecules, enabling the bacteria to sense the presence of other AHL-producing bac-
teria in a mixed community and to respond to the AHL signal molecules.

1.1 Multiple Quorum-sensing Systems Regulate Virulence

The model gram-negative bacterium P. aeruginosa produces two QS signals: N-
(3-oxododecanoyl)-l-homoserine lactone [OdDHL, synthesized by LasI and sensed
by LasR (Gambello and Iglewski 1991; Ochsner et al. 1994)] and N-butanoyl-l-
homoserine lactone [BHL, synthesized by RhlI and sensed by RhlR (Pearson et al.
1994)]. With respect to function, they are organized in a hierarchical manner, the
former controlling the expression of the latter. This allows for further fine-tuning
of the responses of QS target genes. Sequence analysis suggests that these systems
have been acquired independently rather than arising by endogenously gene dupli-
cation – the las system in P. aeruginosa shows no affiliation with the rhl system.
This indicates that horizontal gene transfer is a mechanism for the spread of, and is
important for the prevalence of, QS controllers.
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1.2 AHL Signal Generation

The LuxI and homologs direct synthesis of the AHLs. The signal molecules con-
sist of an invariable highly conserved lactone ring and a variable acyl side chain
[Fig. 2a,b (AHL or AI-1)]. The side chains differ in length (2–18 carbon atoms), but
all side chains contain a keto group on the C1 position and various degrees of sub-
stitution on C3. Molecules that carry a keto oxygen on the C3 carbon are referred

Fig. 2 Structures of representative quorum-sensing signals and brominated furanones. a N-
butanoyl-l-homoserine lactone [encoded by P. aeruginosa RhlI (Pearson et al. 1994)). b N-(3-
oxododecanoyl)-l-homoserine lactone [encoded by P. aeruginosa LasI (Gambello and Iglewski
1991; Ochsner et al. 1994)]. c (2S, 4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate [AI-2
of V. harveyi (Chen et al. 2002)]. d (2R, 4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran [AI-2 of
Salmonella typhinurium (Miller et al. 2004)]. e (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-
furanone, natural furanone from D. pulchra (de Nys et al. 1993)
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to as oxo-HSLs. A few rare AHL species contain a hydroxyl substitution on the C3
position, whereas others posses a double bond in the side chain.

The LuxI synthases use S-adenosylmethionine (SAM) as HSL donor and acyl-
acyl carrier protein (acyl-ACP) or acyl-coenzyme A from the fatty acid synthesis
complex as acyl donor (Parsek et al. 1999). The different side chains probably re-
flect variations in acyl-ACP specificity. Conversely, the specificity for SAM must be
similar for all LuxI homologs as the HSL ring is invariable (Watson et al. 2002).

After synthesis, the signal molecules enter the surrounding environment, either
by passive diffusion in the case of C4 HSL or active efflux in the case of 3-oxo-C12
HSL (Pearson et al. 1999; Waters and Bassler 2005).

1.3 Signal Reception and Response Regulation

Perception of the signal molecules and subsequent gene regulation are performed by
the LuxR homologs. LuxR homolog proteins contain two functional domains, the
AHL-binding N-terminal and a DNA-binding C-terminal (Hanzelka and Greenberg
1995; Egland and Greenberg 2001; Koch et al. 2005). In LuxR, it has been found
that the C-terminal third part of the 250-residue protein has a helix-turn-helix motif
able to bind to DNA and is able to activate LuxR-controlled genes independently of
AHL (Choi and Greenberg 1991). This has led to the model that the N-terminal two-
thirds of the protein quenches the DNA-binding activity. Another truncated LuxR,
consisting of the N-terminal part, has been shown to bind AHL and in turn activates
the C-terminal part (Hanzelka and Greenberg 1995). Activated LuxR homologs are
thought to bind as dimers capable of interacting with the promoter regions of QS-
controlled genes (Vannini et al. 2002; Zhang et al. 2002b; Ledgham et al. 2003).
The lux box, where the dimer binds, is a palindromic sequence centered −42.5 bp
upstream of the luxI start codon. The dimer overlaps the −35 region and acts as
an ambidextrous activator of transcription (Egland and Greenberg 1999). Located
at this position, the LuxR dimer interacts with the alpha-subunit C-terminal domain
of RNA polymerase, where two residues of the subunit interact directly with the
C-terminal part of LuxR (Finney et al. 2002; Johnson et al. 2003). Alanine mutation
scanning of the N-termini of LuxR has provided evidence for a direct correlation
between the binding of LuxR to the lux box and activation of QS-controlled target
genes (Trott and Stevens 2001; Egland and Greenberg 2001). It appears that each
LuxR homolog protein has its own lux box type of binding site, and similar bind-
ing sites have been identified for LasR and RhlR in P. aeruginosa. These las and
rhl boxes are important for the expression of QS target genes such as lasB, hcnA,
and others (Whiteley and Greenberg 2001). Two las boxes are located upstream of
the lasB gene; one is located directly upstream of the transcriptional initiation site,
whereas the other is placed 102 bp upstream. Both participate in controlling lasB
expression (Rust et al. 1996; Fukushima et al. 1997).
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1.4 AI-2 Signaling

