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Degradation Pathways for Porphyrinoids

Jacek Wojaczyński

Abstract Porphyrin, a tetrapyrrolic aromatic macrocycle, is relatively resistant to

degradation. However, certain strong oxidants (e.g. chromic acid) cause its decom-

position to monopyrrolic units. More often, ring opening caused by attack of

oxidant on a meso-position has been observed. Such degradation by metal salts

(thallium(III), cerium(IV)), nitric acid, and other reagents has been studied. Light-

driven macrocycle opening by dioxygen has also been noted. Coupled oxidation of

metalloporphyrins has been investigated mainly as a mimics of heme degradation

observed in vivo.

Modifications of parent porphyrin macrocycle can cause a prominent change of

its reactivity toward oxidants. In particular, inversion of one of the pyrrole rings

(in N-confused porphyrin) or removal of one of the methine bridges (in corrole)

increases macrocycle susceptibility to oxidative ring opening.

Keywords Biliverdin � Coupled oxidation � Degradation � Photooxidation �
Tetrapyrrole
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Abbreviations

CAN Cerium(IV) ammonium nitrate

DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone

FCC Fluorescent chlorophyll catabolite

HO Heme oxygenase

NBS N-Bromosuccinimide

NCC Nonfluorescent chlorophyll catabolite

OEBH3 2,3,7,8,12,13,17,18-Octaethylbilindione

OEPH2 2,3,7,8,12,13,17,18-Octaethylporphyrin

OEPOH3 2,3,7,8,12,13,17,18-Octaethyloxophlorin (2,3,7,8,12,13,17,18-octaethyl-

5-hydroxyporphyrin)

PDT Photodynamic therapy

TPPH2 5,10,15,20-Tetraphenylporphyrin

TTFA Thallium(III) trifluoroacetate

TTN Thallium(III) nitrate

1 Scope and Limitations

This review is focused on degradation of tetrapyrrolic macrocycles: porphyrins, their

N-confused isomers, and corroles (1–3, Fig. 1). “Degradation” is understood here as a

disruption of a macrocyclic system. For this reason, reactions leading only to the

lowering of number of rings of the starting pentacyclic system are not included,

although formation of secochlorins 4 [1–3] or vacataporphyrins 5 [4, 5] (Fig. 2) also

results in a qualitative change of the macrocycle properties. Similarly, processes

connected with the loss of the macrocyclic aromaticity without ring opening (e.g.

formation of phlorins) will not be discussed unless they serve as a preliminary stage

of the actual degradation. Ring-opening reactions of phthalocyanines, porphyrazines,

and similar macrocycles as well as systems containing less or more than four pyrrolic
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rings are not presented. The emphasis is laid on the literature published in the years

2000–2012, but for the sake of comparison, older achievements are also briefly

described.

The porphyrin macrocycle containing a conjugated 18 π-electron system is

known to be highly stable toward destruction. This fact inspired search for methods

of ring opening. The interest in degradation of cyclic tetrapyrroles is connected

with several aspects: analytical (structure determination), biochemical (heme and

chlorophyll metabolism, formation of algae biliproteins), catalytic (stability of

porphyrin derivatives used as catalysts and photosensitizers), and synthetic (prepa-

ration of linear oligopyrrolic systems exhibiting interesting properties: helical

chirality [6–9], conformational flexibility connected with possible E–Z isomeriza-

tion [10], specific and sometimes unpredictable coordination modes [11–14]).

A direct opening of porphyrin macroring is achieved when one of the C(α)–C
(meso) bonds is cleft. Reactions at the macrocycle periphery occur preferentially on

meso positions unless sterical reasons preclude access to this part of molecule [15].

In general, degradation is caused by various oxidants (reduction with hydriodic acid

in acetic acid being a notable exception) and is thus preceded by their attack on one

of the methine bridges. On the other hand, numerous examples of pyrrole- and

metal-centered oxidations have been also described, which can also constitute a

preliminary step of further macrocycle decomposition.
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Fig. 1 Porphyrin, its N-confused isomer and corrole (meso-aryl derivatives are shown)
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Fig. 2 Examples of secochlorins (4) and vacataporphyrins (5) [1–5]
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This chapter is divided into eight sections. Section 2 is devoted to traditional

methods of structure determination based on destruction of tetrapyrrolic systems.

In Sect. 3, macrocycle opening by oxidants is discussed, excluding light-driven

reactions with dioxygen (Sect. 4) and coupled oxidation of metalloporphyrins

(Sect. 5). Biodegradation is shortly presented in Sect. 6, followed by concluding

remarks (Sect. 7) and reference list.

2 Degradation Used as Analytical Tool

Classical methods used for structure elucidation of tetrapyrrolic compounds (both

cyclic ones and linear derivatives) utilized oxidative degradation with chromic acid,

potassium permanganate [16, 17], and ozone [18] or hydriodic acid reduction [19].

Analysis of the resulting monopyrrolic units (maleimides, succinimides) which

could be identified, allowed recognition of β-substitution pattern, and in certain

cases also meso substituents [15]. Among those methods, chromic acid (CrO3/

H2SO4) oxidation used in combination with gas chromatography and mass spec-

trometry has been most widely applied, particularly for identification of chlorophyll

derivatives, bilins, and geoporphyrins [20–27]. More recently, this method was

used in the analysis of hematoporphyrin derivative used in photodynamic therapy

[28, 29]. A new method was described allowing quantitative determination of

chlorophyll derivatives by analysis of amount of ethylmethylmaleimide formed

during degradation with chromic acid [30].

Formally, part of analytical methods commonly used for the characterization

of newly synthesized tetrapyrrolic macrocycles also involves destruction of the

molecule. Elementary (combustion) analysis is widely performed, though the

results are sometimes not quite satisfactory due to the ease of incorporation of

various guest molecules, including solvents, in the crystal lattice of porphyrins [31].

Also a conventional method of carbon isotopic composition of geoporphyrins relies

on combustion to CO2 which is examined by mass spectrometry [32, 33]. Fragmen-

tation observed in certain techniques of mass spectrometry serves as a source of a

valuable structural information [34–36]. Analytical data based on other methods

involving sample decomposition, such as combustion calorimetry experiments

[37, 38], differential scanning calorimetry, and thermogravimetry [39–41] are less

frequently reported.

3 Ring Opening by Oxidants

Ring-centered reactions of porphyrin derivatives with various oxidants can lead to

opening of the macrocycle without its complete disintegration. Systematic research

on oxidation of tetrapyrrolic macrocycles was performed in the 1960–1970s;
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in most of the recent contributions specifically modified systems or reactions

conducted under modified conditions have been discussed.

In Sect. 3.1, reactions of porphyrins and their complexes with redox innocent

metals are described. Degradation of iron and manganese porphyrin complexes by

reagents which are typically used in metalloporphyrin-catalyzed oxidations is

discussed in Sect. 3.2. The section is concluded by description of reactivity of

N-confused porphyrins and corroles.

3.1 Oxidation of Porphyrins and Their Complexes

Reactions of porphyrins and their complexes with oxidants were extensively studied

by Bonnett and coworkers [42–46] and Smith et al. [47–53]. Special attention was

devoted to meso oxidation leading to oxophlorin (5-hydroxyporphyrin) derivatives

due to importance of iron oxophlorins as intermediates in the process of heme

degradation. Octaethyloxophlorin (OEPOH3, 8) was obtained from the reaction of

2,3,7,8,12,13,17,18-octaephylporphyrin (OEPH2, 6) with benzoyl peroxide [43, 44,

46]. A radical attack atmeso position gave 5-benzoyloxyporphyrin 7 at ca. 30% yield,

and its hydrolysis led to the desired product 8 (Scheme 1). This compound was also

prepared by ring synthesis and by coupled oxidation (see 5.1) [43, 44].

