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Abstract After a short presentation of major variants of nucleophilic substitution of

hydrogen, application of these reactions to introduction of substituents into aromatic

and heteroaromatic rings and construction of heterocyclic systems are discussed.
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1 Introduction

Nucleophilic substitution of hydrogen in electron-deficient arenes is presently a

well-established process proceeding in a few ways [1–5]. Although these reactions

are of general character and great practical value for organic synthesis, particularly

of heterocyclic systems, they have not been adequately recognized. The key step of

these reactions is a fast and reversible addition of nucleophiles to the electron-

deficient aromatic rings in positions occupied by hydrogen to form the so-called σH

adducts. It should be stressed that when the electron-deficient rings contain

halogens or other nucleofugal groups X in similarly activated positions, addition

of nucleophilic agents in these positions, to form σX adducts, proceeds slower than

formation of σH adducts. The relation of rates is shown in Scheme 1.

The initially formed σH adducts can be converted into products of nucleophilic

substitution of hydrogen in a variety of ways: oxidation with external oxidants,

conversion into nitrosoarenes according to intramolecular redox stoichiometry,

vicarious substitution, cine- and tele-elimination, ANRORC, etc. These processes

have been discussed in a concise way in our preceding reviews [4, 6–10]. The major

message of those reviews is that nucleophilic substitution of hydrogen, in its many

variants, is the main, primary process, whereas the conventional nucleophilic

substitution of halogens X, the SNAr process, is just a secondary “ipso” reaction

[9, 10].

Here we intend to present a more detailed discussion of the three major ways

of conversion of the σH adducts into the corresponding products of nucleophilic

substitution of hydrogen in nitroarenes, particularly in electron-deficient hetero-

cyclic systems, namely: vicarious nucleophilic substitution (VNS), oxidative

nucleophilic substitution (ONSH), and conversion into nitrosoarenes according

to intramolecular redox stoichiometry. Our main goal is to show that these

reactions offer wide possibilities for the synthesis and modifications of

heterocycles.
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2 Vicarious Nucleophilic Substitution of Hydrogen

Amongst many variants of conversion of the σH adducts into the corresponding

SNH products, the vicarious nucleophilic substitution is undoubtedly considered as

one of the most versatile and practically important processes [4, 6]. It proceeds

when nucleophiles contain nucleofugal groups L at the nucleophilic centers, as, for

instance, in the case of α-halocarbanions. Addition of α-halocarbanions to

nitroarenes in the ortho- or para-positions occupied by hydrogen results in the

formation of σH adducts, which undergo base-induced β-elimination of HL to

produce nitrobenzylic carbanions of the SNH products, isolated upon protonation.

Since α-halocarbanions generated from substituted α-chloroalkanenitriles,
carboxylic esters, etc. are rather unstable, the carbanion of chloromethyl phenyl

sulfone has been chosen as the model nucleophile for investigation of the VNS

reactions. Indeed, in the presence of a strong base, this carbanion reacts with

nitrobenzene bearing a variety of substituents to replace hydrogen in the ortho-
and (or) para-positions relative to the nitro group. The products, ortho- (or para-)
nitrobenzyl phenyl sulfones, exist in the reaction media in the form of nitrobenzylic

carbanions, which are not electrophilic anymore thus, the reaction proceeds exclu-

sively as monosubstitution. It was shown that ortho- and para-halonitrobenzenes
react with this carbanion according to the VNS pathway, resulting in displacement

of hydrogen, without competing substitution of halogen (SNAr reaction). This can

be exemplified by selective displacement of 2-hydrogen in 4-fluoronitrobenzene by

action of chloromethyl phenyl sulfone under basic conditions (Scheme 2) [11, 12].

However, under the conditions that favor dissociation of the σH adducts and

disfavor β-elimination, namely, a higher temperature and absence of a strong base,

the conventional SNAr of fluorine atom can be observed [13]. Interestingly, the

reaction of meta-dinitrobenzene with an excess of this carbanion gave the

disubstitution product, whereas with equimolar amounts of reactants only

monosubstitution proceeds. It is evident that the anion of 2,4-dinitrobenzyl phenyl

sulfone is still sufficiently active electrophile to react with the carbanion of

chloromethyl phenyl sulfone (Scheme 3) [14].
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It was subsequently shown that carbanions generated from substituted

α-chloroalkanenitriles [15] and alkyl α-chloroalkanoates [16, 17], chloroalkyl

oxazolines [18, 19], chloroform [20], etc., although they are much less stable than

the model sulfone carbanion, are able to react with nitroarenes to give the VNS

products.

2.1 Mechanism

When analyzing plausible mechanisms of the VNS reactions of nitroarenes with

α-chlorocarbanions, one should clarify a few key questions: how to proceed the

addition and subsequent conversion of σH adducts and how other substituents may

affect both of these steps – rate and orientation of the addition, rate of the

elimination, etc. It is well known that nitroarenes are active electron acceptors,

whereas carbanions are good electron donors; thus, these reactants can enter a

single-electron transfer (SET) to form anion radicals of nitroarenes and radicals

from carbanions [21, 22]. Further coupling of these electrophilic radicals with

nucleophilic anion-radical species could give σH adducts. This SET pathway,

alternative to the direct addition, is often favored by authors and the concept is

sometimes abused, see [23] and rebuttal [24]. Nevertheless, numerous observations

contradict participation of the SET mechanism in the VNS reactions:

– Orientation of a nucleophile at the addition step can be efficiently controlled by

the reaction conditions – namely, addition of the potassium salts of carbanions in

DMF and DMSO proceeds in para- and ortho-positions, whereas in THF it

occurs preferentially at the ortho-position to the nitro group, because a carbanion
in the form of a tight ion pair with K+ cation is attracted to the ortho-position due
to interaction of K+ with oxygen of the nitro group [25]. Such attraction could

not operate in case of non-charged radicals, eventually produced from the

carbanions via the SET mechanism.
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– The σH adducts of α-halocarbanions with nitroarenes can be detected by
1H NMR [26]. The 1H NMR spectra of a vast majority of σH adducts are well

resolved and unambiguously interpreted, thus indicating that the formation of

paramagnetic species via the SET mechanism is scarcely possible.

– The most straightforward differentiation between the formation of σH adducts

via two-step SET process and direct nucleophilic addition has been made by

using the so-called “fast radical clock”. It has been shown that the carbanion of

chloro(1-methylcyclopropyl)methyl phenyl sulfone reacts with nitroarenes

along the VNS pathway without any complications (Scheme 4), whereas the

ring opening rearrangement of the corresponding radical, generated separately,

has been shown to proceed with a very high rate constant ~109 [27].

The way of conversion of the σH adducts into the VNS products was clarified by

taking into account the effects of strength and concentration of base on the rate of

the reaction and also by measuring the kinetic isotope effect (KIE) of the reaction.

Many observations have indicated that the rate of VNS is affected by the base

concentration – mainly on the basis of intramolecular competition between VNS

and SNAr of fluorine, as it has been observed, for instance, for para-fluoroni-
trobenzene (Scheme 2) [13]. For detailed studies of the competition between

replacement of 2-F and 6-H, 2-F and 6-D, and 2-H and 6-D, respectively,

2-fluoro-4-bromo-nitrobenzene was chosen as the model compound (Scheme 5).

These studies have revealed that kH/kF is a function of base concentration at low

base concentrations whereas it appears to be constant at high base concentrations

[28, 29]. Thus, at a low base concentration the dissociation of σH adducts does occur

faster than the base-induced β-elimination, the system equilibrates, and the

β-elimination is the rate-limiting step. On the other hand, at a high base concentra-

tion the σH adducts, once formed, undergo a fast β-elimination. Therefore, it is the

addition that becomes the rate-limiting step and the kH/kF observed is equal to the

ratio of the addition rates. These observations and conclusions are also in agreement

with the value of kH/kD. KIE at low base concentrations proved to be ~4, whereas at

high base concentrations the secondary KIE equal to ~0.9 was observed. The

significant value of the primary KIE confirms that the second step, the base-

induced β-elimination, is the rate-determining one, whereas the secondary KIE

shows that the nucleophilic addition associated with sp2 to sp3 rehybridization of

the carbon atom appears to be the rate-determining step at high base concentrations

[29]. Thus, subtle features of the mechanism of VNS were clarified. Also it should

Cl
NO2

Cl

H

NO2

Cl

SO2Ph

Me

Cl
NO2

SO2Ph

Me

Cl SO2Ph

Me

+
_

_ 80%

Scheme 4

Nucleophilic Substitution of Hydrogen in Arenes and Heteroarenes 55



be mentioned that σH adducts were observed by UV–VIS spectroscopy, which

enabled to monitor the formation of the σH adducts in the reaction mixtures and

their conversion into nitrobenzylic carbanions, the final VNS products [26].

