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Abstract Groundwater is the primary source of drinking and irrigation in arid and
semi-arid regions. In the last few decades, groundwater contamination by nitrate has
reached its maximum levels. Several geogenic and anthropogenic sources were
found to be responsible for the nitrate contamination. Studies around the globe
show that the extensive use of nitrogen-based fertilizers is the principal cause of
nitrate contamination in arid and semi-arid aquifers. Nitrate in the drinking water can
harm human health by resulting in methemoglobinemia, infectious diseases, thyroid
problems, and increased risk of colorectal cancer. Therefore, the growing demand
for groundwater, especially in arid and semi-arid regions, necessitates the develop-
ment of effective nitrate removal strategies. Several existing technologies, such as
reverse osmosis, ultrafiltration, chemical and biological denitrification, ion
exchange, adsorption, and electrodialysis, can remove nitrate from groundwater.
However, their applicability is contingent on several variables, including necessary
infrastructure, the cost-effectiveness of the technology, scalability, and its wide-
spread acceptance. Management of nitrate-contaminated groundwater entails source
reduction, removal or transformation technologies, groundwater conservation, edu-
cation, legislation, and guiding principles. Thus, this chapter focuses on nitrate
contamination in groundwater, health and environmental impacts, management
strategies, and options for safe water supply in arid and semi-arid regions worldwide.

Keywords Arid and semi-arid regions, Groundwater nitrate, Groundwater quality
management, Human health effects, Methemoglobinemia, Remediation
technologies

1 Introduction

Sustainable development goals created by the UN general assembly require the
provision of high-quality drinking water. According to the WHO, one-third of the
global population lacks access to clean and safe drinking water. Groundwater is a
principal source of fresh water, which provides almost 50% of the world’s drinking
water and around 43% of irrigation water. This resource is under threat from several
factors, including climate change, land use, and rapid population growth [1]. The
quality and quantity of many aquifers in arid and semi-arid regions worldwide are
degrading, especially where groundwater is the only source of drinking and irriga-
tion. A decline in the water table and deterioration of groundwater, especially with
nitrate contamination, is the major problem in arid and semi-arid regions [2]. Several
natural and anthropogenic nitrate sources can contaminate groundwater. Some of the
primary reasons for an elevated level of nitrate in aquifers of arid and semi-arid
regions include mineralization of organic plants, agricultural activities (mainly
inorganic fertilizers), industrial activities, human waste disposal (septic and sewage
disposal), and nitrification of soil organic nitrogen [2–5]. Agricultural irrigation
return flows in arid and semi-arid regions often contain elevated levels of salts,
nitrate, and pesticides [6]. Numerous studies have shown that groundwater nitrate is
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driven majorly by the extensive use of fertilizers or manure in agro-based activities
in these regions [7, 8].

The WHO [9] has established 50 mg/L as the safe drinking water level for nitrate,
while the Bureau of Indian Standards (BIS) has set this limit to 45 mg/L (IS: 10500-
2012). Nitrate levels in drinking water that exceed this limit can impair ecosystems
and human health. Blue baby syndrome or methemoglobinemia is one of drinking
water’s most visible side effects with nitrate concentrations above the
WHO-recommended limit [7]. Furthermore, the elevated levels of nitrates can
cause infectious diseases, thyroid issues, increased risk of colorectal cancer, methe-
moglobinemia, congenital disabilities, possibly stomach cancer, and low birth
weight [1, 10, 11]. The overgrowth of aquatic plants and algae due to excess nitrates
in surface water causes eutrophication [12]. It can cause permanent damage to
aquatic ecosystems, even to the point of causing mass fish mortality. Likewise,
irrigation with nitrate-polluted groundwater may harm crop production. The Food
and Agriculture Organization (FAO) has established a threshold value of 22 mg/L
for irrigation water; a level above this may damage sensitive crops like sugar beet or
grapes [1].

In arid and semi-arid regions, alternative water supply sources are becoming
scarcer while groundwater demand is rising. There is an urgent need to develop
technologically and economically sustainable, accessible, and practical solutions for
mitigating nitrate pollution [7]. Several existing technologies, such as reverse osmo-
sis, ultrafiltration, chemical and biological denitrification, ion exchange, adsorption,
and electrodialysis are capable of removing nitrate from groundwater [7, 13]. How-
ever, their applicability depends on several variables, including necessary infrastruc-
ture, the cost-effectiveness of the technology, and its widespread acceptance and
scalability [11]. It is also imperative to develop and implement nitrate management
measures for groundwater. Nitrogen source inventories, basin management plans,
and identifying and quantifying primary sources and their loads to groundwater are
some strategies for reducing nitrate pollution. The management of nitrate-
contaminated groundwater in arid and semi-arid regions should include source
reduction measures, removal or transformation technologies, groundwater conser-
vation, educational actions, legislative efforts, and practical guidelines [10, 14–
16]. Therefore, this chapter aims to focus on nitrate contamination in groundwater,
their health and environmental impacts, management strategies, and options for safe
water supply in arid and semi-arid regions globally.