AI-2 was initially identified for its control of the expression of bioluminescence in
the marine bacterium Vibrio harveyi (Bassler et al. 1993) and was identified as a fu-
ranosyl borate diester. The AI-2 (Fig. 2c,d) and its synthase LuxS have been identi-
fied in a few bacterial species (Chen et al. 2002; Miller et al. 2004, Schauder et al.
2001; Xavier and Bassler 2005). However, the presence of luxS analogs in more
than 55 species indicates that it is widely used in cell-to-cell signaling (Vendev-
ille et al. 2005) to regulate genes specifying diverse functions, such as those en-
coding virulence factors in Actinobacillus actinomycetemcomitans, enterohemor-
rhagic E. coli (EHEC) O157:H7, P. gingivalis, Streptococcus pyogenes, Vibreio
cholerae, and V. vulnificus; motility in Campylobacter jejuni, EHEC O157:H7,
and enteropathogenic E. coli O127:H6; cell division in E. coli W3110 and EHEC
O157:H7; antibiotic production in Photorhabdus luminescens; and biofilm forma-
tion and carbohydrate metabolism in Streptococcus gordonii (Xavier and Bassler
2005; Gonzalez Barrios et al. 2006; Ren et al. 2004b; Sperandio et al. 1999). In
S. aureus, functional analysis of luxS/AI-2 reveals a role in metabolism but not quo-
rum sensing, in which inactivation of luxS did not affect virulence-associated traits
such as production of hemolysins and extracellular proteases, biofilm formation,
and the agr QS signaling system (Doherty et al. 2006).

1.5 Other Quorum-signaling Systems

At least two additional QS systems have been identified in gram-negative bacteria.
These include autoinducer 3 (AI-3), which is associated with virulence regulation
in EHEC O157:H7 (Sperandio et al. 2003), and the Pseudomonas quinolone sig-
nal (PQS), which is associated with P. aeruginosa (Mashburn and Whiteley 2005).
AI-3 is associated with luxS homologs in EHEC O157:H7, but the signal itself is hy-
drophobic and thus chemically distinct from the polar AI-2 signals (Sperandio et al.
2003). AI-3 is also biologically distinct from AI-2. During EHEC pathogenesis,
both AI-3 and host epinephrine, but not AI-2, stimulate expression of the locus of
enterocyte effacement (LEE) genes and thus provide evidence of bacteria and host
cross-talk during this infection (Walters and Sperandio 2006). PQS molecules are
quite hydrophobic and have been shown to be transported between cells by outer
membrane vesicles. There is also strong evidence that the PQS actually induces
the formation of these vesicles through interference with Mg2+ and Ca2+ ions in
the outer membrane (Mashburn and Whiteley 2005). In a recent review (Mashburn-
Warren and Whiteley 2006), it was suggested that membrane vesicles may represent
a mechanism for interkingdom signaling in the plant rhizosphere.
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1.6 AHL QS Interference with the Host Immune System

Eukaryotic cells communicate by means of hormones and prostaglandins that are
structurally related to the bacterial AHLs, and it has been investigated whether the
signal molecules produced by P. aeruginosa are able to interact directly with the hu-
man host cells (Smith and Iglewski 2003). Indeed, 3-oxo-C12 HSL was found to in-
hibit lymphocyte proliferation and tumor necrosis factor alpha (TNF-α) production
by macrophages. In addition, IgE production, which is stimulated by interleukin-4,
was found to be upregulated by 3-oxo-C12 HSL. Furthermore, the presence of the
AHL signal molecule downregulated production of interleukin 12 (a Th-1 response
promoting signal). As a consequence, a Th-2 response is encouraged (Telford et al.
1998). In contrast, other researchers found that 3-oxo-C12 HSL activates T-cells
to produce interferon-γ , an inflammatory cytokine that promotes a Th-1 environ-
ment (Smith et al. 2002a). These discrepancies probably reflect biases in the un-
derlying immune response. In C57B1/6 mice, which are Th-1 biased, 3-oxo-C12
HSL was found to increase interferon-γ , thereby promoting a Th-1-dominated re-
sponse. Conversely, if BALB/C mice biased for Th-2 were used, the P. aeruginosa
signal molecules increased production of interleukin-4, favoring a Th-2-dominated
response (Moser et al. 1997). In both cases, the underlying immune response bias
was accentuated by 3-oxo-C12 HSL (Ritchie et al. 2003). Production of cyclooxy-
genase 2 was markedly increased in human lung fibroblasts through stimulation of
the transcription factor NF-κB. PGE2, which induces mucus secretion, vasodilata-
tion, and edema, was also produced in higher amounts when the cells were exposed
to 3-oxo-C12 HSL (Smith et al. 2002b). AHL signal molecules also inhibit ATP
and UTP-induced chloride secretion by submucosal tracheal serous gland cells from
cystic fibrosis patients. Normally, the nucleosides lead to relaxation of the bronchia,
which, in turn, promotes bacterial clearance. This ability of the 3-oxo-C12 HSL
signal molecule to modulate the immune response has promoted research into gen-
erating analogs that can be used as treatment for TNF-alpha-driven immunological
diseases such as psoriasis, rheumatoid arthritis, and type 1 diabetes (Chhabra et al.
2003).