Bonnett et al. prepared octaethyloxophlorin 8 by treatment of (OEP)FeII(py)2
dissolved in pyridine with hydrogen peroxide [43, 45]. Later it was found that

reaction did not occur with zinc(II), nickel(II), copper(II), iron(III), and cobalt(III)

complexes, while oxophlorins were obtained for Fe(II), Co(II) and Mn(II) or

Mn(III) (i.e. metal ions with an easily accessible higher oxidation state) [45].

Conversion of iron(III) oxophlorin into verdoheme analog and its further conversion

to biliverdin 9 (Fig. 3) was also described [45].

Kalish et al. demonstrated that treatment of deuteroheme, mesoheme, or

protoheme with hydrogen peroxide in pyridine solution yielded all four isomeric

oxophlorin complexes in comparable yields [54]. In contrast, oxidation of iron(II)
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Scheme 1 Synthesis of octaethyloxophlorin [43, 44, 46]
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5-substituted-octaethylporphyrins (5-R-OEP)FeIII(py)2 (R ¼ NO2, CHO, CN, Cl,

OMe, Ph, n-Bu) exhibited a strong dependence on the nature of the substituent:

yields of (OEPO)Fe(py)2, a product of replacement of R group with oxygen

function, varied from 0% (R ¼ Ph, n-Bu) to 100% (R ¼ NO2), while ratio of cis
to trans-oxygenated products (12 and 13, Scheme 2) changed from 5.0 (R ¼ CN) to

1.4 (R ¼ Ph) [55].

Treatment of zinc or magnesium complexes of octaethylporphyrin 14 with

thallium(III) trifluoroacetate (TTFA) followed by demetallation gave high yields

(55–79%) of oxophlorin 8 [49, 50]. 5-Trifluoroacetoxyporphyrins 15 were isolated

as stable intermediates of this process (Scheme 3). Similar reactivity was observed

when lead(IV) or mercury(II) trifluoroacetates were used, but yields of oxophlorins
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Fig. 3 Octaethylbilindione – a synthetic biliverdin analogue
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were significantly lower (19–37%) [50]. Iron(III), copper(II), and nickel(II)

complexes of OEP were found resistant to the TTFA attack. An analogous reaction

of zinc(II) methyl pyropheophorbide a 16with TTFA, followed by hydrolysis in the
presence of ascorbic acid and air proceeded regioselectively to give dihydrobi-

liverdin 18 (Scheme 4) [53].

In contrast to OEP complexes, zinc tetraphenylporphyrin ((TPP)ZnII 19) was

converted by TTFA, thallium(III) nitrate (TTN) or cerium(IV) ammonium nitrate

(CAN) into a ring-opened tetrapyrrole 20 along with 5,15-disubstituted products 21,

22 (Scheme 5) [51, 52]. These compounds were obtained after acidic workup and

chromatography on alumina column. The proper structure of compound 20, formed

by addition of water molecule to the demetallated primary product, was established

in the course of studies on photooxidation of TPP complexes (Sect. 4.1).

Interestingly, when zinc(II) 5,10,15-triarylporphyrinswere reactedwith thallium(III)

trifluoroacetate, an oxidative dimerization was observed leading to meso–meso linked

diporphyrins (Scheme 6) [56]. A similar reactivity of zinc di- and triarylporphyrins with

silver(I) salts was reported by Osuka and coworkers [57–59].
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In case of TTN and CAN oxidation of (TPP)ZnII, β-nitrated product 25 (Fig. 4)

was also isolated [51, 52]. Meso-nitration of octaethylporphyrin was reported by

Bonnett and Dimsdale, who used fuming nitric acid–acetic acid mixture for this

reaction; ring opening was not observed under these conditions [42]. Catalano et al.

established the dependence of the site of reaction with nitrogen dioxide on the metal

coordinated to tetraphenylporphyrin [60]. Nickel(II), copper(II), and palladium(II)

complexes were exclusively converted to 2-nitro derivatives, while for more

electropositive zinc(II) and magnesium(II) ions ring opening resulting from the

reaction at meso position was noted. This observation was rationalized by a

different symmetry of π-cation radicals formed by oxidation of metalloporphyrin

with NO2. Also reaction of (TPP+•)ZnII(ClO4) with various nucleophiles yielded

mainly 2-substituted derivatives, but in the particular case of nitrite anion,
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β-nitrated porphyrin product was accompanied with an open-chain compound 20

[61]. More recently, Sarkar et al. described a formation of meso-hydroxylated
isoporphyrin 26 upon treatment ofmeso-tetrakis(3,4,5-trimethoxyphenyl)porphyrin

iron(III) or zinc complex with NO2 (O2 and NO, Scheme 7) [62, 63]. Further

degradation of iron isoporphyrin in solution was observed, and formation of

verdoheme- and biliverdin-type products was postulated on the basis of UV–vis

spectra. In contrast, zinc derivative remained stable in presence of air and light.

Oxidation of macrocycle can be facilitated by an appropriate modification of the

porphyrin ring (both sterical aspects and generation of specific reactivity by substi-

tution are of importance). Ring opening of sterically hindered, dodecasubstituted

porphyrins 27 via NaNO2 treatment in the presence of trifluoroacetic acid and air

was studied by Ongayi et al. [64–66]. Authors attributed the ease of degradation of

porphyrinic substrates 27 to the tendency to relieve steric strain. The proposed

reaction pathway involved oxidation of macrocycle by NO+ to a π-cation radical

followed by ring opening by dioxygen. A primary bilitrienone product 29 was

isolated in 70% yield (Scheme 8), but only for nonyl-substituted system, while in

case of meso-tetraphenyl derivative the unstable compound 29 was converted to a

biladienone 31 by addition of water. Two isomers of hydrated benzoylbiliverdin 31

were separated, presumably differing in the configuration of C(4)–C(5) bond.

Hydration of nonyl derivative 29 was observed as well, but it could be inverted

by heating the product 31 above 40�C [66].
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Metallation of 31with Ni(II), Cu(II), and Zn(II) ions led to formation of 4N chelates

30 in which a dehydrated form of tetrapyrrolewas found [65]. Nickel(II) and copper(II)

complexes were also prepared by an alternative route from the corresponding

metalloporphyrins 28 which were oxidized using meta-chloroperoxybenzoic acid in

pyridine in the presence of air (Scheme 8) [65].

Yashunsky, Morozova, and Ponomarev described a conversion of nickel

complexes of 5-formylporphyrin oximes 32 in a mixed water-organic solvent system

into brown-yellow products [67, 68]. These products were identified as open-chain

tripyrroryloxazoles 33 and were isolated by column chromatography in ca. 50% yield

(Scheme 9) [68]. A mechanism was proposed involving conversion of oxime

substituent into 1,2-oxazine ring and oxidation of formed intermediates by dioxygen

leading to fission of pyrrolic β,β0 bond and elimination of α-carbon.
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A remarkable ease of ring opening was observed for meso-amino-substituted

octaethylporphyrin complexes, (H2N-OEP)Fe
II(py)2 34 and (H2N-OEP)Fe

IIICl 36

[69, 70]. The exposure of their pyridine solutions to dioxygen resulted in its

regioselective attack at the substituted carbon; ring opening was followed by a

second oxidation step introducing another meso-oxygen atom; at the same time the

terminal amide fragment was dehydrated to cyano group (Scheme 10). A resulting

(3N + O) complex 37 and its analog with an axial ethanol ligand were

characterized by X-ray crystallography. In the case of 34 oxidation, a green
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intermediate was detected [69]. Its 1H NMR spectrum indicated a significant degree

of ligand radical character and symmetry lowering with respect to the starting iron

(II) complex 34, which was attributed to the formation of dioxygen adduct or iron

biliverdin derivative 35. A prolonged contact with dioxygen resulted in a slow

conversion of compound 37 to a mixture of tripyrrole complex 38 and small

amounts of another unidentified product [70].

A pyridine solution of nickel(II) complex of 5-aminooctaethylporphyrin 39

remained unchanged upon exposure to dioxygen [71]. A slow reaction was

observed, however, when iron(III) chloride was used as oxidant (Scheme 11),

yielding a biliverdin derivative 41 as a minor isolated product (10% yield).