2 Detection and Analysis of Nitrate

Numerous techniques can be utilized to detect and analyze nitrate in groundwater.
Before analysis, it is necessary to consider some common factors, such as proper
sampling, storage conditions, interference ions, etc. The sample must be filtered
through 0.45 μm membranes to remove turbidity and bacteria. Those samples that
cannot be analyzed immediately should be refrigerated at 4°C and must not acidify
because rapid oxidation of nitrite to nitrate happens at lower pH. Several widely
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known analytical methods for nitrate determination and their fundamental features
are discussed here.

2.1 Ion Chromatography

Ion chromatography is the most extensively used analytical technique for analyzing
nitrate in groundwater. This technique is based on ion exchange and conductivity-
based detection. It also permits the analysis of additional anions in water samples,
such as nitrite, chloride, fluoride, sulfate, and nitrate. Ion chromatography utilizes
ion exchange resins to separate atomic or molecule ions based on their interaction
with the specific resin. The advantages include being free from ionic interference,
high accuracy and precision, a variety of detection modes, high separation effi-
ciency, selectivity, and speed and detection thresholds ranging from 0.01 to 1 mg/L
[12, 17–19]. However, a disadvantage of the technique is that organic acids may
affect analytical procedures.

2.2 Colorimetry

Many colorimetric methods are available for nitrate analysis in the water samples;
they use copper-treated cadmium metal to reduce nitrate to nitrite. Nitrite is then
combined with additional regents to produce a highly colored diazonium dye that
can be detected at 520 nm. However, cadmium and hydrazine used in these tech-
niques generate toxic by-products; hence waste disposal must be regulated [2]. For
nitrate analysis, similar enzymatic approaches may utilize hydrazine or nitrate
reductase. The enzymatic approach has the benefit of avoiding the harmful effects
of cadmium and hydrazine.

2.3 Ion-selective Electrode

Ion-selective electrodes can detect nitrate in groundwater samples with high preci-
sion. Potentiometric measurements of nitrate using ion-selective electrodes allow
relatively rapid measurement of NO-

3 -N concentration ranging from 0.14 to
1,400 mg/L. However, this method is susceptible to significant interferences and
requires linear calibration and controlled conditions for reliable results [2].

2.4 Nitrate Test Strip

A sample can be screened for nitrate interferences before analysis using test strips.
Test strips are easy and quick but inaccurate in the evaluation process. For example,
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Hach™ test strips are widely used based on the color change in response to the
nitrate concentration and allow rapid evaluation of nitrate [2].

Fig. 1 Possible groundwater nitrate sources in arid and semi-arid regions

Table 1 Sources of nitrate in arid and semi-arid regions

Sources Descriptions Examples

Point Single identifiable source and high con-
centration at a particular location

Concentrated animal confinement areas,
leaky septic tanks, manure storage areas,
accidental spills of nitrogen-rich
chemicals, and dairy lagoons

Diffuse Multiple sources dispersed around a
region emit pollutants and have long-term
impacts on human health and the
ecosystem

Nitrogenous fertilizer, manure, and
chemicals in agriculture, sewage pipe
leaks, inappropriate household waste
disposal, mining activities, dissolved
nitrogen in precipitation, and return flow
after irrigation

(Source: Adopted from [20]; [21])
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3 Sources of Nitrate Contamination in Groundwater
of Arid and Semi-arid Regions

According to available scientific literature, the sources of nitrate in groundwater in
arid and semi-arid areas are natural and/or anthropogenic (Fig. 1). As stated in
Table 1, these sources can also be categorized as point and diffused sources.

3.1 Natural Sources

Natural sources of nitrate include geogenic (nitrate from natural subsoil reservoirs),
atmospheric deposition, biologically fixed nitrogen, and groundwater-immanent
input from other aquifers that may be hydraulically connected [2]. Nitrate reservoirs
have been discovered in the subsoil of many dry regions of the world, and these
reservoirs may be a substantial geogenic source of nitrate in groundwater [12]. Addi-
tionally, the fixation of nitrate by plants in arid regions can increase nitrate levels in
groundwater [6]. Nitrate can be found naturally in nitrate salt deposits such as
sodium nitrate. The continuing interaction between minerals and bacteria located
in fissures and crevices in geologic formation leads to nitrate contamination of
groundwater [7]. However, the natural background concentration of NO3

--N in
groundwater is far below 10 mg/L due to precipitation infiltration and mineralization
of organic plants and animals; if these concentrations rise, it could be due to
agricultural, industrial, or human waste disposal [22].