Other eukaryotes also respond to the presence of AHL signal molecules. The
model legume plant Medicago truncatula, a close relative of alfalfa, was found to
produce elevated amounts of flavonoids in response to 3-oxo-C12 HSL. Interest-
ingly, the plant also begins to secrete compounds that mimic AHL molecules when
it encounters QS bacteria such as P. aeruginosa (Mathesius et al. 2003).

Similar relationships between QS and infection have been established for several
opportunistic pathogens, including Serratia liquefaciens (Eberl et al. 1996, 1999),
Chromobacterium violaceum (Brito et al. 2004), Burkholderia cepacia (Wopperer
et al. 2006), and Yersinia species (Atkinson et al. 2006), all of which cause infections
in humans. Other pathogens such as V. anguliarum, which causes the deadly infec-
tion vibriosis in fish, and the plant pathogens Agrobacterium tumefaciens (Sheng
and Citovsky 1996) and E. caratovora (Whitehead et al. 2002) also employ QS to
control infection and virulence. Bacteria such as S. proteamaculans B5a and En-
terobacter agglomerans B6a, which causes food-quality deterioration, utilize QS
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to control expression of exoenzymes that are involved in decay (Gram et al. 1999,
Christensen et al. 2003).

Inhibition of QS would thus not only be beneficial in a clinical context but could
possibly also be applied in aquaculture, agriculture, and food preservation.

2 Quorum Sensing in Gram-positive Bacteria4

Quorum sensing in gram-positive bacteria regulates a number of physiological ac-
tivities, including those involving pathogenesis and biofilm formation. Examples
are competence development in Streptococcus pneumoniae and S. mutans, antibi-
otic biosynthesis in Lactococcus lactis and virulence in staphylococci.

Gram-positive bacteria communicate using polypeptides as autoinducers and
two-component or phosphorelay systems for signaling (Hoch and Varughese 2001).
The release of the polypeptides from the cells is mediated in many cases by dedi-
cated exporters. In most cases, signal processing and modification are concomitant
with signal release. In many peptide QS systems, signals are cleaved from larger pre-
cursor peptides, which are then modified to contain lactone or thiolactone rings, lan-
thionines, or isoprenyl groups (Ansaldi et al. 2002; Mayville et al. 1999; Nakayama
et al. 2001). QS in gram-positive bacteria has been well reviewed (e.g., Walters and
Bassler 2005, Abraham 2006). Here we will focus on QS in staphylococci, whose
inhibitors have extensively been tested in vivo (see the chapter In Vivo Studies: In-
hibiting Biofilm-Associated Bacterial Infections Using QSIs). Refer to the chapter
Quorum Sensing in Streptococci for information on that topic.

2.1 Quorum Sensing in S. aureus

S. aureus pathogenesis is regulated by two QS systems (Balaban et al. 2001; Gov
et al. 2004, Korem et al. 2005). As in P. aeruginosa, the two QS systems are orga-
nized in a hierarchical manner, the former controlling the expression of the latter.
This apparently allows for further fine-tuning of the responses of QS target genes.

The two QS systems that have been described to date for S. aureus (Balaban
et al. 2001) will be referred to herein as staphylococcal quorum-sensing 1 (SQS 1)
and staphylococcal quorum-sensing 2 (SQS 2). SQS 1 consists of the autoinducer
RNAIII-activating protein (RAP) and its target molecule TRAP (Balaban et al. 1998,
2001). SQS 1 induces the synthesis of the second system, SQS 2, which consists
of the components of the agr system, including autoinducing peptide (AIP) and
its sensor AgrC (Lyon et al. 2000). The two systems interact with one another to
collectively regulate the expression of virulence factors (Balaban et al. 2001; Korem
et al. 2005).

The notion that more than one QS system regulates virulence in staphylococci
had been controversial, and it was suggested that only one QS system regulates
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S. aureus pathogenesis – the one encoded by agr (Novick 2003). It is now, however,
very clear that this is not the case and that SQS 1 in fact regulates SQS 2 (Korem
et al. 2005). This phenomenon is not surprising in view of the fact that multiple
systems are known to regulate necessary biological functions both in gram-negative
and gram-positive bacteria (e.g., Miller and Bassler 2001; March and Bentley 2004;
Gambello and Iglewski 1991; Ochsner et al. 1994; Pearson et al. 1994).

2.1.1 Components of SQS 1

RAP is the autoinducer of SQS 1. RAP is a 277AA protein that activates the agr
by inducing the phosphorylation of TRAP (Balaban et al. 1998, 2001; Korem et al.
2003; Yang et al. 2003). From its sequence, RAP is predicted to be an ortholog
of the 50S ribosomal protein L2, which is encoded by the gene rplB found in all
eubacterial genomes known to date. Recombinant RAP applied to the cells acti-
vates the synthesis of RNAIII (which is encoded by the agr) like the native RAP
molecule that is secreted, confirming that L2 has extraribosomal functions (Korem
et al. 2003). Inhibiting RAP by anti-RAP antibodies or by RAP-binding peptides
suppresses infections in vivo (Balaban et al. 1998; Yang et al. 2003). (Refer to the
chapter In Vivo Studies: Inhibiting Biofilm-Associated Bacterial Infections Using
QSIs.)