Phillips et al. reported an oxidative ring opening of copper oxophlorin complex 42

yielding an ester-linked, dinuclear copper complex 43 (Scheme 12) [14]. A proposed

mechanism included oxidation of macrocycle by dioxygen leading to (OEPO•)CuII

complex, its reaction with the starting (OEPOH)CuII to produce a C–O link, ring

opening by addition of dioxygen and termination of the process by superoxide anion.

A formation of verdoheme analog 45, which was further hydrolyzed to octaalkyl-

biliverdin 46, was observed byChang et al. upon oxygenation of cobalt(II) porphyrin

substitutedwith naphthoic acid 44 (Scheme 13) [72]. The substituent was believed to

support the activation of molecular oxygen by the metal center and was finally cleft
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as 8-formyl-1-naphthalenecarboxylic acid. A helical cobalt(III) complex of acyclic

pentapyrrole 48 was obtained by Yamanishi et al. by treatment of cobalt(II) 5-(2-

carbamoylphenyl)-10,15,20-triphenylporphyrin 47 with 1-methylimidazole and air

(Scheme 14) [73]. An amide substituent and axial base (imidazole and pyridine

derivatives were tested) was found essential for dioxygen activation, which resulted

in breaking in C(4)–C(5) bond, followed by formation of oxoisoindole ring and

addition of hydroxyl group to a meso position. Chiral HPLC separation of racemic

48 was performed. The application of chiral axial ligands bearing (S) configuration:
nicotine, cotinine, or bifonazole led to the preferential formation of (M)-helical form

of pentapyrrolic product.

An unexpected ring opening upon bromination of tetraphenylporphyrin with 20

equivalents of N-bromosuccinimide (NBS) in chloroform–methanol solution was

described by Liu et al. [74]. From a mixture of reaction products which was treated

with zinc acetate, crystals of compound 50 were isolated (Scheme 15). An X-ray
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structure of this zinc complex revealed the presence of nine bromo substituents at

pyrrole rings and three methoxy groups attached to meso positions. Various para-
phenyl-substituted tetraarylporphyrins could also be converted to the corresponding

ring-opened products formed in 11–46% yield; also zinc tetraphenylporphyrin

underwent a similar reaction, while the use of copper(II) and nickel(II) as central

ions resulted only in β-bromination. A mechanism of the transformation was

proposed involving MeOBr (formed from NBS and methanol) as an active species

responsible for perbromination of pyrrole rings to form a highly congested

dodecasubstituted macrocycle. The steric hindrance could be released by addition

of another MeOBr molecule to C(meso)–C(α) bond followed by nucleophillic

addition of methoxide to the meso positions of ring-opened product.

3.2 Degradation of Metalloporphyrin Catalysts

In this part, we shall discuss reactions of iron and manganese complexes with

reagents which are typically used in metalloporphyrin-catalyzed oxidations

(hydroxylations, epoxydations): peroxides, peroxyacids, and molecular oxygen

[75–78]. Since typically an organic substrate is used in an excess in these processes,

the problem of catalyst stability under such conditions has been often neglected. If

this has been taken into account, methods of increasing metalloporphyrin robustness

have been sought, mainly via its appropriate modification [79–81]. It was achieved

by a substitution of porphyrin ring increasing catalytical activity and/or providing

steric protection not only against formation of μ-oxo dimer PFeIII–O–FeIIIP but also

against attack of oxidants onmeso positions [75]. Possible inter- and intramolecular

processes leading to degradation of metalloporphyrin have been addressed [82, 83],

though papers devoted to the analysis of catalyst stability have been relatively rare

[84, 85].

In the recent years, several groups concentrated their efforts on the analysis

of oxidation of porphyrin complexes by different oxidants used for the

metalloporphyrin-catalyzed oxidations of organic substrates. Starting from simple,
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rather qualitative observations of possible decomposition of macrocycle as

indicated by intensity lowering of Soret band in the UV–vis spectra, the studies

have been typically extended to the analysis of reaction kinetics and attempts of

determination of possible reaction mechanisms. However, in most cases the fate of

catalyst and structures of degradation products have not been considered.

Stephenson and Bell investigated mechanism and kinetics of iron porphyrin-

catalyzed epoxidation of olefins by hydrogen peroxide [86, 87]. Among factors

affecting the activity of catalyst, oxidative degradation of porphyrin ring and μ-oxo
dimer formation were discussed. The authors attributed the macrocycle decompo-

sition to the attack of hydroxyl radicals (generated from of coordinated hydrogen

peroxide). This hypothesis was in agreement with the observation that factors

increasing the rate of hydroxyl radical generation contributed also to porphyrin

degradation. The efficiency of iron porphyrin epoxidation catalysts was also studied

by Cunningham and coworkers [88–90]. They connected the observed bleaching of

the catalyst with its direct oxidation in the resting state (Fe(III)) rather than the

high-valent intermediates.

Rocha Gonsalves and coworkers analyzed the epoxidation of alkenes by

peroxides catalyzed by manganese porphyrins [91]. Two mechanisms of degrada-

tion of catalysts were found, depending on their structure and reaction conditions:

an intramolecular pathway predominated when a metallo-oxo species was an active

intermediate, while a metalloacylperoxo derivative favored an intermolecular one.

Ungvarai-Nagy and coworkers reacted iron(III) complexes of protoporphyrin

IX and tetra(4-sulfonatophenyl)porphyrin with bromate and observed macrocycle

degradation in acidic solutions [92–94]. Türk et al. investigated the stability of

water-soluble porphyrins and their manganese(III) complexes toward peroxides and

sodium hypochlorite [95–98]. The degradation rate constants were found dependent

on the structure of porphyrin substrate, nature of oxidant, and pH of the solution.

However, possible degradation pathways and structures of products formed were

not discussed. Lente and Fábián studied kinetics and mechanism of oxidation of

water-soluble porphyrin 51 with hydrogen peroxide and peroxomonosulfate anion

[99]. The analysis of ESI mass spectra of the reaction mixture revealed the presence

of iron complex of biliverdin-type tetrapyrrole 52 and a sulfonated benzoic acid 53

as dominant products of porphyrin decomposition (Scheme 16). Hopefully, this

precedent will prompt further works on structural characterization of ring-opened

oligopyrroles produced in the course of degradation of metalloporphyrin catalysts.

3.3 Oxidation of N-Confused Porphyrins

Though N-confused porphyrins have been known for almost two decades [100, 101],

relative little studies have been devoted to their degradation. However, the instability

of these macrocycles during metallation performed under aerobic conditions has been

frequently observed. This led Furuta et al. to investigate the nature of the degradation

product [102]. They found that in the course of reaction with copper(II) acetate in the
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presence of air N-confused tetraphenylporphyrin 54 underwent an oxidative transfor-

mation. Copper(II) complex of a linear tripyrrole 55 was isolated from the reaction

mixture in 34% yield (Scheme 17). No other products were identified. Free

tripyrrinone 56 and its zinc(II), nickel(II), palladium(II), platinum(II), and cobalt(II)

derivatives were obtained [102]; crystal structures of Cu(II) and Pd(II) complexes

showed a square-planar, N3O-coordination mode [103].