3.2 Anthropogenic Sources

Human actions, directly and indirectly, affect the quality of groundwater. Many
anthropogenic factors affect the augmentation of nitrate in groundwater, like exces-
sive use of fertilizers, septic systems, and human-induced wastes [23, 24]. Over-
application and unscientific use of nitrogen-based fertilizers is the primary culprit of
nitrate pollution in arid and semi-arid aquifers [2, 25]. Ammonium in inorganic
fertilizers converts to the more mobile nitrate form in an oxidizing soil environment.
Enzyme urease converts urea into nitrate, which is then utilized by plants or leaches
into shallow aquifers [22]. Further, irrigated agriculture on heavily fertilized sandy
soils is more susceptible to nitrate leaching. A variety of sources, including agricul-
ture (primarily inorganic fertilizers, livestock manure, etc.), industry (untreated and
poorly treated industrial wastewater), human waste disposal (septic and sewage
disposal), landfill leaching, manure ponds, and polluted river and aquifer interac-
tions, all contribute to nitrate contamination in groundwater [2–6, 8, 26]. Regarding
nitrogen-related water quality indicators (nitrate, nitrite, and ammonia), agriculture
sector pollution exceeds that of urban and industrial sources [6]. The primary causes
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of nitrate pollution in developing nations are low living standards, inadequate
sanitation, leaking septic tanks, and improper sewage disposal [1]. Similarly, nitrate
concentrations are higher in many urban areas due to increasing human and animal
waste [23]. Furthermore, stable isotope studies indicate that most nitrate in ground-
water of arid and semi-arid regions is due to fertilizers and human waste [12]. A
small contribution of nitrate may be from the industrial sectors that use nitric acid,
urea, and anhydrous ammonia. In addition, as the forest has a high capacity for
nitrogen transfer, deforestation also results in nitrate leaching into groundwater [27].

4 Drinking Water Standards

Primary drinking water regulations are intended to safeguard public health from
specific contaminants such as nitrate. High nitrate levels in drinking water can pose
several health risks; consequently, various agencies worldwide have established safe
nitrate levels in drinking water. Environmental protection agencies set a limit of
10 mg/L for NO-

3 -N in drinking water, below which no adverse effects on human
health due to methemoglobinemia were observed [22]. A comparison of the nitrate
concentration standards established by various agencies is shown in Table 2.

5 Nitrate as a Global Groundwater Pollutant in Arid
and Semi-Arid Regions

Nitrate is a tasteless, odorless form of nitrogen and is naturally produced in the soil
and other mediums, such as groundwater. It is an essential component of the nitrogen
cycle and is used by most plants as a macronutrient. Nitrate can leach easily into the
aquifers from the unsaturated soil zone because of high solubility and mobility in
water [21]. Due to its significant solubility, it is known as the most prevalent
pollutant in groundwater. Nitrate may be represented in drinking water as nitrate

Table 2 Limit of nitrate concentration in drinking water permitted by various agencies

Organizations/
agencies

Conc. as NO-
3

(mg/L)
Con. as NO-

3 -N
(mg/L) References

WHO 50 10 Zendehbad et al. [28], WHO
[9]

BIS 45 – Singh et al. [13]; IS:10500-
2012 [29]

US-EPA 45 10 Xin et al. [15], EPA [30]

EDWD 50 – Xin et al. [15], Agarwal et al.
[31]

MEP, China – 10 Agarwal et al. [31]

MEP Ministry of Environmental Protection, EDWD European Drinking Water Directive
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and nitrate-nitrogen [15]. The aridity index classifies arid lands into a desert (i.e.,
hyper-arid and arid) and semi-desert (i.e., semi-arid). These regions are characterized
by fluctuating precipitation, high evaporation rates, and an annual wet and dry
season [32]. About one-third of the world’s population resides in drylands, which
account for about 41% of the planet’s surface area [33]. Most people in these regions
rely on the groundwater supply for daily requirements. Additionally, a considerable
proportion of the population relies on agricultural activities for survival. Over the
past several decades, unsustainable agrarian practices have increased the potential of
groundwater pollution with nitrates [14]. Agricultural irrigation return flows contain
high salts and nitrate concentrations, eventually leaching and contaminating ground-
water [6]. In addition, urbanization, industrialization, and waste disposal can con-
tribute significantly to groundwater nitrate contamination worldwide [2]. These
anthropogenic activities demonstrate that nitrate is the most prevalent pollutant in
the groundwater of arid and semi-arid regions.

Studies have shown that nitrate is the most prevalent pollutant in the aquifers of
arid and semi-arid regions worldwide. Alsabti et al. [34] found that 68% of ground-
water samples of Kuwait Bay had nitrate concentrations above WHO standards,
ranging from 22.7 to 803.9 mg/L due to anthropogenic factors such as fertilizer use
and urbanization. From 1991 to 2003, a total of 5,101 groundwater wells were
sampled in 51 research studies across the United States; more than 4% of the
sampled wells had nitrate levels above the EPA [30] limit of NO-

3 -N [35]. Shukla
and Saxena [27] pointed out that San Joaquin Valley (United States) is the nitrate’s
epicenter and affects over 275,000 people. Rahmati et al. [36] reported that 12.9% of
samples from the Ghorveh-Dehgelan aquifer in Kurdistan (Iran) surpassed the
maximum permissible level set by WHO [9]. Antiguedad et al. [37] observed the
presence of nitrate concentrations in many alluvial floodplains in Europe. According
to Beutel et al. [38], nitrate concentrations exceeding 10 mg/L as NO-