TRAP is the target protein of RAP and is a master regulator of S. aureus patho-
genesis. It is a 167-residue-long protein that is histidine-phosphorylated in the
presence of RAP (Balaban et al. 2001). TRAP expression is constitutive, but its
phosphorylation is regulated by RAP and reaches peak phosphorylation in the mid-
exponential phase of growth. Phosphorylated TRAP then leads to agr expression,
and the components of SQS 2 are made (Gov et al. 2004). (See below.) TRAP is
highly conserved among staphylococcal strains and species and contains three con-
served histidine residues that are phosphorylated and are essential for its activity
(Gov et al. 2004; Korem et al. 2005). TRAP orthologs are found in other gram-
positive bacteria including Bacillus (Ivanova1 et al. 2003) and Listeria. Although
the sequence identity between TRAP orthologs is low, their predicted secondary
structure is very similar, as is their gene organization (Kiran et al., unpublished
data). TRAP-like proteins may thus represent a novel general class of signal trans-
ducers in gram-positive bacteria.

Functional genomics studies (Korem et al. 2005) indicate that in the absence of
TRAP expression or phosphorylation (TRAP–), multiple regulatory systems are dis-
rupted, such as the global regulatory locus agr (agrABCD and hld [RNAIII]); sarH2,
otherwise known as sarU (Manna and Cheung 2003); and most, if not all, virulence
factors known to date. Those include alpha, beta, gamma, and delta hemolysin;
triacylglycerol lipase precursor; glycerol ester hydrolase; hyaluronate lyase pre-
cursor; staphylococcal serine protease (V8 protease); cysteine protease precursor;
cysteine protease; staphopain-cysteine proteinase; 1-phosphatidylinositol phospho-
diesterase; zinc metalloproteinase aureolysin precursor; holing-like proteins; and
capsular polysaccharide synthesis enzymes (Korem et al. 2005). In the case of genes



22 M. Givskov et al.

involved in bacterial adhesion and consequent biofilm formation, the only over-
expressed genes found when TRAP function is disrupted are those encoding for
protein A, fibrinogen-binding protein, and Ser-Asp rich fibrinogen-binding bone-
sialoprotein-binding protein. There is, however, no evidence that these proteins
independently contribute to pathogenesis. No upregulation of other known genes
encoding for adhesion molecules has been observed, such as fibronectin-binding
protein, collagen-binding protein, elastin-binding protein, clumping factor A, extra-
cellular fibrinogen-binding protein, and extracellular adherence protein.

Finally, in the absence of TRAP expression or phosphorylation, the level of ex-
pression of genes required for biofilm survival is reduced, such as ArcABC (argi-
nine deaminase, ornithine transcarbamoylase, carbamate kinase), UreABC (urease
alpha, beta, gamma subunits), UreDEFG (urease accessory proteins), PyrR (pyrim-
idine operon repressor), PyrP (uracil permease), PyrB (aspartate transcarbamoy-
lase chain A), PyrC (dihydroorotase), CarA (carbamoyl-phosphate synthase small
chain), and CarB (carbamoyl-phosphate synthase large chain) (Korem et al. 2005;
Balaban et al. 2005). These proteins are necessary for the persistence of the bacteria
within a biofilm, requiring an adaptive response that limits the deleterious effects of
the reduced pH associated with anaerobic growth conditions (Beenken et al. 2004).

Functional genomics studies can easily explain that in the absence of TRAP
phosphorylation, the ability of the bacteria to produce toxins, to attach to host cells
or foreign material, to form a biofilm, and to survive within the host is seriously
compromised; therefore, when TRAP is not expressed or phosphorylated (using
anti-TRAP antibodies or peptides (see below and the chapter In Vivo Studies: In-
hibiting Biofilm-Associated Bacterial Infections Using QSIs), the bacteria do not
adhere, do not form a biofilm, do not express toxins, and do not cause disease
(Dell’Acqua et al. 2004; Balaban et al. 2000, 2003a,b, 2004, 2005; Cirioni et al.
2003, 2006, 2007; Giacometti et al. 2003, 2005; Gov et al. 2004; Yang et al. 2005;
Vieira-da-Motta 2001; Anguita-Alonso et al. 2006).