The effect of substituents on the rate of addition of carbanions to nitroarenes and

the rate of β-elimination of HL from the σH adducts have also been studied [8, 30,

31]. The former effect is an important parameter, because it is, in fact, a measure of

influence of substituents on electrophilic activity of nitroaromatic rings. The effect

of substituents on rate of the SNAr reactions of o- and p-halonitrobenzenes has been
thoroughly studied [2, 32]. However, since the SNAr of halogen is a secondary

process, the obtained data cannot be used as a real measure of electrophilicity of

halonitroarenes. We have determined the effects of substituents and the ring

structure on the rate of the VNS reaction of nitroarenes with the carbanion of

chloromethyl phenyl sulfone by using competitive experiments under the condi-

tions, which assure a fast β-elimination of HL from the σH adducts [30, 31]. The

values of VNS rates obtained under such conditions proved to correlate with those

of the addition step. Selected values of the relative rate constants in relation to

nitrobenzene as the standard are shown in Fig. 1.

The VNS reactions always proceed in the ortho- or/and para-positions relative
to the nitro group. When both of these positions are available for a nucleophilic

attack, the ratio of ortho-/para-substitution is determined by the nature of

carbanion and the reaction conditions. Less sterically demanding, secondary

carbanions can react in both of these positions, whereas bulky tertiary carbanions

react preferentially in the para-position to the nitro group. It has been however
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shown that even tertiary carbanions react preferentially in the ortho-positions
under the kinetically controlled conditions, namely, at low temperatures and with

a high concentration of a strong base [33]. On the other hand, it is the para-
substitution pattern that dominates under thermodynamic control at higher tem-

perature and low concentration of a weak base [30]. Several examples of the

formation of kinetic and thermodynamic products depending on the reaction

conditions are shown in Scheme 6.

2.2 Scope of the Reaction

The VNS in nitroarenes with carbanions is presented in general in Scheme 7, thus,

discussion of the scope and limitations of this reaction should clarify what kind of

carbanions (nature of Y, L, and R) and nitroarenes (kind of Z) can enter the reaction.

From the very mechanism it stems that L in the carbanions should be a

nucleofugal group, which is able to be eliminated from the σH adducts as

HL. Besides halogen atoms (Cl, Br), alkoxy, aryloxy, alkylthio, and arylthio groups

and many other substituents can be eliminated in this way. There are practically no

limitations concerning substituents R and groups Y, stabilizing the carbanions.
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Thus, the VNS is of wide scope, as far as carbanions are concerned. Similarly, the

reaction has no restrictions in respect of substituents Z in the nitroaromatic ring,

which might be halogens, alkoxyl, aryl, and any functional group. In fact, it is

sufficient for the nitroarene ring to have at least one position, ortho- or para-, to the
nitro group, which is occupied by hydrogen atom – and this hydrogen can be

replaced with a functionalized carbon substituent via VNS. Only substituents that

under highly basic reaction conditions are deprotonated into anions directly conju-

gated with an aromatic ring hinder the VNS reaction, because such rings are not

electron-deficient anymore. Indeed, mono-nitrophenols and mono-nitrothiophenols

fail to enter VNS reaction; however, dinitrophenols react satisfactorily [14]. This is

the reason why the VNS proceeds in mononitroarenes selectively as

monosubstitution, whereas dinitroarenes can form products of mono- and

disubstitution.

A serious limitation of VNS is connected with its mechanism, namely, conver-

sion of intermediate σH adducts into the VNS products via bimolecular base-

induced β-elimination. To cause the reaction, it is therefore necessary that these

σH adducts be produced in a reasonable concentration. Indeed, low nucleophilic

carbanions, such as dimethyl chloromalonate, do not react with moderately elec-

trophilic nitrobenzene because of unfavorable equilibrium of the addition step, but

react nicely with more electrophilic nitrothiazoles (Scheme 8) [34].

A plethora of electron-deficient arenes can enter the VNS reaction: carbocyclic

and heterocyclic aromatic compounds activated by the nitro group and arenes that

are active electrophiles due to their electronic configuration, such as azulene [35,

36], electron-deficient annulenes [37], tropylium cation [38], and particularly

azines and azinium cations. Interestingly, η6-transition metal complexes of arenes,

such as benzene tricarbonylchromium, do not enter the VNS reactions. Although

the addition of carbanions to these electron-deficient rings proceeds efficiently, and

these adducts can be oxidized to form the products of ONSH, the β-elimination of

HCl from the σH adducts of α-halocarbanions does not occur [39, 40].
Besides carbanions, oxygen and nitrogen nucleophiles containing nucleofugal

groups at the O- and N-nucleophilic centers can provide efficient hydroxylation and

amination of nitroarenes according to the VNS pathway. Thus, anions of commer-

cially available tert-butyl and cumyl hydroperoxides, although being moderately

active nucleophiles, are able to add to nitroarenes of sufficient activity to form σH

adducts. Subsequent base-induced β-elimination of the corresponding alcohols
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followed by protonation affords o- and p-nitrophenols [41]. Also in these cases the

nucleophilic substitution of hydrogen proceeds faster than the conventional SNAr of

halogen. For instance, anions of both of these hydroperoxides react with

2,4-dinitrochlorobenzene to produce 2,4-dinitro-5-chlorophenol in excellent yield

(Scheme 9) [41, 42].

Amination of nitroarenes with hydroxylamine, known for over 100 years [43],

proceeds undoubtedly according to the VNSmechanism. Modern aminating agents,

such as 4-amino-1,2,4-triazole [44–46], sulfenamides [47, 48], and O-methyl

hydroxylamine [49, 50], are more versatile and efficient than hydroxylamine.

1,1,1-Trimethyl hydrazinium iodide proved to be particularly useful for this pur-

pose [51–53]. Amination with this reagent proceeds via addition of the hydrazino

moiety followed by a base-induced β-elimination of trimethylamine from the

corresponding σH adducts.

Nitro derivatives of five-membered heterocycles are active partners in the VNS

reactions [54]. It is interesting to compare the results of the VNS reactions with the

model carbanion of chloromethyl phenyl sulfone, obtained for the following series

of compounds: 2-nitrothiophene, N-methyl-2-nitropyrrole, and 2-nitrofuran

(Scheme 10) [55]. Although in these 2-nitroheterocycles the position 3 appears to

be the preferred addition site, a low yield of the VNS product derived from the

reaction of 2-nitrofuran and the formation of 5-isomer from N-methyl-2-

nitropyrrole requires rationalization [54]. These results indicate that the orientation

is affected by conjugation of the electron pairs of these heteroatoms with the nitro

group. Indeed, when 2-nitropyrrole was N-protected by phenylsulfonyl group

(Z¼NSO2Ph) to prevent such conjugation, the VNS reaction proceeded exclusively

in position 3 [55]. The addition to 2-nitrofuran takes place in both 3- and

5-positions; however, decomposition of the σH adducts at C-5 via the ring opening

appears to proceed faster than β-elimination, thus giving rise to the only product

derived from the VNS in the position 3 [54].
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This reasoning is supported by the observation that the reaction of 2-nitrofuran

with trichloromethyl carbanion proceeds in both 3- and 5-positions, because in this

case the base-induced β-elimination of HCl from the intermediate σH adducts is a

fast process [54]. Also the VNS reactions of nitro derivatives of other 5-membered

heterocycles, imidazoles [20, 56] and thiazoles [34], with a variety of α-halogeno
carbanions have been shown to proceed efficiently.

Pyridine is known to exhibit a significant electron-deficient character, thus being

able to add strong nucleophiles, such as alkyl lithium or amide anion. However, its

electrophilic activity is not sufficient to add moderately active nucleophiles, such as

α-halocarbanions. On the other hand, all isomeric 2-, 3-, and 4-nitropyridines react

smoothly with the carbanion of chloromethyl phenyl sulfone [57] and a variety of

other α-halocarbanions [58–60], thus giving the expected VNS products. Electro-

philic activity of the pyridine ring is strongly enhanced via the formation of

pyridinium salts that can be exploited in intramolecular VNS reactions, leading to

isothiazolo[4,3-b]pyridines [61]. Also N-pyridyl dicyanomethylides enter the VNS

reaction with a variety of α-halocarbanions [62]. Some azines are active electro-

philes per se and do not need activation by electron-withdrawing substituents. A

convincing example is 1,2,4-triazine in which all three positions 3, 5, and 6 are

vulnerable for a nucleophilic attack. The most active position in the 1,2,4-triazine

ring is 5, then 3, and 6 [63, 64].

Some peculiar observations were made when the model carbanion of

chloromethyl phenyl sulfone was reacted with quinoxaline (Scheme 11)

[65]. Instead of the expected VNS product, the bis-aziridine derivative was formed.