3 -N are most
common in the eastern alluvial fans subregion Central Valley of California. Nawale
et al. [39] point out that the Wardha sub-basin (India) has a high health risk of
non-carcinogenic disease due to drinking nitrate-contaminated groundwater.
Adimalla [40] demonstrates that the aquifers of Telangana (India) have a concen-
tration of nitrate (NO-

3 ) ranging from 17 to 120 mg/L, and around 57% of samples
were above the BIS permissible limits for drinking water. Zendehbad et al. [28]
found that the urban aquifer of Mashhad (Iran) has excessive nitrate in 110 wells out
of 261 wells due to sewage contamination. Jandu et al. [41] found that 86% of
samples had nitrate content higher than the WHO maximum safe limit and found to
be in the range of 10.2 to 519.6 mg/L in Jhunjhunu, Rajasthan (India). Ahadal and
Suthar [42] studied the Malwa region of Punjab (India) and found that over 92% of
sites have higher nitrate than the WHO recommendation. Waste dump sites, animal
waste, nitrogen-based fertilizers, and industrial effluents are the foremost reasons for
contamination. Further, Table 3 demonstrates the groundwater nitrate, possible
sources, and sample percentages exceeding various drinking water standards world-
wide in arid and semi-arid regions. In addition, Fig. 2 depicts sampling locations/
regions of reported nitrate in arid and semi-arid regions of the world and Fig. 3 gives
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a visual representation of sampling locations together with the percentage of samples
exceeding various nitrate drinking water guidelines.

6 Identification of Various Nitrate Sources in Groundwater

Although there are several approaches for identifying nitrate sources in groundwater,
the stable dual isotopes (nitrogen and oxygen) approach is extensively used and
widely accepted to identify agricultural fertilizers, manure, human waste, and other
sources. Many scientific studies globally successfully used δ15N and δ18O isotope
composition of NO-

3 to identify different sources, fate, and their related contribu-
tions to nitrate in aquifers [24, 28, 77]. The numerous sources (e.g., atmospheric,
agriculture fertilizer and sewage, or manure) have distinct compositions of nitrogen
(15N/14N) and oxygen (18O/16O) isotopes, which are widely used for source identi-
fication of Nitrate [77, 78]. However, a homogeneous signal of dual isotopes in
aquifers reveals naturally occurring nitrate [75]. Nitrate derived from fertilizers and
sewage has a distinct range of 15N- NO-

3 , whereas soil microbial and atmospheric
source has a different range of 18O- NO-

3 [78]. When numerous nitrate sources are

Fig. 2 Sampling locations/regions of reported nitrate in groundwater of arid and semi-arid regions
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present, isotopic quantification is also accompanied by evaluation uncertainty and
lacking [77].

7 Nitrogen Transformation Processes

Nitrogen is accessible to plants through ammonium and nitrate via nitrification or
nitrogen fixation activities within the root zone. Some bacterial species, including
those that interact with the roots of higher plants and those that are free-living, can
assimilate atmospheric nitrogen. Some fungi and blue-green algae species can also
assimilate atmospheric nitrogen. Under aerobic conditions, Nitrosomonas species
convert organic nitrogen, ammonium ion (NH4

+), or ammonia to NO2
- (nitrite),

which is then converted into nitrate by nitrite-oxidizing bacteria such as Nitrobacter
species [2]. Nitrate is created when soil-dwelling aerobic and anaerobic bacteria
decompose dead plants and other organic remains into ammonium ions, which are
then changed into nitrate. The soil biota quickly converts ammonium to nitrate in
soils under aerated or oxidizing conditions. Globally, around 193 million tons of
biological nitrogen fixation (land and seas) and 94 million non-biological (atmo-
spheric lightning and industrial) fixations occur [27, 79]. There are many ways to
reduce nitrate levels, such as plant absorption, mineralization-immobilization

Fig. 3 Locations along with the percentage of samples exceeding various nitrate drinking water
guidelines
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processes, volatilization, runoff losses, and denitrification. These processes limit the
nitrate flux into groundwater either individually or in combination.

However, nitrate ions are weakly bound to soil particles (negatively charged) and
may percolate into the aquifer. When oxygen is scarce in soil for microbial respira-
tion, microbial denitrification is frequently observed with greater than 60% pore
saturation. Nitrate or nitrite is employed as the terminal electron acceptor in the
respiratory process of microbial reduction of nitrate ions when oxygen is scarce. As a
result, high energy molecule adenosine tri-phosphate is produced. The electron
transfer during this phase provides energy to the denitrifying bacteria to stimulate
new cell biomass [7]. Autotrophic and heterotrophic denitrification is essential for
converting nitrate into nitrogen gas to reduce nitrate leaching in groundwater.
Several factors influence nitrate leaching, including land use patterns, on-ground
nitrogen loading, groundwater recharge, soil nitrogen dynamics, soil properties, and
groundwater level [21]. Different ecosystems have varying capacities for nitrogen
accumulation and transmission, which can be used to estimate the probability of
nitrate contamination. An ecosystem’s ability to accumulate nitrate is referred to as
the accumulation potential, whereas the ability to transfer nitrate to another ecosys-
tem is referred to as the transfer potential. The atmosphere and agricultural systems
have substantial transmission potential, increasing groundwater pollution likelihood
[27]. Figure 4 demonstrates the subsurface nitrogen transformation processes and
nitrate leaching into groundwater.