TRAP represents a novel class of signal transducers in gram-positive bacteria
because it does not contain any conserved domains specific for two-component or
phosphorelay systems (Han et al. 2005). QS in bacteria typically involves phospho-
rylation in a two-component system. The classic two-component system is com-
posed of two proteins, the sensor kinase, which is histidine-phosphorylated, and the
effector protein, which is aspartic-acid-phosphorylated. The sensor typically con-
tains a transmembrane as well as a kinase domain (Perraud et al. 1999). Like typical
sensors, TRAP is histidine-phosphorylated (Balaban et al. 2001; Gov et al. 2004),
and studies indicate that it is membrane associated and can be used as a vaccine
(Yang et al. 2005). However, TRAP lacks both a typical kinase domain and a pre-
dicted transmembrane region. This suggests that TRAP may be associated with the
membrane by anchoring of hydrophobic surface residues or by binding to an inte-
gral membrane protein. A possible candidate may be OpuCA, discovered by a two-
hybrid system (Kiran et al., unpublished data). OpuCA is encoded by the opuC
operon that is highly conserved, is known as an ABC transporter, and thus is hypoth-
esized to act upstream of TRAP. The type of interaction that OpuCABCD has with
TRAP (anchoring?) or with the QS regulators RAP, AIP, and RIP is not yet known.
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Interestingly, recombinant RAP or its inhibitor RIP (see the chapter Quorum-
Sensing Inhibitory Compounds) were added to recombinant TRAP and shown to
activate (RAP) or inhibit (RIP) the phosphorylation of TRAP in vitro, in the absence
of any other cellular components. This further confirms the working hypothesis that
RAP activates and RIP inhibits TRAP phosphorylation and further suggests that
TRAP may in fact be a histidine kinase (Kim, personal communications).

One of the regulatory genes that is distinctly regulated by TRAP is sarH2 (known
also as sarU) (Balaban et al. 2005). SarU, a positive transcriptional activator of agr
expression, encodes a 247-residue polypeptide and is a member of the SarA family
of proteins. It has conserved basic residues within the helix-turn-helix motif and
within the beta hairpin loop, which are two putative DNA-binding domains within
this protein family (Manna and Cheung 2003). Of note is that insertions in sarH2
have diminished the ability of the S. aureus strain Newman to kill worms (Bae et al.
2004), suggesting that its role in pathogenesis. SarH2 (SarU) may act as one of the
downstream components in the TRAP system, regulating the expression of agr (see
below). This, however, needs to be confirmed experimentally because sarH2 is not
conserved among strains.

Points of controversy

Lately it has been suggested that TRAP does not regulate the agr (Shaw et al. 2007;
Tsang et al. 2007) because when the authors deleted traP, agr activity was still in-
tact. These results will need to be confirmed as the authors have not yet shown that
the mutants do not contain an active TRAP molecule (by standard in vivo phospho-
rylation assays and by western blotting). Interestingly, one of the two strains used,
UAMS-1, is non-hemolytic although it is a virulent musculoskeletal isolate, sug-
gesting that perhaps its virulence is not toxin related and maybe virulence of such
strains does not involve TRAP. In fact, global transcriptional differences between
these clinical isolates and laboratory strains have been documented (Cassat et al.
2006). It is too early to say whether these strains represent the norm or not. Luckily,
virulence studies using laboratory strains have in fact resulted in clinical applica-
tions using clinical isolates (see the chapters In Vivo Studies: Inhibiting Biofilm-
Associated Bacterial Infections Using QSIs and Clinical Wound Healing Using Sig-
nal Inhibitors).

It has also been suggested that the non-virulent agr– minus phenotype found in
the TRAP– mutant are seen only because of a nonsense mutation in the agrA lo-
cus (Adhikari et al. 2007). This nonsense mutation was not found in TRAP– strains
described in Korem et al. 2005, but other nonsense mutations were found in some
of the freezer stocks (Balaban et al., in preparation), suggesting that when TRAP is
inactivated, multiple nonsense mutations can occur in agr (and possibly other loci)
more readily. Interestingly, ClpP is not expressed when TRAP or YhgC (the TRAP-
like protein in Bacillus) are mutated (Kiran et al., in preparation). ClpP proteases
were shown to be important for expression of various regulons involved in virulence
(agr), oxidative stress response, autolysis, and DNA repair (Michel et al. 2006). Put
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together, these results suggest that in the absence of TRAP, not only virulence is
downregulated but also DNA repair is impaired, which can lead to deleterious mul-
tiple agr mutations (Adhikari et al. 2007). Such mutants cannot survive in vivo
because of the lack of expression of virulence factors necessary for in vivo survival.
But in vitro, in the absence of adverse conditions, such mutants can survive and be
detected. Thus, TRAP not only regulates the production of virulence factors but also
other genes necessary for bacterial survival in the host, making TRAP a very attrac-
tive target for therapy (see the chapters Quorum-Sensing Inhibitory Compounds and
In Vivo Studies: Inhibiting Biofilm-Associated Bacterial Infections Using QSIs).

2.1.2 Components of SQS 2

SQS 2 encompasses the products of the agr system. The chromosomal agr operons,
active from the midexponential phase of growth, encode two divergently transcribed
transcripts, RNAII and RNAIII (Novick et al. 1993, 1995). RNAII is a polycistronic
transcript that encodes AgrB, AgrD, AgrC, and AgrA (Ji et al. 1997; Qiu et al. 2005;
Zhang and Ji 2004; Novick et al. 1995; Lina et al. 1998; Koenig et al. 2004). RNAIII
is a polycistronic transcript, coding for delta hemolysin and acting as a regulatory
RNA molecule that upregulates the expression of multiple exotoxins (Novick et al.
1993).