It was suggested that in the initially formed σH adducts the negative charge was

mostly located on the vicinal nitrogen atom, thus facilitating the 1,3-intramolecular

nucleophilic substitution, leading to mono-aziridine derivative [65]. Addition of the

second molecule of the same carbanion to the C¼N bond proceeds faster than the

first addition to aromatic quinoxaline system, thus giving bis-aziridine compound as

the final product. This reasoning was substantiated by the reaction of quinoxaline

N-oxide with the same model carbanion, proceeding along the VNS pathway,

because the negative charge of the σH adducts was located mostly on the oxygen

atom (Scheme 11) [65].
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A variety of other azaaromatic compounds, pteridines [66], pyridazines [67] etc.,

enter the VNS reactions with the model carbanion of chloromethyl phenyl sulfone

or other α-chlorocarbanions. In these reactions azine N-oxides are more active

electrophiles than azines themselves. For instance, quinoline fails to enter the VNS

reaction with the model carbanion, whereas quinoline N-oxide reacts rather

smoothly [68]. Also 3-(chloromethylsulfonyl-amino)pyridine-N-oxide and its quin-

oline analogue are able to undergo intramolecular VNS reactions [61].

3 Oxidative Nucleophilic Substitution of Hydrogen

Since hydride anions are unable to depart spontaneously from the anionic σH

adducts, they should be removed by external oxidants. However, possibilities for

conversions of the σH adducts into products of oxidative nucleophilic substitution

of hydrogen (ONSH) appear to be limited, since nucleophiles, and particularly

carbanions, are usually sensitive to oxidation. Thus, ONSH can be feasible in two

major cases:

a. Nucleophiles are resistant toward oxidation.

b. Addition of nucleophiles to electron-deficient rings, affording σH adducts, pro-

ceeds to completion.

Indeed, ONSH proceeds efficiently with nucleophiles resistant toward oxidation,

such as hydroxide anion and ammonia. Many textbooks on organic chemistry

describe the “hydrolysis” of para-chloronitrobenzene on heating with aqueous

KOH,which in fact is the SNAr reaction, proceeding via intermediacy of σCl adducts.
However, when this nitroarene is exposed to KOH and oxygen at low temperature in

liquid ammonia, 2-nitro-5-chlorophenol is formed in high yield (Scheme 12) [69].

Thus, it is evident that σH adducts with the hydroxide anion are formed much

faster than isomeric σCl adducts, and at low temperature these species are long-lived

enough to be oxidized by oxygen. A similar situation appears to occur in the reaction
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of halonitroarenes with ammonia. Since KMnO4 is well soluble in liquid ammonia,

such solution can be used for oxidative amination. The system KMnO4/liquid

ammonia proved to be a very useful tool for amination of electron-deficient hetero-

cycles – the procedure, which is often termed as oxidative version of the Chichibabin

reaction [70]. Also it has been unambiguously shown that ONSH is faster than the

conventional SNAr of halogen, as illustrated in Scheme 13 [71].

There are two major variants of ONSH with nucleophiles sensitive to oxidation:

(a) addition is an irreversible process; and (b) equilibrium of the reversible addition

is shifted in favor of the σH adducts. Nucleophilic organometallic compounds,

alkyllithium and alkyl-magnesium reagents, are active enough to add irreversibly

to nitroarenes in positions occupied by hydrogen to form the σH adducts [72]. Due

to irreversibility of the addition, the SNAr reaction on treatment of ortho- and para-
halonitrobenzenes with these C-nucleophiles is not observed. Further oxidation of

the formed σH adducts with a variety of oxidants, preferably KMnO4, affords

products of oxidative nucleophilic alkylation. This reaction appears to be an

important method for direct incorporation of alkyl substituents into aromatic

rings (Scheme 14) [72, 73].

Equilibrium of the addition of nucleophiles to nitroarenes is a function of many

factors, such as their nucleophilicity, electron deficiency of arenes, and their ability to

stabilize σH adducts, as well as the reaction conditions. Thus, all these parameters are

responsible for the feasibility of ONSH with nucleophiles sensitive to oxidation. Of

substantial importance is temperature, since, due to the entropy factor, the equilib-

rium is shifted toward the adducts at a low temperature. For instance, addition of

highly nucleophilic carbanion of 2-phenylpropionitrile to moderately activem-chloro
nitrobenzene at �70�C in liquid ammonia or DMF/THF proceeds to completion,

selectively in the para-position. Further oxidation of the formed σH adducts with
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KMnO4 in liquid ammonia, or with dimethyldioxirane in THF, gave 2-phenyl-2-

(para-nitrophenyl)- and 2-phenyl-2-(para-hydroxyphenyl)-propionitriles, respec-

tively (Scheme 15) [74, 75].

The effect of temperature on the addition equilibrium can, for instance, be

observed in the reaction of the carbanion of diethyl benzylphosphonate with

4-fluoronitrobenzene. At low temperature the addition proceeds exclusively at the

position 2, and oxidation of the produced σH adduct affords the product of ONSH.

On the other hand, at room or a higher temperature the SNAr of fluorine in the

position 4 takes place [76]. Similarly, when the reaction of nitroarenes with the

anion of diphenylphosphine is carried out at low temperature in liquid ammonia in

the presence of KMnO4 diphenyl(nitroaryl)phosphine oxides are formed, as illus-

trated by the ONSH in 4-fluoronitrobenzene (Scheme 16) [77].

The σH adducts of nitroarenes with various nucleophiles can be oxidized with a

few oxidants, and oxygen is probably the most common oxidant, although it has a

limited application. It oxidizes σH adducts resulted from the addition of OH� anion

to nitroarenes to produce nitrophenols and also σH adducts of secondary and

primary carbanions. Some observations and experiments lead to conclusion that

for oxidation by oxygen the anionic σH adducts should first be deprotonated, so in

fact, dianions are oxidized [78]. Oxidation of such σH adducts with oxygen appears

to proceed via an electron transfer. On the other hand, oxidation of the σH adducts of

nitroarenes with ammonia, the Grignard reagents, various carbanions, or diphenyl-

phosphine by action of KMnO4 appears to proceed via direct abstraction of the
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hydride anion, as is suggested by high value of the kinetic isotope effect of the

oxidation [79]. Oxidation of such σH adducts with dichlorodicyanoquinone (DDQ)

also appears to proceed via abstraction of the hydride anions.

4 Conversion of σH Adducts into Nitrosoarenes

The third general way of converting the σH adducts of nucleophiles to nitroarenes

involves elimination of water or other small molecules to form substituted

nitrosoarenes, according to intramolecular redox stoichiometry. For example,

phenylacetonitrile and other arylacetonitriles react with nitroarenes in the presence

of KOH in protic media to form nitrosoarenes or products of their further trans-

formations (Scheme 17) [80, 81].

It appears that the reaction proceeds via protonation of the intermediate anionic

σH adducts followed by elimination of water to form nitrosoarenes. Since

nitrosoarenes are very active electrophiles, they can undergo further transforma-

tions by action of nucleophilic agents and usually are not isolated as such. However,

when conversion of σH adducts is carried out as a separate step without base and

nucleophiles, the substituted nitrosoarenes might be isolated, often in good yields.

Due to high activity of the nitroso group in inter- and intramolecular reactions, this

way of conversion of σH adducts becomes a versatile tool for organic synthesis, in

particular for obtaining of heterocycles. For instance, treatment of a mixture of

3-phenylallyl phenyl sulfone and 6-methoxy-3-nitropyridine with DBU and

t-butyldimethylsilyl chloride results in the formation of substituted naphthyridine

(Scheme 18) [82]. The reaction proceeds via addition of the sulfone carbanion
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followed by conversion of the intermediate σH adducts into nitrosoarene and

subsequent intramolecular condensation of the newly generated ambident carban-

ion with the formed nitroso group.

Reactions of nitroarenes with anilines in the presence of a strong base, proceed-

ing via intermediacy of the corresponding σH adducts (Scheme 19), are of particular

interest since they provide a synthetic way to valuable 2-nitrosodiarylamines

[83–86]. Thus, when p-chloro- or p-fluoronitrobenzene was reacted with anilines

in the presence of t-BuOK in THF at low temperature (�60�C), 2-nitroso-5-chloro
(or fluoro)phenyl arylamines were obtained in good yields (Scheme 19) [85]. Com-

peting SNAr of halogen was not observed under these conditions. It should be

mentioned that a simple mixing of these p-halonitrobenzenes with anilines at

elevated temperatures results in SNAr of halogen [87].

The reaction of 1-nitronaphthalene and other bicyclic nitroarenes, for instance,

5-nitroquinoline, with dimethyl phosphite in methanol in the presence of sodium

methoxide proceeds via formation of the corresponding σH adducts with the

phosphite anion, which are converted into substituted nitrosoarenes. Subsequent

N-deoxygenation results in the formation of nitrenes that react further to give

benzazepines and analogues (Scheme 20) [88].
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5 Introduction of Substituents into Electron-Deficient
Heterocycles via Nucleophilic Substitution of Hydrogen

In the following sections we will present some recent examples of introduction of

various substituents into heteroarenes via nucleophilic substitution of hydrogen. The

full account of the previous results was given in our preceding reviews [4, 89, 90].