A suggested mechanism of the degradation involved two successive reactions with

molecular oxygen, activated by coordinated Cu(II) ion, leading to scission of two

C(meso)–C(α) bonds. Further studies on the regioselectivity of the process, performed

on 5-(2-pyridyl) derivative, showed that the N-confused pyrrole was cleft together

with 5-aryl substituent, which proved the primary attack of dioxygen at C(1)–C(20)

bond [102]. In contrast to this observation, Pawlicki et al. found that copper(II)

complex of pyrrole-appended O-confused tetraaryloxaporphyrin 57 reacted with

dioxygen yielding both possible tripyrrolic degradation products 58, 59 (resulting

from breaking of either C(1)–C(20) or C(4)–C(5) bond) formed in 7:3 ratio, along

with and the product of oxygen atom insertion into a copper–carbon bond 60

(Scheme 18) [104]. Apparently, meso- and pyrrole substitution can direct the attack
of dioxygen molecule; a discussion on the regioselectivity of oxidative ring opening

of N-confused porphyrin can be found in the part devoted to photooxidation of

tetrapyrroles (Sect. 4.1).
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3.4 Oxidation of Corroles

Despite general similarity to porphyrins, corroles exhibit a specific and sometimes

unpredictable reactivity [105]. Both macrocycle families share a common 18-π-
electron system, but lack of one meso bridge in corroles leads to increase of electron

density and, as a consequence, a susceptibility to oxidative ring opening. Interestingly,

all reports on such reactions concern meso-substituted systems [105], though any

systematic and comprehensive research on factors influencing corrole stability has not

been performed. Most work in the field concentrated on photooxidation of corroles

(see Sect. 4.2). Macrocycle opening by certain oxidants has been also described,

though typically formation of biliverdin-type compounds only accompanied the

reaction of major interest.

A fully brominated open-chain tetrapyrrole 61 (Fig. 5) was identified as a reaction

by-product resulting from breaking of C(4)–C(5) bond of germanium(IV) 5,10,15-

triphenylcorrole treated with bromine [106]. A linear tetrapyrrole 62 was formed in

minor quantities when triarylcorroles were reacted with 4-amino-4H-1,2,4-triazole
[107]. This time, C(5)–C(6) bond of the original macrocycle was cut (Fig. 5).

Ring opening at C(10) was observed upon conversion of triarylcorrole 63 to a

corresponding porphyrin (Scheme 19) [108]. A proposed mechanism of the trans-

formation involved a [2 + 2] cycloaddition of two corroles and cleaving of a

spirocyclobutane intermediate by dioxygen connected with an extrusion of meso-
carbon bearing para-nitrophenyl substituent.

Other pathways of corrole oxidation were reported, including isocorrole formation

by 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) treatment [109, 110] or demetallation

[111, 112] and oxidative dimerization of 5,10,15-tris(pentafluorophenyl)corrole with

formation of β-β0 bond(s) upon heating in 1,2,4-trichlorobenzene [113].
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4 Photooxidation of Tetrapyrroles

Photooxidation of tetrapyrrolic macrocycles and their complexes is considered as

the most important process responsible for the frequently observed photobleaching

of these compounds [114]. This phenomenon is connected with the ability of

porphyrin derivatives to activate molecular oxygen in the presence of light. Energy

transfer from the excited state of the macrocycle to the ground state of the dioxygen

molecule results in the generation of singlet oxygen. As a practical consequence,

tetrapyrroles are used as photosensitizers for degradation of various organic

substrates [115–117] and in photodynamic therapy (PDT) for treatment of cancer,

macular degeneration, chronic skin diseases, and other conditions [118–121].

Under certain conditions, also tetrapyrrole itself can be attacked by singlet oxygen,

which may eventually lead to ring opening.

In the context of not only photosensitizer stability but also other applications

of tetrapyrroles, light-driven reactivity of porphyrin derivatives toward O2 is of

particular interest. Photobleaching of photosensitizers used in photodynamic
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therapy was thoroughly reviewed by Bonnett and Martı́nez [114]. Thus, older

contributions will be only briefly described in his chapter, and the attention will

be focused on recent developments in the field.

4.1 Photooxidation of Porphyrins, N-Confused Porphyrins
and Phlorins

Most metal-free porphyrins are not prone to photooxidative degradation due to the

relative high value of oxidation potential. However, their deprotonation or conver-

sion to complexes of electropositive metal ions (e.g. with Zn(II), Cd(II) or Mg(II))

lowers redox potential and therefore the robustness of the system toward oxidative

degradation is also reduced.

Fuhrhop and Mauzerall reported the photooxidation of magnesium(II) octaethyl-

porphyrin 66 and identified a linear tetrapyrrole 67 as the final product for this

transformation (Scheme 20) [122]. This compound was also found by Bonnett et al.

as one of the two main products of photooxidation of octaethyloxophlorin 8 in

neutral solution (the other being 5,15-dioxoderivative 68, Scheme 20) [123]. Light-

driven ring opening of zinc, magnesium, cadmium, thallium(I) complexes of

tetraphenylporphyrin 69 as well as the porphyrin dianion (TPP2�) was examined

by several groups [124–128]. A proper structure of the final product 20 or 70 was

finally established by Cavaleiro and coworkers [128]. A bilindione derivative

bearing –OR substituent in 15-position resulted from dioxygen attack on the

C(meso)–C(α) bond, followed by demetallation and addition of water or alcohol

(ROH, Scheme 21). As proved by isotope labeling studies, both carbonyl oxygen

atoms are derived from the single molecule of O2 [125, 126]. Silva et al. studied

effects of substitution of tetraarylporphyrin on the degradation of cadmium(II)

complexes and showed that the reaction was governed by steric factors rather

than electronic ones [129]. The presence of substituents in ortho positions of phenyl
rings prevented the macrocycle from the dioxygen attack (Scheme 22).
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Both cadmium(II) tetra(3,4,5-trimethoxyphenyl)porphyrin 74 and zinc(II)

2,3,12,13-tetrabromoporphyrin 77, however, were converted to the corresponding

open-chain products 75, 76 (two forms were observed) and 78, respectively

(Schemes 23, 24).

Zinc(II) complexes of linear tetrapyrrole 20 were obtained [130]. Depending on

metallation conditions, 3N + O or 4N coordination was found in these chelates, in

the latter the loss of methanol or water led to a fully conjugated structure

(Scheme 25). Copper(II) complex, formed by transmetallation of photooxidation

product of magnesium(II) tetraphenylporphyrin, heated with excess of copper(II)

acetate yielded a dinuclear species 82 (Fig. 6); the additional meso-oxygen bridging
two copper ions originated probably from water since compound 82 was obtained

also under dioxygen-free conditions [12].
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Mixed 3N + O copper(II), nickel(II), and zinc(II) complexes were formed from

ligands 84 and 85, obtained by the photooxidation of a meso-substituted phlorin 83

[131]. Two isomers of bilindione and its complexes were described, with a different

orientation of the terminal pyrrolone ring (Scheme 26). Their interconversion upon

irradiation which caused E–Z isomerization was demonstrated. LeSaulnier et al.

investigated photodegradation of phlorins bearing different number of mesityl

substituents 86 (Fig. 7) [132]. As expected, the incorporation of bulky mesityl

substituents enhanced phlorin stability.

Photobleaching of certain metal-free porphyrins was also observed, not necessarily

connected with ring-opening reactions. Water-soluble, cationic 5,10,15,20-tetrakis(1-

pentyl-4-pyridyl)porphyrin underwent fast photodegradation in aqueous media [133].
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Niziolek and coworkers observed that lipid peroxidation in membranes, mediated by

protoporphyrin IX as a singlet oxygen photosensitizer, can be prolonged in the

presence of nitric oxide [134]. NO was found to protect the macrocycle against

oxidative destruction. Cavaleiro et al. carried out photochemical studies on stability

of porphyrins and their copper(II) complexes and showed that the latter had shorter

triplet lifetimes and were more stable with respect to photodegradation than the

respective free bases [135]. Similarly, perfluorination of phenyl substituents of

tetraphenylporphyrin had a beneficial effect on the macrocycle robustness.