Agr-autoinducing Peptide (AIP)

AIP is processed from AgrD. AgrD sequences from various staphylococcal species
are remarkably divergent, with only four identical amino acids (Qiu et al. 2005).
The AIP sequence is in the middle of the AgrD sequence that is preceded by the
N-terminal amphipathic helix and followed by a highly hydrophilic C-terminal
region. The processing of AgrD to generate mature AIP involves the proteolytic
cleavages at two processing sites, the thioester (or ester) bond formation, and the
secretion of the mature AIP. The mature AIPs isolated so far from a number of
staphylococcal species are seven to nine amino acids in length, and all are thiolac-
tone molecules containing a 5-amino-acid ring linked by a thioester bond formed
between the sulfhydryl group of a conserved cysteine residue and the carboxyl
group of the C-terminal amino acid, except for the Staphylococcus intermedius AIP,
in which a lactone molecule contains an ester bond formed between the hydroxyl
group of a serine residue (in place of the cysteine residue that is conserved among
other AIPs) and the carboxyl group of the C-terminal residue (Qiu et al. 2005; Lyon
et al. 2002; Mayvelle et al. 1999).

A polymorphism in the amino acid sequence of the AIP and its corresponding re-
ceptor AgrC divides S. aureus strains into four major groups. Within a given group,
each strain produces a peptide that can activate the agr response in the other strains,
whereas the AIPs belonging to different groups are usually mutually inhibitory.
Limited in vivo studies have been carried out using inhibitory AIPs (refer to the sec-
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tion on inhibitors to SQS 2 in the chapter Quorum-Sensing Inhibitory Compounds),
but their clinical significance remains unclear.

AgrB

AgrB protein is a putative cysteine endopeptidase and a transporter, facilitating the
export of the processed AgrD peptide (Qiu et al. 2005). AgrB is a membrane pro-
tein with six transmembrane segments, including four transmembrane helices and
two highly hydrophilic regions (Zhang et al. 2002a). Like AgrD and AgrC, AgrB
sequenced from various staphylococcal species are also divergent, except for the
N-terminal region located in the cytoplasm and the two highly hydrophilic regions
that are proposed to be in the membrane (Zhang et al. 2002a). It is likely that all
AgrBs are structurally and functionally similar and that the mechanisms of process-
ing AgrD and of secreting the mature AIP by AgrBs are the same or similar, even
though the AgrD propeptides are different and the interaction between AgrB and
AgrD is specific (Zhang et al. 2004).

AgrC

AgrC is the receptor to AIP. AgrC is a membrane protein with its N-terminal half
integrated into the cytoplasmic membrane and is the AIP binding site (Lina et al.
1998; Lyon et al. 2002). Its C-terminal half is located in the cytoplasm and possesses
histidine kinase activity (Lina et al. 1998). The N-terminal halves are divergent, and
the C-terminal halves are highly conserved. This reflects the fact that the AgrCs are
activated only by their cognate AIPs but are inhibited by heterologous AIPs. Based
on the AIP cross-activation and cross-inhibition activities, four specificity groups of
S. aureus and three groups of S. epidermidis have been identified. Upon the binding
of AIP, AgrC is autophosphorylated (Lina et al. 1998), the phosphoryl group of the
phosphorylated AgrC is transferred to AgrA, and phosphorylated AgrA activates
the transcription of RNAIII (Koenig et al. 2004) (see below).

AgrA

AgrA is the regulator that is part of the AgrC/AgrA two component system. Once
phosphorylated, it shows high-affinity binding to the RNAIII-agr intergenic region,
where binding is localized to a pair of direct repeats in the P2 and P3 promoter
regions of the agr locus, consistent with the function of AgrA as a response regulator
(Koenig et al. 2004) that activates the production of RNAIII (see below).

RNAIII

RNAIII is the actual regulator that activates the expression of genes encoding se-
creted virulence factors. RNAIII is a 512-nt-long mRNA, affecting expression of
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multiple genes either directly or indirectly. RNAIII also encodes for the toxin
δ -hemolysin, once translated at the postexponential phase of growth (Balaban and
Novick 1995a). The commonly accepted dogma is that staphylococcal genes en-
coding secreted proteins are activated by the presence of RNAIII, whereas genes
encoding surface proteins are repressed, leading to phase variation (Novick et al.
1993; Lowy 1998). However, this was proven only for alpha-hemolysin and pro-
tein A (see below).

The structure of RNAIII suggests that it is able to form 14 different hairpins
(Benito et al. 2000). Specific domains of RNAIII control the expression of differ-
ent targets: The 5′-end of RNAIII positively controls the translation of hla (encod-
ing alpha-hemolysin) by competing directly with an inhibitory intramolecular RNA
secondary structure that sequesters the hla ribosome-binding site. Hybridization of
RNAIII to the hla mRNA frees the ribosome-binding site and enables translation of
hla (Novick et al. 1993; Morfeldt et al. 1995).

Complementation analysis suggests that the 3′-end of RNAIII is important for
repression of the spa-gene that encodes the well-known IgG-binding protein, pro-
tein A (Novick et al. 1993). In this case, RNAIII is believed to function either di-
rectly or indirectly at the transcriptional level, although it is possible that RNAIII
affects the stability of the spa transcript.