5.1 Carbon Substituents

The introduction of carbon substituents into electron-deficient aromatic and

heteroaromatic rings is of great importance because products can be of interest

per se and can also serve as valuable intermediates in further synthesis, particularly

in heterocyclizations.

Alkyl substituents can be incorporated directly into nitroheteroaromatic rings

via the VNS reactions with carbanions of alkyl trifluoromethyl sulfones

(Scheme 21) [91].

Diarylmethylation of nitroarenes can be performed efficiently via VNS, using

carbanions of benzhydryl aryl sulfides [92]. Similarly, the VNS reaction of 4-ethoxy-

3-nitropyridine with carbanion of 9-chlorofluorene results in incorporation of the
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fluorenyl fragment into the pyridine ring (Scheme 22) [93]. Also heteroarylmethyl

substituentswere introduced into nitroarenes via theVNS reactionswith carbanions of

chloromethyl derivatives of pyridine, thiazole, and benzothiazole [94].

Alkyl substituents can be introduced into heterocyclic rings also via direct ONSH

reaction with the Grignard reagents [72] or via the VNS reaction with carbanions of

α-chloroalkyl carboxylic esters [17], followed by hydrolysis and decarboxylation

[95–97]. For example, treatment of 5-nitroisoquinoline with the carbanion of ethyl

chloroacetate under the standard VNS condition in DMF in the presence of t-BuOK

gave the expected (5-nitroisoquinol-6-yl)acetate, which was transformed into

6-methyl-5-nitroisoquinoline via hydrolysis and decarboxylation (Scheme 23) [95].

Synthesis of a variety of phenylethynylazines can be performed by using the

methodology of direct nucleophilic replacement of hydrogen in the reactions of

azine N-oxides with the carbanion of phenylacetylene (Scheme 24) [98].

An exceptional example of introduction of alkenyl substituent via nucleophilic

substitution of hydrogen is phenylethenylation of boron-dipyrromethene

(BODIPY), which has been realized in the reaction of the latter with β-nitrostyrene
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catalyzed by the phenylthiolate anion (Scheme 25) [99]. The initial step of the

reaction is the Michael-type addition of thiolate to nitrostyrene to form the nitronate

anion which adds to the electron-deficient pyrrole ring, followed by base-induced

elimination of nitrous acid. In the final step, elimination of the thiolate results in

incorporation of phenylvinyl substituent and regeneration of the catalyst.

Even weak C-nucleophiles, such as 2-nitropropenide anion, are able to add

quantitatively to superelectrophilic nitrobenzofurazan and nitrobenzofuroxan. Fur-

ther oxidation of the intermediate σH adducts with ammonium cerium(IV) nitrate

(CAN) results in incorporation of α-nitroisopropyl substituent into these heterocy-

clic systems (Scheme 26) [100].

We have described a two-step method for introduction of chloromethyl sub-

stituents into nitroarenes. This approach consists in the VNS of hydrogen with

tert-butyl dichloroacetate anion [58] followed by one-pot hydrolysis and decarbox-

ylation [101]. This approach has been used for the synthesis of (chloromethyl)

nitroimidazole, a precursor of (nitroheteroaryl)methyl mustard, which was tested

as hypoxia-selective cytotoxins (Scheme 27) [102].
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On the other hand, direct dihalomethylation of electron-deficient arenes via VNS

with trihalomethyl carbanions generated by deprotonation of haloforms is a general

process [20]. Due to facile hydrolysis of the dihalomethyl group, the reaction can be

considered as nucleophilic formylation. This approach has already found wide

application in the synthesis of heterocyclic aldehydes, which are difficult to obtain

by other methods [103–105]. For example, the VNS reaction of 5-nitroquinoline

with tribromomethyl carbanion affords 6-(dibromomethyl)-5-nitroquinoline, which

is transformed by hydrolysis into the corresponding aldehyde, the starting material

for the synthesis of biologically active coumarin derivative (Scheme 28) [103].

The VNS of hydrogen in 1-benzyl-4-nitroimidazole by action of trichloromethyl

carbanion results in the formation of 5-dichloromethyl derivative (Scheme 29).

Hydrolysis and condensation of the resulting aldehyde with diethyl malonate afford

the corresponding alkene that, upon reduction of the nitro group, undergoes cycli-

zation into imidazopyridone [106].

The synthesis of fluoroalkyl-substituted heterocycles is a subject of continuous

interest; this challenging issue has been presented in details in reviews [107, 108]. It

has been shown that trifluoromethyl carbanion, generated from (trifluoromethyl)

trimethylsilane (the Ruppert reagent), adds easily to 2-chloro-3-nitropyridine. The

produced σH adducts can be oxidized with dimethyldioxirane (DMD) to form two

isomeric 2-chloro-4-(and 6-)trifluoromethyl-3-hydroxypyridines (Scheme 30) [109].
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Similarly produced trifluoromethyl carbanion, as well as perfluoroisopropyl

carbanion generated by addition of fluoride anion to perfluoropropene, is able to

add to a variety of N-(4-methoxy-benzyl) pyridinium and quinolinium salts. The

obtained dihydroazines can easily be transformed into 2-perfluoroalkyl azines

through oxidative dealkylation–aromatization with CAN or DDQ (Scheme 31)

[110, 111].

The VNS is the reaction of choice for incorporation of α-sulfonylalkyl sub-
stituents into nitroarenes and their heteroanalogues. Particularly accessible and

useful are nitroarylmethyl phenyl sulfones and their heteroanalogues that are

efficiently produced in the VNS reactions of carbanions of chloromethyl aryl

sulfones with a great variety of nitroarenes and nitroheteroarenes. Nitro derivatives

of heterocycles, such as pyrrole [54, 55], furan [54], thiophene [54], imidazole [106,

112, 113], pyrazole [114], pyridine [57], indole [115], indazole [116, 117], benz-

imidazole [118], benzotriazole [119], benzofuroxan [120], quinoline [121], and

porphyrins [122, 123], have been shown to enter this reaction.

In search for new antiparasitic agents active against Trichomonas vaginalis, a
number of 4-(arylsulfonylmethyl)-5-nitroimidazole derivatives have been prepared

via the VNS reaction of 4-nitroimidazoles with substituted aryl chloromethyl

sulfones (Scheme 32) [124].
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Introduction of arylsulfonylmethyl substituents into nitroheteroaromatic rings is

of great practical value because these sulfones are versatile intermediates in organic

synthesis. Nitrobenzyl aryl sulfones and their heterocyclic analogues can easily be

transformed into the corresponding ethenyl derivatives by a simple alkylation with

simultaneous elimination of arylsulfinate anion [125]. Diethyl methylenemalonate

substituent can be introduced in the position 4- of 5-nitroimidazole via the VNS

reaction of 5-nitroimidazole with the carbanion of chloromethyl phenyl sulfone

[112, 124], followed by condensation of the obtained 4-(phenylsulfonyl)methyl

derivative with diethyl bromomalonate or diethyl ketomalonate (Scheme 33) [126].

Azolopyridazines bearing no nitro substituent are, nevertheless, sufficiently

active electrophiles to enter the VNS reaction. However, similar to the series of

quinoxalines [127] and pyridazinones [67], in the reactions of azolopyridazines

with the carbanion of bromomethyl phenyl sulfone, two ways for conversion of the

intermediate σH adducts are observed, depending on the structure of these hetero-

cyclic compounds – β-elimination, leading to the VNS product, or intramolecular

substitution, resulting in formation of the cyclopropane ring (Scheme 34) [128].
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The monochlorobenzosultam carbanion, generated through symproportionation

of an equimolar mixture of benzosultam and its dichloro derivative, is capable of

addition to 2-chloro-3-nitropyridine. Subsequent elimination of HCl from the

intermediate σH adduct affords 3-(pyridin-2-yl)-substituted benzosultam according

to the VNS mechanism (Scheme 35) [129].

3-Nitroimidazo[1,2-a]pyridine reacts smoothly with the carbanion of ethyl

chloroacetate to give the expected VNS product bearing ethoxycarbonylmethyl

substituent at position 2 (Scheme 36) [130].