When 2-aza-21-carba-5,10,15,20-tetraphenylporphyrin (inverted porphyrin 54)

was dissolved in dichloromethane and irradiated with visible light in the presence of

air, only traces of degradation products could be detected. Instead, photooxidation

of the dianion of N-confused tetraphenylporphyrin 87was performed which led to a

mixture of linear oligopyrroles within 1 h [136]. Chromatographic separation

yielded fractions containing tripyrrinone 56 (33% of reacted substrate), its dimethyl

acetal 88 (24%) and N-confused tetrapyrrole 89 (31%, Scheme 27). Upon

metallation with palladium(II), compound 89 converted into complex 90 containing

a conjugated N-confused biliverdin analog acting as a binucleating ligand with two

types of coordination surroundings: (NNNO) and (CNOO) (Scheme 27) [136].

Further exploration of photooxidation products led to detection of the additional,

unexpected tetrapyrrolic compound 70 (present in ca. 6–9% yield), typically

formed in the course of TPP2� degradation [137]. This observation led to a

conclusion that two different mechanisms operate in one molecule. Apart from

1,2-dioxygen addition, which is common for tetrapyrrolic macrocycles, the rare

1,3-addition was also found (Scheme 28).

Compound 89, the major isolated tetrapyrrolic product of photooxidation of

N-confused porphyrin dianion resulted from cleavage of C(10)–C(11) bond of the

original macrocycle. However, changing of reaction conditions (metallation with

zinc or replacing of methoxide with ethoxide for the conversion of N-confused

porphyrin to its dianion) allowed us to detect other tetrapyrrolic degradation

products (Wojaczyński J, Popiel M, Gońka E, Latos-Grażyński L, unpublished

results). DFT calculations performed on inverted porphyrin dianion did not show

any significant differences among meso positions which could be responsible for

any preference of dioxygen attack. Apparently, the observed product distribution

reflects not only the regioselectivity of O2 addition but also the relative stability of
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degradation products under given conditions since part of them can undergo further

reactions (as proved by the observation of tripyrrinone products 56, 88 which could

be formed from primary ring opening at C(5) or C(20) followed by loss of inverted

pyrrole in the second oxidation step).

4.2 Photooxidation of Corroles

The question of photochemical stability of corroles is particularly important in

context of their possible application in photoactive devices, chromophores for light

energy conversion and singlet oxygen generation [138–140]. Early observations

indicated a stepwise degradation of corroles in solution in the presence of light and

air. The process was monitored by UV–vis spectroscopy since a systematic lowering

of Soret band intensity was observed [141, 142]. The presence of electron-

withdrawing substituents in corrole ring or complexation with metal ion was

shown to increase the macrocycle robustness. The first proposal of a structure of
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degradation product was made by Guilard and coworkers who investigated

photooxidation of 2,3,17,18-tetraethyl-7,8,12,13-tetramethyl-10-phenylcorrole 95

(Scheme 29) [143]. A biliverdin derivative 97 was obtained in 24% yield and

characterized by 1H NMR, IR, MS and elemental analysis which were in general

agreement with an intuitive assumption that pyrrole–pyrrole (C(1)–C(19)) bond

was attacked by dioxygen molecule. No other reaction products were isolated.

Opening of corrole ring by breaking of C(α)–C(α) bond was also postulated by

Paolesse et al. for photooxidation of β-octaalkylcorrole with a porphyrin attached to
a 10-position 96 [144]. In both cases the symmetry of resulting 1H NMR spectrum

was lower than expected for the proposed structure (an analogous triarylbilindione

obtained by Yamauchi et al. by coupled oxidation of iron porphyrin exhibited a

simple 1H NMR pattern [145]). The difference was attributed to isomerization of

biliverdin moiety to (E,Z,Z) configuration; however, certain spectral features (e.g.

a doublet at ca. 8 ppm which could be assigned to ortho-aryl protons) suggest that a
structure resulting from opening at aryl-substituted meso position 99 could be

considered as well. On the other hand, the observation that 2,3,17,18-tetraphenyl

analog 100 (meso-unsubstituted!) was found far more stable than 95 and a similar

behavior of corresponding cofacial bis(corroles) connected with a 10-anthracene

bridge suggested efficiency of a steric protection of bipyrrole fragment limiting the

access of dioxygen molecule to C(1)–C(19) bond [146].

Degradation of meso-triarylcorroles has received a considerable attention [141,

142], but only a systematic mass spectrometry study on decomposition pathways of

these compounds by Świder et al. led to identification of isocorroles and biliverdin
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Scheme 29 Photooxidation of meso-aryl-substituted corroles 95, 96 [143, 144]. An alternative

structure of degradation product 99 and a tetraphenyl analogue of compound 95 are also shown
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derivatives as photooxidation products [36]. Preparative degradation experiment was

conducted with corrole 101 with 5 and 15 positions protected by bulky substituents,

which was dissolved in acetonitrile and exposed to sunlight for 60 h. Three major

compounds 102–104were isolated from the reaction mixture (Scheme 30), indicating

dioxygen attack on meso-C(10) carbon atom. In our studies on photooxidation of

triphenylcorrole and tris(p-methoxyphenyl)corrole, scission of C(9)–C(10), but also

of C(4)–C(5) bond of symmetrical, non-hindered substrate was noted [147]. As can

be seen, any product resulting from breaking of a direct pyrrole–pyrrole bond has not

been detected from photodegradation of triarylcorroles. One couldn’t exclude, how-

ever, that the presence of β-alkyl substituents in compounds 95, 96 directs dioxygen
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attack to the C(1)–C(19) bond. A strong dependence of reaction outcome on substi-

tution of macrocycle is illustrated by reactivity of 5,10,15-tris(pentafluorophenyl)

corrole which stirred at room temperature under ambient light and air slowly

converted to 3,30-linked dimer and 3,30,170,300-trimer [148].

5 Coupled Oxidation

Heme oxygenase, responsible for the oxidative destruction of unwanted heme,

requires molecular oxygen but also the source of electrons for its function (see

Sect. 6 of this contribution). Oxidation of iron porphyrin in pyridine in the presence

of reducing agent (hydrazine or ascorbic acid) has been used as a model for the

enzymatic reaction [149, 150]. Pioneering studies by Lemberg (who described

coupled oxidation of iron protoporphyrin IX with H2O2-ascorbic acid), Fischer

and Libowitzky were performed on natural heme derivatives [151, 152]. Later on,

higher symmetry synthetic model compounds such as complexes of octaethyl-

porphyrin or ethioporphyrins have been used. A thorough analysis of coupled

oxidation process was presented in a series of papers published in the years

1992–2008 by Balch, Latos-Grażyński, and coworkers. They isolated and

characterized two main products of degradation of (OEP)FeII(py)2 105 caused by

air in the presence of ascorbic acid: a diamagnetic verdoheme 106 (50%) and a

paramagnetic dimeric iron biliverdin complex 107 (38%, Scheme 31) [153, 154].

In situ monitoring of the degradation of (OEP)FeII(py)2 by dioxygen with hydrazine

as sacrificial reductant identified iron oxophlorin, (OEPO)Fe(py)2 11 as a key

intermediate of the process [155].

Oxidation of (OEP)FeIIICl under pyridine-free conditions, but in the presence

of cyanide ions as axial ligands, was also demonstrated [156]. Depending on

cyanide concentration, iron oxophlorin or 5-oxaporphyrin complex (verdoheme)

was formed. Coupled oxidation of Co(II) octaethylporphyrin leading to cobalt

verdoheme and biliverdin analogs was also described [157]. In the recent years,

degradation of iron complexes of β-unsubstituted, meso-arylporporphyrins under

coupled oxidation conditions was investigated as well [145, 158–160].

5.1 Oxophlorins

The question of structure and reactivity of oxophlorins (hydroxyporphyrins) has

been considered in numerous contributions. In addition to tautomeric equilibrium

(Scheme 32), ocatethyloxophlorin was shown to undergo a facile one- and two-

electron oxidation [161]. In consequence, it can serve as a trianionic, dianionic, and

monoanionic ligand, and various electron distributions between metal ion and

ligand are possible. Not surprisingly then, a rich coordination chemistry was

observed for octaalkyloxophlorins: zinc(II), nickel(II), cobalt(II), copper(II), iron

(III), and manganese(III) monomeric complexes with meso-hydroxyl groups
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[14, 162–166], dimeric complexes linked by meso-oxygen bridges with Fe(III),

Mn(III), and In(III) [162, 165, 167–171], coordinated oxophlorin trianions [165, 166],

coordinated radicals [163, 164, 168], and complexes of oxidized monoanionic form

[168, 170] were reported. Variety of structures and their mutual interconversion is

exemplified by iron(III) complexes shown in Scheme 33 [161]. The thorough

overview of coordination chemistry of oxophlorins/meso-hydroxyporphyrins was
published by Balch in 2000 [161].