Fig. 4 Subsurface nitrogen transformation processes and nitrate leaching
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8 Effects of Nitrate on Human Health and Environment

Nitrate, a prevalent groundwater pollutant in arid and semi-arid regions, can harm
ecosystems and human health. The major effects of nitrate in drinking water are
depicted in Fig. 5.

8.1 Effects on Human Health

Nitrate in drinking water has adverse health effects if consumed excessively for an
extended time period. Humans usually consume nitrate through the consumption of
drinking water and food beverages. Still, when the maximum contamination level in
drinking water is exceeded, it can account for up to 50% of human nitrate consump-
tion [27]. It can enter the bloodstream from the stomach and upper intestines via
drinking water [20]. Most of the nitrite absorption into the bloodstream appears in
the intestines. Blue baby syndrome, or methemoglobinemia, is one of the prominent
health effects of drinking water with nitrate concentrations greater than the upper
safe limit of WHO [9] for an extended period in infants under 6 months of age
[7]. Bacteria in the infant gastrointestinal tract convert nitrate to nitrite. Nitrite
oxidizes the iron of hemoglobin to generate methemoglobinemia, decreasing the
blood’s oxygen-carrying capacity. The babies have an unusual blue-grey skin tone
associated with 10% or higher methemoglobin levels. If the illness is not diagnosed
and treated promptly, it might result in shortness of breath, a heart attack, and
mortality [17]. According to the USEPA, the Hazard Quotient (HQ) value for

Fig. 5 The major health effects of nitrate in drinking water
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non-carcinogenic human health risks associated with nitrate in drinking groundwater
is unity, with a value greater than unity reflecting an individual’s susceptibility to
non-carcinogenic health risk [54]. Studies also reported that consuming elevated
levels of nitrates can cause weakness, vomiting, mental disorder, abdominal disor-
der, hypertension, dizziness, infectious diseases, nervous system impairments, thy-
roid issues, gastrointestinal tumors, non-Hodgkin’s lymphoma, mellitus diabetes,
stomach cancer, pancreas tumors, increased risk of colorectal cancer, congenital
disabilities, possible stomach cancer (adults), and low birth weight in humans [1, 5,
10, 11, 24, 80, 81]. Nitrate has been identified as a potential human carcinogen that
can produce N-nitroso compounds through endogenous nitrosation [82]. Nitrate has
also been associated with chronic digestive diseases and an increased risk of
digestive cancer [6].

8.2 Environmental Health Effects

Many streams and rivers rely on groundwater for base flow, and increased nitrate
concentrations in groundwater can pollute these resources. When there is an abun-
dance of nitrate in surface water, aquatic plants and algae grow more quickly,
causing eutrophication [12]. Eutrophication is commonly associated with anthropo-
genic nitrate sources. When numerous algae die and decompose, the decomposers
consume a substantial amount of oxygen, altering the aquatic ecosystem. The
adverse effects of eutrophication include reduced light penetration, decreased plant
productivity in deeper waters, and decreased oxygen content in the water body
[20]. It can considerably contribute to the eutrophication of coastal and marine
environments [2, 83]. Nitrates can cause permanent damage to aquatic ecosystems,
even to the point of causing mass fish mortality. Nitrate contamination harms
humans by lowering environmental quality, increasing health risks, and increasing
environmental management costs. Irrigating with nitrate-contaminated groundwater
may damage sensitive crops like sugar-beet or grapes. As a result, the FAO
established a 22 mg/L threshold value for irrigation water for sensitive crops
[1]. The nitrate-nitrogen concentration in water between 100 and 200 mg/L reduces
livestock appetite [84].

9 Technologies for Nitrate Remediation from Groundwater

Technological and economically viable, accessible, and practical solutions are
required to mitigate nitrate pollution. The increasing demand for groundwater
necessarily involves the development of efficient nitrate removal strategies. Various
technologies efficiently removed nitrate from groundwater worldwide depending on
infrastructure, affordability, and acceptability. Furthermore, energy and cost-
efficient nitrate removal technologies are required to achieve global sustainable
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development goals and quality standards. Researchers for removing nitrate from
groundwater have proposed a wide range of in-situ and ex-situ technologies. The
in-situ treatment method involves nitrate treatment at the site, while the ex-situ
option primarily involves the pump and treatment method away from the site.
However, the ex-situ method is most effective when the contaminant plume is
well-defined. The limitations of this method include co-contaminant availability,
operation and maintenance, and scale of operation for water treatment. The treatment
technologies may be categorized into nitrate reduction and removal methods. Some
globally accepted techniques for nitrate removal are ion exchange, reverse osmosis,
adsorption, electrodialysis, chemical denitrification using zerovalent iron, and bio-
logical denitrification [1, 7, 13, 85–87]. Some of these techniques can be combined
for increased effectiveness and offset other technologies’ drawbacks. A few con-
ventional nitrate removal techniques are summarized in Table 4.