Oxidative nucleophilic substitution of hydrogen in the reactions of nitroarenes

with carbanions of protected amino acids offers an access to α-(nitroaryl)amino

acids and their heteroanalogues. According to this protocol, nitropyridines react

with carbanions of protected alanine, serine, and threonine esters to give the

corresponding nitropyridyl α-amino acids [131–133]. For example, N-
(1,3-dithiolane-2-ylidene)alanine isopropyl ester, which is readily available from

the reaction of alanine ester with carbon disulfide and 1,2-dibromoethane, adds to

2-chloro-3-nitropyridine in THF in the presence of t-BuOK to form the σH adduct

that upon oxidation with DDQ and hydrolysis gives the corresponding ester of

α-nitroarylalanine (Scheme 37) [132].
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Also carbanions of serine and threonine esters, protected in the form of

oxazolines, are capable of addition to nitropyridines to form the corresponding σH

adducts that can be oxidized into α-(nitropyridyl) amino acid derivatives [132]. It

should be mentioned that addition of the carbanion of the protected threonine to

nitropyridine proceeds with a high diastereoselectivity, which is controlled by the

second chiral center present in the oxazoline ring (Scheme 38) [133].

Under much milder conditions, oxidative substitutions in BODIPY’s with

malonic esters, acetophenone, and ethyl phenylacetate proved to take place

(Scheme 39). For example, the reaction with tert-butyl malonate in the presence

of potassium carbonate and oxygen proceeds at the position 3. When a twofold

excess of nucleophile was used, 3,5-disubstituted product was obtained [134].

1-Alkyl-5- and 1-alkyl-6-nitroindoles undergo the VNS substitution of hydrogen

at the positions 4 and 7, respectively, by action of chloromethyl sulfones and

(4-chlorophenoxy)acetonitrile to give the corresponding VNS products in high

yields [115]. 1-Methoxy-6-nitroindole reacts in a similar manner, yielding the

expected 7-indolylacetonitrile (Scheme 40) [135].
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3-Nitroimidazo[1,2-a]pyridine has been reported to react efficiently with carb-

anion of (4-chlorophenoxy)acetonitrile to give the expected VNS product

containing the cyanomethyl group at position 2 (Scheme 41) [130].

2-Arylphenylamines required for the synthesis of novel dopamine antagonists,

containing the 1,3-benzodiazepine fragment [136], have been prepared from

5-chloro-4-methoxy-2-nitrophenylacetonitrile, derived from the reaction of

2-chloro-5-nitroanisole with cyanomethyl dimethyldithiocarbamate, proceeding

via typical VNS procedure (Scheme 42) [15].

Nitro derivatives of arylporphyrins, which contain the nitro group in the pyrrole

rings, enter the VNS reaction with carbanions bearing a leaving group at α-position,
thus giving the expected substitution products in good yields (Scheme 43) [123].
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5.2 Hydroxylation

Nitro derivatives of a variety of heteroaromatic compounds enter the VNS reactions

with alkyl hydroperoxide anions to produce the expected hydroxylation products

[41, 137–139]. For instance, the VNS hydroxylation of 2-chloro-5-nitropyridine

with tert-butylhydroperoxide was shown to give 2-chloro-5-nitro-6-

hydroxypyridine that exists in its tautomeric form of pyridone [41] (Scheme 44).

It should be stressed that the SNAr of chlorine located in the highly activated

position 2 was not competing with the VNS.

The addition of nucleophiles to bicyclic heteroaromatic systems usually pro-

ceeds more easily; thus, activation of isoquinoline by the cyano group is sufficient

for the VNS hydroxylation (Scheme 45) [41].

tert-Butylhydroperoxide was used for the synthesis of 2-hydroxy-4-phenoxy-5-

nitropyridine; the latter was subsequently converted into 18F-labeled PBR28 radio-

tracer (Scheme 46) [138].

Also nitroquinolines undergo the direct methoxylation with potassium

methoxide in THF, as exemplified in Scheme 47 [140].
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5.3 Amination

The VNS amination requires ammonia derivatives, bearing good leaving groups at

nitrogen, as starting materials. Thus, derivatives of hydrazine (trimethylhy-

drazinium halides and 4-amino-1,2,4-triazole) and hydroxylamine (methoxyamine

and arylsulfenamides) proved to be efficient aminating agents. The VNS amination

of 3-nitropyridine and its substituted derivatives was observed to proceed efficiently

with 4-amino-1,2,4-triazole [46, 60], hydroxylamine [46], and methoxyamine in the

presence of zinc chloride [49]. Amination of 5-, 6-, 7-, and 8-nitroquinolines [141,

142], 4-nitroisoquinoline [46], 5- and 6-nitrobenzimidazoles [143], nitro-1,2,3- and

nitro-1,2,4-triazoles [144], dinitropyrazole [145], dinitroquinazoline [146], and

dinitroindazoles[147] with 1,1,1-trimethylhydrazinium iodide was also reported.

Nitrophenyl fragments in porphyrins were aminated successfully with 2,4,6-

trichlorophenyl sulfenamide [148, 149]. Triphenylporphyrin derivatives, in which

the internal ring is activated by the carbonyl group, were aminated with 4-amino-

1,2,4-triazole [150, 151]; similarly nitrocorroles were aminated, as shown in

Scheme 48 [152].

Oxidative amination of 3-nitropyridine with ammonia, alkyl- and dialkylamines,

and KMnO4 as oxidant was reported by Bakke (Scheme 49) [60].

The mechanism of oxidative alkylamination of 3-nitropyridine, quinazoline, and

1,3-dinitrobenzene with permanganate anion, including determination of the kinetic

isotope effect for the oxidation step, was thoroughly studied [153]. Bis(pyridine)
silver(I)permanganate AgPy2MnO4 [154–156] was found to be superior to KMnO4

for the reaction of higher alkyl and dialkylamines, inter alia, due to a low solubility

of KMnO4 in these amines. However, in the presence of tetraalkylammonium

chloride, which forms lipophilic tetraalkylammonium permanganate, the latter

oxidant becomes equally active [153].
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1,3,7-Triazapyrenes were aminated successfully into mono- and

bis-dialkylamino compounds under mild conditions in aqueous solution with potas-

sium hexacyanoferrate(III) as oxidant (Scheme 50) [157, 158].

Aliphatic and cyclic dialkylamino groups can also be incorporated into

4-substituted-2-nitrothiophenes via the ONSH with dialkylamines and AgNO3, as

oxidant (Scheme 51) [159].

In oxidative amination of nitropyridines with 2-, 3-, and 4-aminopyridines,

leading to N,N0-dipyridylamines, nitrobenzene proved to be effective as oxidant

(Scheme 52) [160].

3-Nitro-1,5-naphthyridines were oxidatively methylaminated in liquid methyl-

amine as solvent in the presence of potassium permanganate [161]. Direct oxidative

amination of 3-nitronicotinate with formanilide proceeds at the position 6 of the

pyridine ring, resulting in the formation of anilinopyridine (Scheme 53) [162].
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An unusual reaction course was observed in the reaction of dialkylamines with

4-nitrofurazan [163]. Indeed, treatment of the latter with an excess of morpholine

gave two products, one of them being derived from oxidative substitution of

hydrogen in position 7, while the second, bis-morpholino compound, proved to

be the result of the redox process (Scheme 54).

Oxidative nucleophilic substitution of hydrogen in 2-chloro-3-nitropyridine by

action of N-lithio-S,S-diphenylsulfilimines has been shown to be accompanied with

the SNAr displacement of chloro atom (Scheme 55). Both of these products were

oxidized with m-CPBA to form dinitropyridines [164, 165].
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6 Construction of Heterocyclic Compounds via
Nucleophilic Substitution of Hydrogen

6.1 Indoles

The indole fragment is present in a great variety of biologically active compounds

and other products of practical importance. It is no wonder that use of the reactions

aimed at construction of indole skeleton is of significant value. Nucleophilic

substitution of hydrogen opens a wide avenue for the synthesis of indoles, bearing

a variety of substituents in both aromatic and heteroaromatic rings, as well as for

obtaining of azaindoles and indoles condensed with other ring systems.

There are two key starting materials for the synthesis of indoles via nucleophilic

substitution of hydrogen: meta-nitroaniline and its derivatives and nitroarenes or

their heterocyclic analogues. In the first case nitrogen of the amino group is the

precursor of the indole nitrogen, whereas in case of nitroaromatic compounds it is

nitrogen of the nitro group.

The synthesis of 4- and 6-nitroindoles via the direct reaction of meta-
nitroanilines with ketone enolates appears to be the simplest and the most efficient

one in terms of atom economy. This method of the indole moiety construction,

exemplified in Scheme 56, is of general character, considering ketones and meta-
nitroanilines, which might bear a variety of substituents [166, 167]. This approach

has enabled the synthesis of all kinds of substituted indole derivatives including

cycloalkeno[b]indoles, tetrahydrocarbazoles, and tetrahydrocarbolines, when

cyclic ketones were employed (Scheme 56) [167]. It should be mentioned that

this versatile method can be applied to a large-scale synthesis [168].