Electronic structure of iron oxophlorin (OEPO)Fe(py)2 and its analogs was a

subject of a long-lasting debate [162, 167, 172–175]. Three possible electron

distributions have been taken into account (Fig. 8). Patterns of paramagnetically

shifted 1H NMR signals observed for (OEPO)Fe(py)2 and related species suggested

a significant contribution of a ligand radical form (OEPO•)–FeII [162, 172, 173].

A similar alteration of isotropic shifts was found for iron triphenyloxophlorin
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complexes [158]. DFT calculated spin density maps for oxophlorin radicals allowed

to reproduce the major observed spectroscopic features [176]. Later on, Rath et al.

showed the dependence of electronic structure on the nature of axial ligands, with

2,6-xylyl isocyanide stabilizing the radical resonance structure [(OEPO•)FeII(CNR)2]

[177]. Recent crystallographic, magnetic, and spectroscopic measurements indicated

the importance of Fe(III)/oxophlorin trianion form for bis-pyridine and bis-imidazole

complexes [178]. DFT calculations of electronic structure of (OEPO)FeL2 complexes
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O
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performed by Gheidi et al. confirmed the dependence of electron distribution and iron

spin state on the nature of axial ligands [179].

Reactivity of iron oxophlorin (OEPO)Fe(py)2 (11) was extensively explored.

Apart from coordination chemistry depicted in Scheme 33, interaction with small

molecules was investigated [180, 181]. A reversible binding of NO to (OEPO)Fe

(py)2 connected with the formation of dimeric species 115 was reported (Fig. 9)

[180]. A reduced form of oxophlorin, (OEPOH)FeII(py)2, was converted to

(OEPOH)FeII(CO)(py) (116) upon treatment with carbon monoxide, and pyridine

could be replaced with hydrazine to form (OEPOH)FeII(CO)(N2H4) (117); both

diamagnetic complexes were found extremely air sensitive and in the presence of

dioxygen an immediate reaction leading to (OEPO)Fe(py)2 11 was observed [181].

Both redox processes preserving a basic skeleton of oxophlorin [168, 170] and

coupled oxidation leading to verdoheme and biliverdin have been reported [155, 156].

Under certain conditions, oxidative degradation is not limited to macrocycle opening.

Rath et al. observed that in the absence of reducing agent, addition of dioxygen to a

pyridine solution of oxophlorin complex (OEPO)Fe(py)2 (11) caused stepwise

changes, resulting in formation of iron biliverdin 118, and, finally, oxidative removal

of pyrrole unit yielding a linear tripyrrole complex 38 (Scheme 34) [182]. This

compoundwas also formedwhen compound 118or verdoheme 106was exposed toO2.

5.2 Verdohemes

A green iron complex of 5-oxaporphyrin, called verdoheme, is an important

intermediate in the process of heme oxidative cleavage by heme oxygenase [183].

It is also formed in the course of coupled oxidation of iron porphyrins but can be

also obtained by dehydration of biliverdin in the presence or iron salts [184, 185].
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Metal-centered reactions have been reported, including changes of axial ligation,

and metal oxidation and spin state, as demonstrated for iron (Scheme 35) and

cobalt 5-oxaporphyrin complexes [153, 172, 186–192]. Coordination chemistry of

verdohemes and biliverdin derivatives has been recently reviewed by Balch and

Bowles [193].

Ligand transformations are particularly important for the study of macrocycle

degradation since they can lead to linear tetrapyrrolic products. Two mechanisms of

verdoheme ring opening leading to biliverdin have been described: an oxidative

pathway [194, 195], resulting in release of Fe3+, and a hydrolytic route (Scheme 36).

The latter is generally believed to begin with addition of hydroxide to the

macrocycle. To characterize this kind of reactivity of 5-oxapophyrin complexes,

their conversions by anionic nucleophiles have been investigated [196–200].

Helical, ring-opened products resulting from the addition of alkoxide, thiolate,

and amide ions to zinc(II) (125) and cobalt(II) verdoheme (126) were isolated

and structurally characterized (Scheme 37) [197, 201]. More complex process

was observed when cyanide ion was added to zinc 5-oxaporphyrin 125, as

macrocycle cleavage was accompanied with substitution at one or two meso
positions (Scheme 38) [199]. A dimeric complex [(OEBOMe)FeII]2 130 was

isolated from the reaction of iron(II) verdoheme with OMe� ion (Scheme 39)

[198]. Ring opening of FeII and FeIII verdohemes with methoxide or hydroxide

was monitored by 1H NMR spectroscopy [200]. Characteristic alternating shift

patterns indicating radical character of the particular intermediates and remarkable

paramagnetic shifts of meso resonances of certain species were noted.

Utilizing O2 as oxidant, Rath et al. demonstrated a conversion of Fe(II)

verdoheme into a highly oxidized (Fe(IV) bound to bilindione ligand or Fe(III)

coordinated to oxidized form of ligand) biliverdin complex (Scheme 40) [195]. Its

reduction with zinc amalgam resulted in previously characterized dimeric [(OEB)

FeIII]2 (107). Earlier, Saito and Itano reported that prolonged (1 month) exposure to

air of verdoheme dissolved in ethylene glycol – pyridine solution led to several

iron-free ring-opened products, including tripyrrolic ones [202]. Most of the

starting material was recovered from the reaction.
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Theoretical study on factors determining verdoheme conversion to biliverdin

was performed by Safari and coworkers. The role of axial ligands as well as

coordinated metal ion was taken into account [203–206].
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5.3 Biliverdins

A dimeric helical iron(III) complex 107 of octaethylbilindione, a biliverdin analog,

was obtained by Balch et al. along with verdoheme from the coupled oxidation of

(OEP)FeII(py)2 [154]. Its treatment with pyridine resulted in cleavage of Fe–O

bonds and formation of monomeric (OEB)FeIII(py)2 132 (Scheme 41). An easy
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demetallation of [(OEB)FeIII]2 with hydrochloric acid released the blue bilindione

OEBH3 (9) [154]. Its complexes with other metal ions were investigated by Bonnett

and coworkers [207, 208] and by Balch group [13, 209–215]. Interestingly,

remetallation of OEBH3 with iron has not been successful [193], while manganese,

cobalt, nickel, copper, zinc, palladium, and boron complexes have been obtained.

For Mn(III), a dimeric complex with oxygen bridges [(OEB)MnIII]2, which was

cleft by pyridine to monomeric (OEB)MnIII(py)2 (in a full analogy with Fe(III)

complexes) was described [210]. Spectroscopic investigations of monomeric,

four-coordinate complexes of OEBH3 with cobalt, nickel, copper, and palladium

suggested their electronic structure consistent with the presence of M(II) ion and

oxidized ligand radical (OEB•)MII [208–210, 214] A significant degree of radical

character was also postulated for iron complexes obtained by verdoheme ring
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opening [200]. Cobalt biliverdins were alternatively obtained by a coupled oxida-

tion of Co(II) octaethylporphyrin [157]. Oxidation with iodine converted (OEB•)

MII complexes (M ¼ Co, Ni, Pd) into ones containing an oxidized form of

bilindione ligand [211, 214], while aerial oxidation of copper and cobalt complexes

133 resulted in cleavage of tetrapyrroles yielding complexes with two coordinated

dipyrrolic units 134 (Scheme 42) [209, 213].