10 Management Strategies for Safe Water Supply in Arid
and Semi-arid Regions

In arid and semi-arid regions, groundwater must be managed sustainably because it
is an essential resource for irrigation and drinking water. Developing and
implementing management strategies is necessary to reduce the elevated nitrate
concentration in aquifers. Also, technological and policy reforms are required to
mitigate its effects on humans and the environment. An effective management
system should include a well-abandonment strategy and source reduction measures.
However, source reduction activities like best agriculture management practices,
domestic wastewater treatment, municipal solid waste management, etc., improve
groundwater quality over the years to decades, so in-situ remediation may also be
considered for hotspot sites with short-term objectives. The management comprises
non-structural measures in addition to structural measures like physical activities and
construction projects. The non-structural measures include laws, regulations,
funding, education, and policies.

10.1 Effective Framework for the Management
of Groundwater

Groundwater management involves collecting and analyzing data to identify nitrate-
contaminated areas and quantify the scope of the problem. The essential manage-
ment consideration is the fate and transport of nitrate in unsaturated and saturated
zones. The potential sources of contamination are identified to establish available
management options that reduce nitrate levels below the established standards. Then,
examine the environmental and economic aspects of the available options. Soil and
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Table 4 Various conventional nitrate removal techniques, along with their description, benefits,
and drawbacks

Techniques Descriptions Benefits Drawbacks References

Reverse
osmosis

In reverse osmosis,
groundwater is
forced through a
cell membrane at a
pressure of 300 to
1,500 psi, leaving
contaminants on
one side and water
on another

Continuous opera-
tion, used for
nitrate-affected
saline groundwa-
ter, can separate
0.1 to 1 nm pollut-
ants size, post-
treatments are not
required

High costs of
operation, mem-
brane fouling and
deterioration,
maintenance of
membrane and
issues of brine
effluent disposal

Singh et al.
[13], Huno
et al. [7]

Ion-exchange A strong base
anion exchange
resin is used for
NO3

- exchange
with Cl- and
CO3

2- from
groundwater.

Regeneration and
reuse of exhausted
resin, effective-
ness, simple to
operate, economi-
cal method, espe-
cially
trimethylamine
used for nitrate
exchange

SO4
2- ions reduce

resin’s nitrate
removal ability,
brine disposal, and
pretreatment
required

Singh et al.
[13],
Tokazhanov
et al. [8]

Electrodialysis In this technique,
ions are transferred
from a less con-
centrated to a more
concentrated solu-
tion using direct
electric voltage
and membranes

May simulta-
neously remove
contaminants and
desalinate, with
greater precision
and simple
operation

Alkaline condi-
tions reduced the
efficiency of
nitrate separation,
more energy
demand and
pretreatment
required

Abascal et al.
[1], Sharma
and
Bhattacharya
[85]

Adsorption It is a surface phe-
nomenon in which
various natural and
synthesized sor-
bents, agri-waste
by-products, and
industrial wastes
are used for pol-
lutant remediation

Convenience,
cost-effective,
lower energy
demands, used for
removal of both
organic and inor-
ganic pollutants

Removal depends
upon initial nitrate
concentrations, a
dose of adsorbent,
reaction time, pH,
and operating
temperature

Singh et al.
[13], Huno
et al. [7],
Chander et al.
[87], Yadav
et al. [88]

Biological
denitrification

Biological denitri-
fication involves
the reduction of
nitrate under
anaerobic condi-
tions by using bac-
terial species

Environment-
friendly, cost-
effective, used for
in-situ and ex-situ
remediation

Higher levels of
nitrate are chal-
lenging to elimi-
nate, long time
required, need
optimum carbon-
to-nitrogen ratio,
bacterial sludge,
high monitoring
needs, sensitivity
to environmental
conditions, risk of

Huno et al.
[7]

(continued)
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groundwater models may be analyzed before decision implementation [21]. Figure 6
depicts the management framework for groundwater resources.