Despite simplicity and versatility of this new way of indole synthesis, there have

been only few reports on application of this reaction to the synthesis of compounds

of biological interest [168–170]. Thus, 2,3-dimethyl-4-nitroindole, obtained

according to [167], was oxidized to nitroacetophenone derivative, which was

used as a starting material for the synthesis of homocamptothecin derivatives,

tested as potential inhibitors of DNA topoisomerase I (Scheme 57) [170].
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Similar heterocyclizations were shown to proceed between meta-nitroanilines
and carbanions of alkanenitriles to produce 2-amino-4-(and -6-)nitroindoles. For

example, the reaction of meta-nitroaniline with acetonitrile leads to 2-amino-4-

nitroindole, while 6-nitroindole derivative is formed in the reaction with phenylace-

tonitrile (Scheme 58) [171].

Both reactions proceed via the addition of carbanions to the nitroaromatic ring

followed by oxidation of the intermediate σH adducts by atmospheric oxygen to

form the corresponding nitrobenzyl nitriles, which undergo intramolecular

cyclizations.

meta-Nitrobenzoisonitriles can readily be obtained from meta-nitroanilines. The
VNS reaction of these isonitriles with carbanions of sulfones and nitriles, bearing

good leaving groups, leads to ortho-isocyanobenzyl sulfones and cyanides, respec-

tively. Under the reaction conditions intramolecular addition of the intermediate

carbanions to the isocyano group takes place, resulting in the formation of

substituted indoles (Scheme 59) [172].
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4-Nitro-2-oxo-2,3-dihydroindole derivatives (nitrooxindoles) can be obtained by

intramolecular ONSH [173] and VNS [174] reactions of meta-nitroanilides of

alkanoic and α-chloroalkanoic acids (Scheme 60).

Introduction of functionalized carbon substituents in the ortho-position to the

nitro group of nitroarenes provides even wider possibilities for the synthesis of

indoles. One particularly useful pathway is direct cyanomethylation of nitroarenes

with chloroacetonitrile or, more conveniently, aryloxyacetonitriles to produce

ortho-nitroaryl acetonitriles that can further be converted into indoles in a few

ways. It is worth to note that synthesis of indoles via catalytic hydrogenation of

such nitriles has been well known for many years [175], however was of a limited

value, because ortho-nitroaryl acetonitriles were not easily available. Facile syn-

thesis of ortho-nitroaryl acetonitriles via the VNS methodology has opened a wide

avenue to a variety of substituted indoles. Moreover, some halogen substituents (Cl,

Br) in the nitroaromatic rings may not only improve effectiveness of the VNS

reactions but also prevent introduction of cyanomethyl substituent into undesired

positions [176, 177]. Such auxiliary substituents can be subsequently removed

during hydrogenation. The general character and versatility of this approach to

indoles is nicely illustrated by the synthesis of all isomeric 4-, 5-, 6-, and

7-methoxy-substituted indoles via the VNS cyanomethylation of isomeric

nitroanisoles and their halogenated derivatives (Scheme 61) [176].

Similarly, hydroxyindoles can be obtained via the VNS cyanomethylation of

benzyl nitrophenyl ethers, eventually containing halogens in nitrophenyl rings

followed by hydrogenation and simultaneous removal of the benzyl group and

halogens [176, 177]. Recently the VNS cyanomethylation followed by hydrogena-

tion has been used for synthesis of indoles containing pentafluorosulfanyl sub-

stituents (Scheme 62) [178].
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In the synthesis of eudistomins C and E, antiviral agents of marine origin

containing 5-methoxyindole fragment, both indole units were prepared via vicari-

ous nucleophilic substitution with aryloxyacetonitriles (Scheme 63) [179]. A proper

choice of both nitroarene and cyanomethylating agent enabled synthesis of the

prerequisite nitrophenyl acetonitriles to be performed. 4-Bromo-5-methoxy-2-

nitrophenylacetonitrile, required for the synthesis of eudistomin C, was prepared

via the VNS cyanomethylation of 2-bromo-4-nitroanisole with 2,4,6-

trichlorophenoxyacetonitrile. The bulky leaving group in the carbanion appears to

suppress substitution of hydrogen at sterically hindered position 3 in 2-bromo-4-

nitroanisole. 6-Bromo-5-methoxyindole was synthesized by hydrogenation of this

nitroaryl-substituted acetonitrile and then transformed in a few steps into

eudistomin C [179]. A similar strategy has been used in the synthesis of eudistomin

E from 2,6-dibromo-4-nitroanisole and 4-chlorophenoxyacetonitrile [179].

Interestingly, the VNS reaction of 3-nitroanisole with 4-chlorophenoxyacetonitrile

proceeds in the most hindered position 2 [176]. 2-Nitro-6-methoxyphenylacetonitrile

obtained was then reduced and converted into 4-methoxyindole, which was then

transformed in three steps into rapalexinA, an unusual isothiocyanate alkaloid derived

from Brassica rapa (Scheme 64) [180].
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82 M. Mąkosza and K. Wojciechowski



4-Hydroxyindole, a startingmaterial for the synthesis ofβ-blockers, can be obtained
analogously from 3-benzyloxynitrobenzene [176, 181]. Cyanomethylation of this

nitroarene with 4-chlorophenoxyacetonitrile also proceeds at the position 2. Further

catalytic hydrogenation of the obtained nitroarylacetonitrile provides 4-hydroxyindole

[176]. Similarly, the VNS cyanomethylation of 3-benzyloxynitrobenzene with

4-chlorophenoxyacetonitrile containing 14C in the cyano group was used for the

synthesis of 2-14C-labeled 4-hydroxyindole (Scheme 65), an intermediate for the

synthesis of a pindolol analogue LY3688242 [182].

Ortho-nitroaryl-substituted acetonitriles are relatively strong C–H acids, and

their C-alkylation followed by hydrogenation leads to 3-substituted indoles

[176]. It has been shown earlier that VNS in 2,4-dinitrophenol proceeds regiospe-

cifically at the most hindered position 3 due to electronic configuration of the

dinitrophenolate anion [14]. This orientation pattern has been employed for the

synthesis of the precursor of damirone B from dinitroguaiacol, in which

cyanomethylation proceeds exclusively at position 5 to form upon O-methylation

3,4-dimethoxy-2,6-dinitrophenylacetonitrile. Further alkylation of the nitrile carb-

anion with ethyl bromoacetate and hydrogenation provides the skeleton of

damirone tricyclic system (Scheme 66) [183, 184].
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3,6-Dimethyl-5-methoxyindole prepared via the VNS cyanomethylation of

3-methyl-4-methoxynitrobenzene has been used as starting material for the synthesis

of cyclopropano-annelated quinone methide, a reductive alkylating agent for in vitro

studies of its interactionswith deoxyguanosine-50-monophosphate (Scheme 67) [185].

The VNS cyanomethylation of 2-chloro-5-nitropyridine affords the

corresponding nitropyridyl-substituted acetonitrile that undergoes hydrogenative

cyclization into 5-chloro-6-azaindole (Scheme 68), a key starting material for the

synthesis of potential Xa factor inhibitor [186].

A similar VNS cyanomethylation of 3-nitropyridine and subsequent hydrogena-

tion of the so-formed ortho-nitropyridyl-substituted acetonitriles provided 4- and

6-azaindoles. The VNS of hydrogen in 2-methoxy-5-nitropyridine with the carb-

anion of aryloxyacetonitrile leads to pyridylacetonitrile. Alkylation of the latter

with bromoacetonitrile followed by a two-step reduction efficiently results in the

formation of 5-azamelatonin (Scheme 69) [187]. Condensation of pyridyl-

substituted acetonitriles with aromatic aldehydes followed by catalytic reduction

gave 3-benzyl-4-azaindoles [187].
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There is one more way for conversion of ortho-nitroarylacetonitriles into

indoles. Alkylation of such nitriles with allyl or benzyl halides followed by treat-

ment of the compounds obtained with basic agents results in a multistep transfor-

mation, which is likely to proceed via intermediate nitrosoarenes, to produce

1-hydroxyindoles. For instance, alkylation of ortho-nitroarylacetonitriles with

3-phenylallyl bromide gives the compounds that in the presence of chlorotri-

methylsilane and triethylamine undergo cyclization into 3-cyano-1-hydroxy-2-

vinylindoles (Scheme 70) [188]. Presumably, this reaction proceeds via

O-silylation of the nitronate anion and 1,5-elimination of trimethylsilanol from

the intermediate trimethylsilyl nitronate, followed by cyclization and a hydrogen

shift.

Another example of the reaction proceeding in a similar manner is the conver-

sion of 2-(5-chloro-2-nitrophenyl)-3-phenylpropionitrile into N-hydroxyindole
derivative (Scheme 71) [189]. The intermediate vinyl nitroso compound undergoes

electrocyclization, resulting in the formation of nitrone (2H-indole N-oxide), which
is tautomerized into N-hydroxyindole.