A unprecedented tetranuclear complex 135 consisting of two helical (OEB)PdII

units bridged by (Pd2
I)2+ fragment was isolated along with monomeric (OEB)Pd

from the insertion of palladium into OEB ligand [13, 214, 215]. Reaction of this

compound with iodine resulted in formation of rearranged monomeric complex

136: an incorporation of oxidized meso-carbon into a terminal pyrrolone unit was

observed (Scheme 43)[215].
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Oxidative cyclization of biliverdin complexes leading to metalloverdohemes

was also studied [216]. Nickel(II), cobalt(II), and copper(II) octaethylformylbi-

liverdins were converted to verdoheme analogues by treatment with hydrogen

peroxide or (in case of Cu(II) species) by heating with trifuoroacetic acid under

dioxygen (Scheme 44) [9]. Formation of carbon monooxide and dioxide was

detected in the course of the reaction. Addition of trifluoroacetic acid to the

dichloromethane solution of palladium octaethylbilindione also resulted in ring

closure. Only 5 min of stirring at room temperature was found sufficient to cause

the transformation [215] .

Formation of biliverdin derivatives in a process of coupled oxidation of iron

porphyrins is not limited to β-octaalkyl derivatives. Mizutani’s group worked out a

high-yielding method of preparation of tetraphenylbiladienone 20 (a major product

of degradation of TPP complexes by Tl(III), Ce(IV) or photooxidation, see

Sects. 3.1 and 4.1) [145, 159, 160]. Iron meso-tetraphenylporphyrin subjected to

coupled oxidation procedure in a chloroform solution yielded a mixture of isomeric

biladienones 20 (63%) and 140 (15%; Scheme 45) [145]. Compound 140 could be

photoisomerized to 20, while the reverse transformation did not proceed. The

additional bilindione products 141, 142 were obtained when the reaction was

carried out in refluxing chloroform; both compounds were converted to each

other with visible light illumination. An X-ray structure of isomer 141 proved its

ZZZ configuration and a helicoidal conformation. The procedure could be extended

to other tetraarylporphyrins substituted in para positions with OCH3, COOCH3,

CN, OC12H25, and COOC12H25 groups [159, 160]. The reaction was accelerated by

electron-withdrawing substituents, which also favored the formation of triarylbi-

lindiones (maximum yield of 19% was noted for p-COOC12H25 derivative) while

electron-donating ones increased the amounts of biladienones (85% yield for

methoxy-substituted substrate was found). Interestingly, the presence of one

methoxy substituent in ortho position of each of phenyl groups did not prevent

the macrocycle from oxidative degradation: both biladienone and bilindione were

formed in 14% and 10% yield, respectively. Cyclization of bilindiones 141was also

described yielding the corresponding zinc triarylverdohemes, which were isolated

as trfiluoroacetates [217].
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Theoretical studies on biliverdin and its complexes involved such aspects as

molecular and electronic structure of its isomeric forms [218] and biliverdin-based

metalloradicals [219], spin density distribution in metallobiliverdin radicals [220],

energetics and dynamics of dimer formation by oxidized species [221], andmechanism

of reduction to bilirubin [222].

5.4 Regioselectivity of Coupled Oxidation

Studies on regioselectivity of coupled oxidation of iron porphyrins were aimed

to establish the influence of factors connected with a structure of macrocyclic

substrate on the outcome of degradation process. Four isomeric biliverdins were

isolated in comparable yields from coupled oxidation of iron(III) protoporphyrin

IX, thus regioselectivity observed in natural systems (see Sect. 6) was lost [223,

224]. Later studies showed that replacement of 3-methyl group of mesoheme with

CF3 substituent had a great influence on product distribution: ring-opening occurred

mainly at C(20) yielding δ isomer as a major product [225].

Coupled oxidation of 5- or 15-phenyl-substituted iron(III) protoporphyrin IX in

pyridine solution yielded biliverdins opened only at three unsubstituted meso
positions (as illustrated in Scheme 46 for 5-phenyl derivative) [35, 226]. Similarly,

5-aryl-mesohemes III were cleft at C(10), C(15) or C(20) yielding (due to symmetry

of the starting complex) only two isomeric products [227]. The character of
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aryl ring substituent influenced the reaction yield, but its impact on the product

distribution was rather negligible. The identified biliverdin isomers served as

references for studies on the regioselectivity of heme oxygenase (see Sect. 6 of

this contribution) [228].

6 Biodegradation of Tetrapyrrolic Macrocycles

Degradation of tetrapyrrolic macrocycles is used by living organisms both as a

method of removal of unwanted (redundant) heme or chlorophyll and as a way of

synthesis of linear systems (bilins) which can also fulfill important physiological

functions [229–232]. Mechanism of transformation of macrocycles to acyclic

oligopyrroles has now become much more clear and better understood in the result

of numerous studies on model reactions and determination of active intermediates

and structures of key enzymes.
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6.1 Heme Oxygenase

Heme oxygenase (HO), an enzyme responsible for the oxidative conversion of

heme to biliverdin, was discovered by Tenhunen et al. in 1968 [233]. Since that

report, numerous studies have been devoted to understanding the mechanism of the

enzymatic action [183, 234–239]. HO is unique among heme enzymes in that

activation of dioxygen by prosthetic group is utilized for its own degradation.

A regiospecific conversion of heme to biliverdin IXα, carbon monooxide and

Fe2+ ions requires three molecules of O2 and the total uptake of seven electrons,

and proceeds in three successive steps (Scheme 47): meso-hydroxylation, followed
by release of CO and verdoheme formation and ring opening connected with iron

loss yielding free biliverdin. Formation of such metabolites implies other functions

of heme oxygenase, involving iron homeostasis, cytoprotection against oxidative

injury and cellular stress, and postulated role in cellular signaling.

Inmammals three isoforms ofHOhave been identified; heme degradation enzymes

can also be found in plants and some pathogenic bacteria [183, 240–242]. Many of

these proteins have been structurally characterized, including cofactor-free enzymes

and their complexes with heme and subsequent intermediates of its enzymatic con-

version [240, 241, 243–248]. Since the structural aspects and mechanism of heme
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oxygenase have been thoroughly reviewed [183], only chosen aspects of recent

investigations in the field will be presented in this contribution.

Several groups concentrated their efforts on detailed analysis of mechanism of

heme degradation. A theoretical study on meso-hydroxylation step by Shaik and

coworkers indicated a preference for homolytic dissociation of O–O bond in

Fe–OOH intermediate and the crucial role of hydrogen bonding network of distal

heme pocket in trapping of •OH radical, in full agreement with the experimental

data [249–251]. Verdoheme opening, the less understood third step of degradation

process, was investigated by Ikeda-Saito and coworkers [239]. They prepared

verdoheme complexes with various heme oxygenases and characterized them by

various techniques [245, 252, 253]. A similarity of the final stage of heme oxidation

to the first one was observed, including the participation of water cluster in the

radical intermediate binding. Verdoheme-heme oxygenase complexes were also

characterized by other groups [246, 254, 255].

Factors influencing regioselectivity of heme degradation have been also studied.

The exclusive formation of α isomer of meso-hydroxyheme and, finally, of biliver-

din α was substantiated by specific seating of heme in the protein and the construc-

tion of distal pocket limiting the access of coordinated dioxygen molecule to other

meso positions [183, 236]. Mutant heme oxygenases were prepared with an altered

regioselectivity which was attributed to various possible orientations of heme

moiety [256, 257]; mutations can even change the typical function of enzyme to

peroxidase activity [258]. Bacterial heme oxygenases were characterized exhibiting

different preference of heme oxidation site as a result of specific seating of the heme

[241, 259–261]. Part of regioselectivity studies utilized modified hemes to explore

the impact of porphyrin ring substitution on the degradation process. Heme

oxygenase was shown to accept various iron porphyrins as substrates, though the

presence of propionate chains at C(13) and C(17) seemed to be an important feature

required for enzymatic action [183, 234, 262]. Ikeda-Saito and coworkers showed

that HO is capable of oxidizing of all isomers of meso-hydroxyhemin to the

corresponding verdohemes, but only verdoheme α was further converted to biliver-

din [263]. Meso-substitution effects were particularly important for the analysis of

ring-opening mechanisms. Oxidation of mesoheme with methylated meso-position
by human HO-1 was investigated by Torpey and Ortiz de Montellano [264].