10.2 Nitrate Contamination Management Strategies

Globally, legislative measures are crucial requirements for the management of
groundwater resources. Maintaining groundwater quality and preventing future
nitrate pollution requires understanding the variables and processes influencing
nitrate occurrence, transport, and fate. Nitrogen source inventories and basin man-
agement plans are essential for reducing nitrate from aquifers [20]. Preventive
measures should be taken to avoid nitrate contamination. Land use planners,
decision-makers, and environmental regulators must identify areas with high nitrate
loads to implement preventative measures like manure storage in concrete pits to
reduce leaching [90]. Furthermore, continuous seasonal groundwater quality mon-
itoring is essential for implementing these measures. Numerous researchers such as

Table 4 (continued)

Techniques Descriptions Benefits Drawbacks References

nitrite formation,
and post-treatment
required

Chemical
denitrification

In this method,
chemicals like
zerovalent iron,
elemental sulfur,
zinc, and alumi-
num are used to
reduce nitrate from
water

Complete nitrate
ion reduction may
be achieved using
zerovalent iron
under controlled
acidic conditions

Condition-depen-
dent, ammonia
stripping and post-
treatment are
necessary

Singh et al.
[13], Huno
et al. [7]

Catalytical
reduction

This method
removes nitrite and
nitrate from water
using catalysts
such as lead, cop-
per A12O3,

palladium-
alumina, etc.

Complete nitrate
removal may be
possible

Cost-effectiveness
and ammonia for-
mation issue

Tokazhanov
et al. [8]

Photo-
catalytical
method

The method is
based on the
acceleration of
photodegradation
of organic pollut-
ants, pathogens,
and other pollut-
ants in the pres-
ence of a catalyst

High selectivity
for a particular
pollutant

Formation of
nitrite and ammo-
nium, Reusability
of the catalyst as it
is unchanged dur-
ing the process

Sharma and
Bhattacharya
[85], Zhang
et al. [89]
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Singh et al. [13], Rahman et al. [14], Zhang et al. [16], Adimalla and Wu [10],
Bastani and Harter [90], Li et al. [91], Han et al. [6], and Almasri [21] proposed
nitrate management solutions such as source reduction, removal or transformation
technologies, groundwater conservation, educational actions, legislative efforts, and
guidelines, among others.

10.2.1 Agricultural Source Management

In agricultural areas, multiple sources may control the dynamics and occurrence of
nitrate in groundwater. Here, management should be based on applying fertilizer and
manure, cultivation techniques, and irrigation methods. Increasing fertilizer use
efficiency, application quantity, and time and implementing integrated nutrient
management will help farmers save money on fertilizer application and prevent
long-term nitrate contaminations [92, 93]. To reduce reliance on fertilizers and the
risk of fertilizer, new strains of nitrogen-fixing microorganisms (like Rhizobium and
blue-green algae) with increased nitrogen-fixing capacity should be developed.
Furthermore, long-term field research must be conducted to compile an up-to-date
list of the best management techniques and application guidelines for fertilizers.

Additionally, various optimization models should be utilized to determine the
optimal irrigation and groundwater storage options. Furthermore, each country must
enact legislation for agricultural groundwater management, similar to the European
Union’s nitrates directive for reducing nitrate sources (EC 1991). Online resources
for agricultural advice should be made available to decrease nitrate pollution. In
2010, the Chinese Ministry of Agriculture and Rural Affairs issued “Guidance for
Scientific Fertilization of Major Crops”, which included detailed irrigation and
fertilization recommendations [94]. Suitable denitrification models should be devel-
oped for groundwater management; these models will reduce nitrate leaching.
Implementing and maintaining artificial recharge schemes must involve
non-governmental organizations and local governments. Society should be educated
on groundwater quality and its proper management through seminars, short films,
etc. Several mitigation tactics, such as balanced fertilization, crop rotation, adopting

Data collec�on
Assessment of nitrate contamina�on

Characteriza�on of nitrogen sources

Iden�fica�on of management op�ons

Decision analysis and  
implementa�on

Management FrameworkFig. 6 Management
framework for the
groundwater resources
(Permission from [21])
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improved irrigation techniques, and implementing environmental legislation, can
avert nitrate problems.

10.2.2 Domestic Wastewater Management

Expanding the sewerage network and centralizing the wastewater treatment system
will mitigate the detrimental effects of improperly treated domestic wastewater
discharge. However, providing complete sewer coverage to all rural and semi-
urban areas in arid and semi-arid regions is not feasible due to economic constraints.
Domestic wastewater in rural and semi-urban areas is a source of nitrate in ground-
water; this issue can be resolved by implementing a decentralized or on-site waste-
water treatment system. The wastewater must be collected, treated, and disposed of
or reused close to the point of generation in a decentralized treatment system
[15]. This technique typically settles solids in a septic tank, followed by treatment
in secondary treatment facilities, such as anaerobic lagoons or constructed wetlands.

10.2.3 Solid Waste Management

The top priority of municipal solid waste management should establish a legal
framework for regulating landfills and eliminating illegal dumpsites. These regula-
tions typically address location restrictions, liner requirements, leachate collection
and removal, and groundwater monitoring requirements from the standpoint of
groundwater management. If waste is collected in properly designed, built, and
maintained landfills, there is a low chance that contaminants will seep into the
groundwater.