RNAIII levels are evident from the midexponential phase of growth and reach
a maximum in late logarithmic- and stationary-phase cultures. As mentioned above,
RNAIII also encodes the small peptide δ -hemolysin in its 5′-end. Intriguingly, trans-
lation of the RNAIII transcript into δ -hemolysin is delayed 1 h after the appearance
of RNAIII in the midexponential phase. This inhibitory mechanism seems to involve
the 3′-end of RNAIII, possibly by blocking access of the ribosome to the ribosome-
binding region (Balaban and Novick 1995a).

The mechanism by which RNAIII activates or inhibits expression of the other vir-
ulence factors remains unknown. It has been shown that transcriptional activation or
repression preferentially occurs at the level of transcriptional initiation rather than
by affecting transcript stability. A possible scenario would be that RNAIII functions
as an antirepressor by directly binding global transcriptional regulators and then se-
questering them, thereby regulating the initiation of transcription at target promoters
(Arvidson and Tegmark 2001; Johansson and Cossart 2003).

agr in other Bacteria

An operon termed Fas (fibronectin/fibrinogen binding/hemolytic activity/
streptokinase regulator) that shows similarity to the two-component system of agr
was found in Streptococcus pyogenes (Kreikemeyer et al. 2001). As with agr,
the effector molecule for virulence gene expression is a small, untranslated RNA
molecule (fasX), although little is known of its mode of action (Kreikemeyer
et al. 2001). In addition, an analogous case was found in Clostridium perfringens,
where a small, untranslated RNA [VirR-regulated-RNA (VR-RNA)] is the effector
molecule of a two-component system shown to be involved in virulence gene ex-
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pression (Shimizu et al. 2002). In this case, the 3′-end of VR-RNA appears to be
important in mediating virulence gene regulation (Johansson and Cossart 2003).

2.1.3 Interaction Between the two QS Systems in Staphylococci

The two QS systems in staphylococci SQS 1 and SQS 2 interact with one another
(Fig. 3) as follows: As the cells multiply and the colony grows, the cells secrete
RAP, inducing the histidine-phosphorylation of its target molecule TRAP (possibly
via ClpP and OpuC). The phosphorylation of TRAP leads (possibly via SarH2)
to the activation of the agr (Balaban et al. 2001; Gov et al. 2004; Korem et al.
2005) in the midexponential phase of growth and thus to the synthesis of RNAII
and consequently to the production of AIP and AgrC (Novick et al. 1995). AIP
downregulates TRAP phosphorylation in an unknown mechanism and upregulates
the phosphorylation of its receptor, AgrC (Lina et al. 1998; Balaban et al. 2001).

Phosphorylation of AgrC causes the phosphorylation of AgrA, which together
with SarA and SigB (Koenig et al. 2004; Manna and Cheung 2003; Chien et al.
1999; Ziebandt et al. 2001) results in the production of RNAIII (Novick et al. 1993;
Lina et al. 1998). RNAIII leads to the expression of toxic exomolecules, resulting in
dissemination and disease (Lowy 1998).

Fig. 3 Diagram showing regulation of toxin production in S. aureus via the quorum-sensing sys-
tems TRAP and agr
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3 Quorum Sensing and Biofilm1–4

As stated above, QS refers to the ability of the bacteria to sense the density of the
surrounding bacterial population. This is done by measuring and responding to the
concentration of signal molecules. In order to build up a sufficient concentration of
QS autoinducers (QSA), diffusion barriers are required. A dense, mature biofilm is
not completely sealed off from the surroundings, but diffusion is certainly lowered
compared with the situation in a planktonic culture (Hentzer et al. 2002). The timing
of induction of QS-controlled genes probably depends on several factors. The dif-
fusion rate will be dependent on the volume of the surrounding nonbiofilm phase,
the flow rate (if any) of bulk fluid outside the biofilm. Furthermore, the chemical
composition of the extrapolymeric substances will influence diffusion rates. As the
cell density varies in the biofilm, different sets of QS-controlled genes may be ex-
pressed in different positions or niches of the biofilm. Hence, QS-controlled genes
in biofilms also exhibit a spatial expression pattern (de Kievit et al. 2001).

Indeed, QS signals can be detected in diverse environments. For example, bio-
films grown on rocks in the San Marcos River in Texas have been shown to produce
AHL signals (McLean et al. 1997). In a completely different setting, in the lungs of
cystic fibrosis patients, signal molecules have also been found (Collier et al. 2002,
Singh et al. 2000).

In the protected biofilm environment, bacteria are free to produce and secrete
a battery of virulence factors. In S. aureus and P. aeruginosa, for example, many
of these virulence factors are controlled by QS (Korem et al. 2005; Dunman et al.
2001; Mittal et al. 2006; Joyce et al. 2004; Wagner et al. 2003). Virulence factors,
in conjunction with immune complexes and phagocytic enzymes released by the
immune system, cause extensive tissue destruction and inflammation. In the case
of cystic fibrosis, this tissue destruction contributes significantly to the loss of pul-
monary function (Costerton et al. 1999; Donlan 2002; Donlan and Costerton 2002;
Parsek and Singh 2003).