Surprisingly, α-CH3-derivative was converted to biliverdin α, while γ-CH3-

mesoheme yielded exclusively γ isomer (Scheme 48; in both cases the fate of

extruded meso substituent remained unknown); β and δ-substitution resulted in a

mixture of products (both methylated and meso-unsubstituted).
When protoheme substituted with 5- or 15-phenyl group was used as a substrate,

biliverdin α was formed (Scheme 49; benzoic acid by-product was isolated in the first

case) [228]. Mesobiliverdin α was identified as the major degradation product of

various 5-aryl-mesohemes; isoporphyrin intermediate was detected in this reaction

[265]. In contrast, 5-formylmesohemes were exclusively oxidized by heme

oxygenase at non-substituted carbons (C(10) or C(20)) to give a formylated biliverdin

derivative [266]. Generally, product distribution was found dependent mainly on the

possible orientations of modified heme in the protein crevice, but electronic effects of

substituents were also of importance.
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The observation that under certain conditions various heme proteins also can

exhibit oxygenase activity led to elaboration of protocol of coupled oxidation,

which was used as a model of enzymatic heme degradation [267]. Though the

detailed mechanism of meso-hydroxylation step is slightly different [237, 268],

both processes share common intermediates: hydroxyheme, verdoheme, and,

finally, iron- and metal-free biliverdin. In a typical experiment, these compounds

are produced upon treatment of heme protein with an excess of ascorbate and

dioxygen or H2O2; sometimes also the addition of pyridine was necessary to replace

the protein axial ligands [231]. Coupled oxidation of hemoglobin (Hb) and myo-

globin (Mb) has been most widely studied, leading mainly to α isomer of biliverdin,

but in case of Hb a significant amount of β isomer is also produced [194, 269, 270].

This regioselectivity is changed for abnormal or mutant hemoglobins [270, 271] as

well as for cobalt(II) porphyrins used as substrates [272]. Coupled oxidation of

heme covalently attached to a variant of Escherichia coli cytochrome b562 yielded a
verdoheme protein complex which could be converted with formic acid to protein-

attached α-biliverdin [273]. One of axial ligand mutants of mitochondrial cyto-

chrome b5, H63V, also stopped at the verdoheme stage while H39V variant allowed

to oxidize heme to biliverdin [274]. This different behavior was attributed to the

presence of polar amino acid residues in H39V mutant able to interact with heme-

bound iron.

6.2 Chlorophyll Degradation

The principal transformations and main intermediates of chlorophyll breakdown have

been identified [275–278]. Chlorophyll a 160 and chlorophyll b 161 lose phytol side

chain and magnesium ion and pheophorbide a 162 is formed (Scheme 50). Ring

opening occurring exclusively at C(5) meso position yields a tetrapyrrole called red

chlorophyll catabolite (RCC, 163) which is further converted to fluorescent and

nonfluorescent chlorophyll catabolites (FCCs and NCCs, respectively). A key ring-

opening step is catalyzed by a specific enzyme, pheophorbide a oxygenase [279, 280].

Isotope labeling experiments showed that only one of newly introduced oxygen atoms

is derived from O2 molecule, while the second one probably originates from water.

Studies on photooxygenation of chlorophyll and bacteriochlorophyll derivatives

were conducted in context of the catabolism of these compounds occurring in vivo.

Typically, ring-opening reactions occurred by dioxygen attack on C(1)–C(20) bond

[114, 281]. However, Iturraspe and Gossauer demonstrated the regioselectivity

change by metal coordination: zinc(II) pyropheophorbide a methyl ester 16 led to

C(20)-opened product 165 while cadmium complex 164 underwent cleavage of C

(4)–C(5) bond yielding compound 166 (Scheme 51) [282]. Recent studies on the

degradation of zinc chlorophyll derivatives substituted at 3- and 13-positions

showed a systematic change of electronic absorption maxima (up to 919 nm)

of the ring-opened products with the electron-withdrawing character of the

substituent, demonstrating their attractiveness as near-infrared light absorbing

pigments [283].
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7 Summary: Future Directions

The word “degradation” is commonly associated with the loss of quality, with a

conversion of an object or a person to less attractive and less valuable state or form.

These negative connotations, however, should not come to mind when porphyrin

degradation is considered. Certainly, formed products lack many of properties of a

parent compound, but at the same time they gained certain unique features, such as

a conformational flexibility or an interesting coordination behavior. Ring opening

of cyclic tetrapyrroles can be applied as the easiest method of preparation of these

linear oligopyrroles.

On the other hand, many of degradation processes are not selective and are

frequently accompanied by subsequent reactions (demetallation, Z-E isomerization,

water/alcohol addition) which further increase the number of possible products.

In many classical papers on porphyrin degradation, only major products were

isolated and characterized, and the fate of the rest of starting material remains

unknown. Perhaps the use of modern analytical techniques could lead to identifica-

tion of minor decomposition products.

In general, a great progress has been made in deciphering of degradation

processes of tetrapyrrolic macrocycles in nature and of their synthetic models.

Still, some fields remain underexplored, including pathways of inactivation of

metalloporphyrin catalysts. Since the ways of porphyrin ring modification are

unlimited, new developments in the field can be expected because a specific

reactivity can be generated connected with the particular substitution or/and

metal ion insertion.

One can also imagine that wider synthetic availability of such members of

porphyrinoid family, as expanded porphyrins, contracted ones, porphyrin isomers

(N-confused, fused, porphycenes,. . .), and heteroporphyrins could result in

investigations on their oxidative degradation. Ring opening of octaphyrins upon

metallation with Cu(II) and interesting oxidative conversions of dithiaethyne-

porphyrin and dioxaporphyrin which were described quite recently show a potential

hidden in these porphyrin analogs [284–286].
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4. Pacholska E, Latos-Grażyński L, Ciunik Z (2002) A direct link between annulene and

porphyrin chemistry � 21-vacataporphyrin. Chem Eur J 8:5403–5406

Degradation Pathways for Porphyrinoids 187



5. Pacholska-Dudziak E, Szterenberg L, Latos-Grażyński L (2011) A flexible porphyrin–annulene
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23. Ellsworth RK, Aronoff S (1968) Investigations on the biogenesis of chlorophyll a. I. Purifica-
tion and mass spectra of maleimides from the oxidation of chlorophyll and related compounds.

Arch Biochem Biophys 124:358–364
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136. Wojaczyński J, Latos-Grażyński L (2010) Photooxidation of N-confused porphyrin: a route

to N-confused biliverdin analogues. Chem Eur J 16:2679–2682
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153. Balch AL, Latos-Grażyński L, Noll BC, Olmstead MM, Szterenberg L, Safari N (1993)

Structural characterization of verdoheme analogs. Iron complexes of octaethyloxoporphyrin.

J Am Chem Soc 115:1422–1429
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dimethyl ester and Mössbauer spectra of related porphyrins. Bull Chem Soc Jpn

61:3539–3547

186. Balch AL, Noll BC, Safari N (1993) Structural characterization of low-spin iron(III)

complexes of octaethyloxoporphyrin. Inorg Chem 32:2901–2905

187. Balch AL, Mazzanti M, Olmstead MM (1994) Preparation of a cobalt analogue of verdoheme

by coupled oxidation of cobalt(II) octaethylporphyrin. J Chem Soc Chem Commun 269–270

188. Balch AL, Koerner R, Olmstead MM (1995) Crystallographic characterization of octaethyl-

verdohaem. J Chem Soc Chem Commun 873–874
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