A peculiar way of formation of 1-hydroxyindole has been observed in the

reaction of nitrobenzenes with dimethyl 2-cyanocyclopropane-1,1-dicarboxylate

(Scheme 72) [190]. Treatment of 1-trifluoromethyl-4-nitrobenzene with this ester
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at low temperature results in the VNS of hydrogen, proceeding via opening of the

cyclopropane ring. Quenching of the reaction mixture at low temperature leads to

4-cyano-4-arylbutyric acid derivative; however, when the reaction mixture was

allowed to warm-up to 0�C, cyclization into 1-hydroxyindole takes place via an

intramolecular addition of the carbanion to the nitro group.

The Knoevenagel condensation of alkyl ortho-nitroarylacetates and ortho-
nitroarylacetonitriles with aliphatic aldehydes proved to give the corresponding

alkylidene nitriles and esters [191–194]. In the presence of a base these nitriles

undergo cyclization into indole or quinoline derivatives, depending on the reaction

conditions (Scheme 73) [195].

Depending on the conditions, reduction of α-(2-nitroaryl)acrylonitriles with

carbon monoxide can give two products (Scheme 74) [194]. Thus, reduction with

palladium acetate–triphenylphosphine complex (neutral conditions) leads to

indole-3-carbonitriles, while in the presence of DBU or t-BuOK (basic conditions)

4-cyanoquinoline was formed.
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86 M. Mąkosza and K. Wojciechowski



The VNS in meta-dinitrobenzene by action of carbanions of α-haloketones leads
to 2,4-dinitrobenzyl ketones, which can be reduced to 1-hydroxy-6-nitroindoles

under mild conditions with tin(II) chloride (Scheme 75) [196].

The VNS reaction of 4-nitroanisole with ethyl chloroacetate followed by the

Knoevenagel condensation of the product with acetaldehyde affords

α-(2-nitrophenyl)crotonate, which in the presence of t-BuOK in tert-butanol
undergoes cyclization into N-hydroxyindole-3-carboxylate (Scheme 76). Further

alkylation of the latter compound with methyl iodide results in N-methoxyindole.

It is worth mentioning that in this reaction a partial loss of the alkene chain does

happen to occur [194]. A similar phenomenon has been observed earlier in our

laboratory [195].

The reaction of 2-nitroarylacetonitriles and their heteroanalogues with trioxane

has been reported to afford α-(2-nitroaryl)acrylates and their heteroanalogues,

which can be reduced with carbon monoxide in the presence of palladium

acetate–triphenylphosphine complex to give esters of the corresponding indole-3-

carboxylic acids in high yields (Scheme 77) [193].
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The reaction of 3-nitropyridine with methyl chloroacetate under basic conditions

provides ethyl nitropyridyl acetates, followed by their catalytic hydrogenation and

cyclization into azaoxindoles (Scheme 78) [59, 60, 197].

The VNS reaction of nitrobenzene with ethyl α-chloropropionate, proceeding in
the para-position of the benzene ring, can be followed in situ by the SNAr

of fluorine atom in subsequently added 1-fluoro-2,4-dinitrobenzene to give

2,4,40-trinitrodiarylpropionate, which being hydrogenated is transformed into

3-aryloxindole derivative (Scheme 79) [198, 199].

Phosphonium ylide, generated from allyl triphenylphosphonium chloride, is

capable of addition to 1-nitronaphthalene or 5-nitro-8-methoxyquinoline in the

presence of DBU and titanium tetraisopropoxide to form unstable N-hydroxyindole
derivative, which is transformed by action of ethyl bromoacetate into benzo- or

pyridoindoles (Scheme 80) [200].
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ortho-Nitrobenzyl aryl sulfones, readily available via the VNS reactions of

nitroarenes with the carbanions of chloromethyl aryl sulfones, upon reduction and

conversion of the amino group into imidate [201–203] or imine [204] functionality, are

able to undergo cyclization into substituted indoles. This procedure is particularly

useful due to the possibility to direct the VNS reaction selectively in ortho-position to
the nitro groupwhen the reaction is carried out in t-BuOK/THF (Scheme 81) [25]. This

approach was used for the synthesis of 5- and 7-bromo-3-sulfonylindoles that were

subsequently functionalized by the Stille couplingwith tributyl(vinyl)tin. The obtained

vinyl derivatives were then transformed into the corresponding amino compounds,

tested as norepinephrine reuptake inhibitors and 5-HT2A receptor antagonists [202].

Alternatively, N-substituted 3-phenylsulfonylindoles have been synthesized via

reductive N-alkylation of ortho-aminobenzyl sulfones with ketones followed by

condensation with dimethylformaldehyde dimethylacetal and cyclization

(Scheme 82) [203].
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In this section we have presented numerous ways to construct indole derivatives

via nucleophilic substitution of hydrogen. It has been shown that this approach is one

of the simplest, versatile, and efficient ways to such ring systems, which can easily be

adopted for large-scale operations. Another advantage of this methodology is that in

contrast to the majority of modern methods no transition metals are used, so trouble-

some removal of their impurities from the final products is not necessary [205].

6.2 Quinolines

Since the quinoline ring system is often encountered in pharmaceuticals, plant

protection agents, photoactive compounds, etc., a search for new synthetic path-

ways to quinoline derivatives continues to be of a substantial interest. There are

numerous examples of synthesis of quinolines and their condensed analogues via

nucleophilic substitution of hydrogen in nitroarenes. One can classify those into

two broad categories:

a. Direct syntheses, when the quinoline ring system is formed directly, or as result

of the domino reaction from the intermediate σH adducts

b. Products of nucleophilic substitution of hydrogen are subsequently converted

into quinolines

Direct methods are based on the reactions of nitroarenes or nitroheteroarenes

with carbanions affording the intermediate σH adducts that, under the reaction

conditions, are converted into nitrosoarenes according to the intramolecular

redox stoichiometry. The nitrosoarenes are known to be rather active electrophilic

partners and are able to enter in situ further reactions to produce quinolines as the

ultimate products.

An important example is the formal synthesis of eupolauramine, an alkaloid from

the bark of the African plant Eupomatia laurina. This approach involves addition of

the carbanion of allyl phenyl sulfone to 1-methoxy-4-nitronaphthalene followed by

conversion of the σH adduct formed into the corresponding nitrosoarene. Further

intramolecular condensation affords phenylsulfonyl-substituted azaphenanthrene

(Scheme 83) [82]. The sulfone obtained was transformed into tricyclic azaaromatic

acid, from which in turn the final alkaloid can be obtained following the known

procedure [206].

NO2

OMe

N

N
Me

O

OMe

N

OMe

SO2Ph

N

OMe

COOH

SO2Ph

DBU, MgCl2' BTMSA 1) Et4NCN
2) KOH

49% 74%

Eupolauramine

Scheme 83

90 M. Mąkosza and K. Wojciechowski



A novel pathway for the synthesis of substituted 3-aminoquinolines, proceeding via

addition of the dianion of 3-aminocrotonates to nitroarenes, is exemplified by the

reaction of ethyl N-pivaloyl-3-aminocrotonate with 2,4-dichloronitrobenzene. The

intermediate σH adduct upon silylation or acylation is transformed into the

corresponding ethyl 3-(N-pivaloyl amino)quinoline-2-carboxylate (Scheme 84) [207].

There are numerous examples of construction of condensed pyridines (and also

quinolines and acridines) via cascade reactions, involving conversion of the σH

adducts of benzylic or allylic carbanions to nitroarenes followed by their intramo-

lecular cyclization to form the pyridine ring. Thus, the reaction between

4-chloronitrobenzene and phenylacetonitrile, which is known to produce in protic

media the corresponding 2,1-benzisoxazole via conversion of the intermediate σH

adduct into nitrosoarene and its further condensation reaction [80], can proceed in

aprotic media along another way. The same σH adduct formed in tetrahydrofuran,

when treated with trialkylchlorosilanes or pivaloyl chloride, undergoes cyclization

into acridine derivative (Scheme 85) [208].

A similar reaction has been observed to proceed between 6-nitroquinoline and

thienylmethyl tolyl sulfone in aprotic acetonitrile. The intermediate σH adduct,

being treated with bis-trimethylsilyl acetamide, is converted into nitrosoarene,

which undergoes intramolecular condensation to give thienophenanthroline in

good yield (Scheme 86) [209].
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Analogous transformation was reported to proceed between arylacetonitriles and

3-nitroimidazo[1,2-a]pyridine, thus leading to pyrido-annelated imidazoquinolines

(Scheme 87) that are of interest as highly fluorescent dyes [130].

The reaction of the same nitroimidazopyridine with 3-indolylacetonitrile leads

directly to pentacyclic azaaromatic system (Scheme 88) [210].

Syntheses of quinolines from the products of the nucleophilic substitution of

hydrogen proved to be also valuable. For instance, ortho-nitrobenzyl sulfones react
with dialkyl maleates and fumarates to produce directly quinoline 2,3-dicarboxylate

N-oxides [211]. The reaction proceeds via the Michael addition of the nitrobenzyl

carbanion followed by elimination of benzenesulfinic acid and subsequent intra-

molecular addition of the allylic carbanion to the nitro group. This approach has

recently been used for the synthesis of fluorine-substituted quinoline N-oxides

(Scheme 89) [212].