Whether QS is involved in control of the developmental pattern of P. aeruginosa
biofilms is still controversial (Kjelleberg and Molin 2002), but most of these stud-
ies were done in vitro and should be taken with caution. As reported by Charl-
ton et al. (2000a), the concentration of QS signal OdDHL is significantly higher
in P. aeruginosa biofilm (632 µM) than the effluent (14 nM). Consistent with this
observation, QS has been found to play a critical role in the development of P. aer-
uginosa biofilms (Davies et al. 1998), showing that a lasI mutant formed flat, undif-
ferentiated biofilms. In striking contrast, Heydorn et al. (2002) demonstrated, using
Comstat-assisted image analysis, that a wild-type biofilm is indistinguishable from
a biofilm formed by a lasI mutant. Again, these differences may be attributed to
various strains and the experimental setups employed. When a biofilm of a P. aer-
uginosa QS mutant was grown on glucose as the carbon source, a difference in
biofilm architecture could be found using image analysis. If the carbon source was
changed to citrate, no difference could be detected (Heydorn et al. 2002).

In addition to AHL, AI-2 also plays a role in biofilm formation. Deletion of luxS
has been found to influence the biofilm formation of Streptococcus gordonii (Blehert
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et al. 2003) and S. mutans (Merritt et al. 2003), in which the bacteria no longer
produced AI-2 and the biofilm had a more granular appearance. Direct addition of
AI-2 induces biofilm formation in E. coli through a motility QS regulator (MqsR),
which in turn regulates the two-component motility regulatory system (QseBC) and
motility (Gonzalez Barrios et al. 2006).

In staphylococci, disruption of quorum sensing by mutagenesis or by inhibitory
peptides (refer to section 2 in the chapter In Vivo Studies: Inhibiting Biofilm-
Associated Bacterial Infections Using SQIs and to Fig. 4 in the chapter Quorum-
Sensing Inhibitory Compounds) leads to suppression of biofilm formation in vivo.
As shown in Fig. 4 in the chapter Quorum-Sensing Inhibitory Compounds, essen-
tially no biofilm is formed in vivo by the TRAP– mutant (SQS 1 mutant). In com-
parison, only reduced biofilm is formed by agr– mutants (SQS 2 mutant), suggest-
ing that TRAP, which acts upstream of agr, regulates multiple genes necessary for
biofilm formation in vivo in addition to those regulated by agr. These studies are im-
portant because for years it had been suggested that S. aureus exists in two phases
and that the switch between the two phases is regulated by RNAIII (agr). It has been
suggested that in one phase, in low cell density, before agr is expressed, there is high
expression of adhesion molecule, whereas in the other phase, in high cell density, af-
ter agr is expressed, there is reduced expression of adhesion molecules and, instead,
increased expression of exotoxins (Lowy 1998; Novick et al. 1993). This meant that
if quorum systems TRAP or agr are repressed, toxins will be repressed, but adhesion
molecules will be expressed. This in turn was expected to enhance biofilm forma-
tion, thus making QS inhibitors inadequate for inhibiting biofilm-related infections
in vivo and for future clinical use (Otto 2004; Vuong et al. 2000, 2003). However,
functional genomics studies show that when TRAP or agr is mutated, multiple tox-

Fig. 4 Formation of a biofilm in vivo by TRAP– or agr– mutants. Under the rat graft model (see
the chapter Animal Models Commonly Used To Study Quorum-Sensing Inhibitors), rats were chal-
lenged with S. aureus RN6390 (WT), RN6911 (agr–), 8325-4 (WT) or TRAP– strains. Grafts
were removed 10 days later, and the bacterial loads on grafts were determined and expressed as
colony-forming units (CFU)/ml
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ins are repressed, but no significant increase in expression of adhesion molecules is
observed (Beenken et al. 2004; Dunman et al. 2001; Korem et al. 2005). This is in
accordance with the fact that TRAP mutants that do not express agr do have reduced
ability to form a biofim or infection (Gov et al. 2004) in vivo (Fig. 4). The compo-
nents of SQS 1 (RAP/TRAP) are very conserved, making them especially attractive
as target sites for therapy (e.g., Balaban et al. 2005 and section 2 in the chapter In
Vivo Studies: Inhibiting Biofilm-Associated Bacterial Infections Using SQIs).

Whether QS is involved in forming one type of biofilm or another is probably
of less importance. More interesting are the properties or function of the biofilm.
Davies et al. (1998), Hentzer et al. (2003), and Bjarnsholt et al. (2005a) found a link
between biofilm tolerance against various antibiotics, biocides, peroxide, and QS.
Biofilms formed by QS mutants or biofilms treated with inhibitors of QS were much
more susceptible to the actions of these compounds (Davies et al. 1998; Hentzer
et al. 2003; Rasmussen et al. 2005a,b; Bjarnsholt et al. 2005a; Dell’Acqua et al.
2004; Balaban et al. 2003a, 2004, 2005; Cirioni et al. 2003, 2006; Giacometti et al.
2003, 2005). These findings, in conjunction with the QS control of virulence factors,
point out QS as a highly attractive target for chemotherapy against biofilm chronic
infections!
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