S
SO2Tol

N

N

S
TolSO2

N

NO2
+

CH3CON(SiMe3)2/DBU
            MeCN

42%

Scheme 86

N

N

NO2

N

N

N
OH

CN

Ph N

N

N

CN

N

N

N
O

CN

Ph

 PhCH2CN
KOH/MeOH AcCl/Py

92% 90%

Scheme 87

N

N

NO2

N

N

N

CN

N
Me

N
Me

CN

KOH/MeOH
91%

+

Scheme 88
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The reaction of ortho-nitroarylacetonitriles with the Vilsmeier–Haack reagent,

prepared fromN-methylpyrrolidone, followed by intramolecular cyclization, induced

by diazabicycloundecene (DBU) in the presence of bis-trimethylsilylacetamide

(BSA), leads directly to pyrrolo[3,2-b]quinoline derivatives (Scheme 90) [213].

A versatile synthesis of pyrrolo-annelated quinolines has been reported to occur

via alkylation of the VNS products, ortho-nitroaryl-substituted acetonitriles, with

α-bromoketones. The obtained ketonitriles can be reduced under mild conditions

with tin(II) chloride in ethyl acetate–ethanol mixture into quinoline-4-carbonitriles

[214]. The same reaction sequence has been applied to 5-nitroindol-4-yl- and 4-

nitroindol-5-yl-acetonitriles to obtain tricyclic 4-cyano-2-phenyl derivatives of

pyrrolo[3,2-f]- and pyrrolo[2,3-h]-quinolines (Scheme 91) [214].
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Nitrobenzosultams obtained by intramolecular vicarious [215] or oxidative

nucleophilic substitution of hydrogen [216] in N-chloromethylsulfonyl- or N-
methylsulfonyl-substituted meta-nitroanilides have been reported to enter the

Knoevenagel condensation with acetaldehyde [217]. The formed ethylidene sultam,

when treated with DBU, undergoes cyclization into the tricyclic sultam system,

bearing the quinoline N-oxide fragment (Scheme 92) [217]. The reaction appears

to proceed via intramolecular addition of the allylic carbanion to the nitro group.

6.3 2,1-Benzisoxazoles

The 2,1-benzisoxazole (anthranil) ring system is of interest as a key intermediate for

the synthesis of other heterocycles. 2,1-Benzisoxazoles can be derived from the direct

multistep domino reaction of some carbanions with nitroarenes or by conversion of

the products of nucleophilic substitution of hydrogen in nitroarenes. As early as in

1960, Davis and Pizzini reported that the reaction of 4-chloronitrobenzene with

phenylacetonitrile in the presence of potassium hydroxide in protic media affords

3-phenyl-5-chloro-2,1-benzisoxazole in high yield [80] (Scheme 17).

This is in fact a general way for the synthesis of 2,1-benzisoxazoles, which have

found wide application as starting materials to obtain other heterocyclic systems:

quinolines [218–221], polyquinolines [222–224], acridines [80, 225–227], and

benzodiazepines [228]. The most common approach is reduction of anthranils to

2-aminobenzophenones, which are appropriate starting materials to build other

heterocyclic systems.

ortho-Nitroarylacetic esters, nitriles, and ortho-nitrobenzylsulfones, available

via the VNS methodology, are readily converted into 2,1-benzisoxazoles through

condensation on treatment with chlorotrimethylsilane in the presence of

triethylamine (Scheme 93) [229].
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Alternatively, ortho-nitroaryl-substituted acetonitriles and their heteroanalogues
can be dehydrated into benzisoxazoles on treatment with concentrated sulfuric acid

(Scheme 94) [230].

The formation of 2,1-benzisoxazoles has also been observed when the VNS

products derived from bicyclic nitroarenes and heteroarenes have been allowed to

react with phenolate and thiolate anions (Scheme 95), as well as with some

carbanions [231].

Benzisoxazoles can readily be obtained by anaerobic, spontaneous transformation

of carbanions of α-(ortho-nitroaryl)benzyl phosphonates, derived from the ONSH in

nitroarenes with carbanion of diethyl benzylphosphonate, whereas oxygen oxidation

of such carbanions gives nitrobenzophenones (Scheme 96) [232].
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6.4 Phenazines and Other Heterocyclic Compounds
from 2-Nitrosodiphenylamines

It has recently been found in our laboratory that anilines react with nitroarenes in

the presence of a strong base to form 2-nitrosodiphenylamines [86]. The reaction

proceeds via addition of the N-anion of anilines to nitroarenes in the ortho-position
to the nitro group, followed by conversion of the formed σH adduct according to an

intramolecular redox stoichiometry (Scheme 97). The reaction is of general

character; thus, a variety of 2-nitrosodiphenylamines become readily available.

These compounds are versatile starting materials for the synthesis of heterocycles

containing two nitrogen atoms: phenazines, benzimidazoles, quinoxalines, etc.

Simple treatment of 2-nitrosodiphenylamines with acetic acid leads to phenazines

in high yields.

This two-step process is analogous to, but much more efficient than, the classic

Wohl–Aue synthesis of phenazines [233]. The versatility of this approach has been

demonstrated by the synthesis of 1-methoxyphenazine that can be obtained from

two different pairs “nitroarene–aniline”, namely, nitrobenzene–meta-anisidine or

meta-nitroanisole–aniline (Scheme 98) [84].
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Availability of nitroarenes and anilines opens almost unlimited simple and

efficient access to phenazines, as well as to their derivatives condensed with an

additional ring, as exemplified by the synthesis of pyrrolo[3,2-b]phenazine from

5-nitroindoles (Scheme 99) [234].

Carbanions of benzyl aryl sulfones are able to react with 2-nitrosodiphenylamines

to produce 1,2-diarylbenzimidazoles. The reaction appears to proceed via attack

of these carbanions on the nitroso group followed by intramolecular addition–

elimination process to give benzimidazoles (Scheme 100) [83].

Condensation of 2-nitrosodiphenylamines with a variety of highly stabilized

carbanions of dialkyl malonates, alkyl phenylacetates, and trialkyl phosphonoacetates

is an efficient way for the synthesis of a great deal of substituted N-arylquinoxalin-2
(1H)-ones (Scheme 101) [235, 236]. Double additions of anions of 2-cyanoalkyl

carboxylates to 2-nitroso-4-alkylaminodiphenylamines result in the formation of

pyrroloquinoxalinones [236].
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6.5 Miscellaneous Syntheses of Heterocycles

3-Arylsulfonylindazoles, novel 5-HT6 receptor antagonists, have been synthesized via

the VNS reactions of para-substituted nitrobenzenes with carbanion of chloromethyl

aryl sulfones followed by hydrogenation of the nitro group (Scheme 102). Further

reaction of ortho-aminobenzyl sulfones with sodium nitrite-acetic acid gave the

desired 5-substituted indazoles of potential biological activity [237, 238].

Oxidative intramolecular amination of meta-nitro-substituted diaryl triazenes

has been established to proceed under mild basic conditions in the presence of

K2CO3 in DMF (Scheme 103) [239].
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Conversion of the initially formed σH adducts into intermediate nitrosoarenes

appears to be involved in the reaction of nitroarenes with guanidines, leading to

3-amino-1,2,4-benzotriazines (Scheme 104) [240]. The mechanism of this trans-

formation proposed by the authors includes oxidation of the intermediate σH adduct

to form the corresponding 2-nitrophenyl-substituted guanidine, which undergoes

cyclization into 3-amino-1,2,4-benzotriazine-1-oxide. An alternative mechanism

can be suggested that involves reduction of the nitro group to the nitroso one,

followed by cyclization resulting in the N¼N bond formation. Partial reduction of

the nitro group was observed earlier in the reactions of cyclic (3-nitrophenyl)

guanidines [241].

7 Conclusion

From the data presented it is evident that nucleophilic substitution of hydrogen is an

efficient synthetic tool for introduction of a variety of substituents into heterocyclic

rings and construction of heterocyclic systems. We do hope that numerous examples

of nucleophilic substitution of hydrogen, as well as use of this versatile and general

reaction for the synthesis of heterocyclic compounds will attract attention of

researchers working in the field of organic synthesis.
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30. Błażej S, Mąkosza M (2008) Chem Eur J 14:11113
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89. Mąkosza M, Wojciechowski K (1997) Liebigs Ann/Recueil 1805
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131. Mąkosza M, Sulikowski D (2010) Synlett 1666
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141. Grzegożek M (2008) J Heterocyclic Chem 45:1879
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191. Wróbel Z, Kwast A, Mąkosza M (1993) Synthesis 31
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