10.2.4 Treatment of Drinking Water

Groundwater is the principal source of domestic drinking water in arid and semi-arid
regions of the world. It is expensive and time-consuming to treat highly nitrate-
contaminated groundwater, so it is recommended to use alternate drinking water
sources if they are available. Nitrate treatment technology should be deployed at
drinking water treatment plants to improve the quality of nitrate-contaminated
groundwater in regions without alternative water sources [9]. The polluted ground-
water can be reused using water treatment technologies. Every country, mainly the
developing world must set drinking water standards and provide water within these
limits. Several conventional nitrate removal techniques and methods are outlined in
Table 4, and they can be implemented in treatment plants based on the requirements.
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10.2.5 Other Measures

Groundwater management and its use in conjunction with surface water are essential
in arid and semi-arid regions. Recharging aquifers during abundant rainfall is one
method of promoting this conjunctive use. Indigenous water management tech-
niques may be used due to their local adaptability compared to more sophisticated
and advanced techniques. The nitrate concentration of a particular region must be
depicted on several regional or local maps and these maps should be digitized to
effectively manage nitrate pollution in groundwater aquifers. Further, GIS should be
used to assess the effectiveness of various management strategies because it signif-
icantly improves data collection and processing, evaluation of the nitrate leaching
risk index, identification of diverse vulnerability zones, model development, and
scenario planning for management options. The only appropriate nitrate standard has
been set for groundwater; managers should handle these within the scope of the
profile from the surface to groundwater. Furthermore, mathematical models of
nitrogen transport must be developed to quantify the outcomes of management
options before their actual implementations at various spatial and temporal scales.
Water experts should increase their research on water quantity and quality to aid
government decision-making and achieve sustainable development of the world’s
water resources. Water specialists and scholars should conduct more research on
water quantity and quality to help governments make decisions and accomplish the
long-term development of the world’s water resources.

10.3 Options for Safe Drinking Water Supply

The drinking water in arid and semi-arid regions is already in poor condition; based
on global scientific research data, the following solutions are suggested for safe
water supply:

(a) For safe drinking water in arid and semi-arid regions, collecting rainwater and
taking precautions against contaminants in rainwater storage tanks is necessary.
Local governments should implement rainwater harvesting practices to ensure a
safe water supply in the short and long term.

(b) To provide potable water to residential areas of these regions, protected water
supply schemes and treatment plants to remove contaminants should be
implemented. Furthermore, nitrate pollution must be addressed by installing
distillation plants or implementing appropriate removal techniques.

(c) The local government should take immediate action to reduce groundwater
nitrate pollution and ensure the availability of potable water from alternate
sources (i.e., rivers and canals) in arid and semi-arid regions.

(d) Promote cost-effective, sustainable seawater desalination and ensure a source-to-
tap approach to water supply management.

(e) Promoting organic manure over nitrogen-based fertilizers in arid and semi-arid
regions.
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(f) The use of groundwater in conjunctive with surface water is another option for a
safe drinking water supply in arid and semi-arid regions. Mixing contaminated
water with clean water decreases nitrate concentration; however, this method is
unsafe for infants but safe for animals and adults.

11 Summary and Future Perspective

Nitrate is one of the principal pollutants found in the groundwater globally; exces-
sive levels have adversely damaged ecosystems and human health. Therefore,
technological and economically viable, accessible, and practical solutions will be
required to mitigate nitrate pollution. Also, policy reforms are needed to minimize its
effects on humans and the environment. Nitrogen source inventories, basin manage-
ment plans, and identifying and quantifying primary sources and their loads to
groundwater are some strategies for reducing nitrate pollution. Furthermore, various
technologies like reverse osmosis, ultrafiltration, chemical and biological denitrifi-
cation, ion exchange, adsorption, and electrodialysis have been widely used to
eliminate nitrate from groundwater. However, the by-products of these technologies
have significant limits; therefore, hybrid methods will be required in the future to
combat the nitrate threat. Improved and ongoing communication between scientists,
water managers, and water consumers is essential for achieving the sustainability of
groundwater resources. The management of nitrate-contaminated groundwater in
arid and semi-arid regions should include source reduction measures, removal or
transformation technologies, groundwater conservation, educational actions, legis-
lative efforts, and guidelines. Likewise, we can choose appropriate management
alternatives with the help of the multicriteria decision analysis approach. In addition
to structural measures like physical activities and construction projects, the manage-
ment includes non-structural measures such as policies, guidance, and funding.
Regional actions will be strengthened in the short term to decrease nitrate contam-
ination. However, future research must develop enhanced ways to eliminate nitrate
from the environment efficiently.

12 Conclusion

This chapter compiles information on the quality of groundwater aquifers, ecotox-
icological impacts, and management options for arid and semi-arid regions world-
wide. It has been determined that agricultural fertilizers and septic systems are the
principal contributors to nitrate in most arid and semi-arid locations. The existence of
nitrate concentrations that exceed WHO standards necessitates an immediate man-
agement strategy in order to prevent ecotoxicological effects. Therefore, the region’s
groundwater requires “Treatment” before consumption and must be safeguarded
against additional contamination. The present removal and transformation
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approaches do not have a distinct impact because they all have advantages and
disadvantages. Reverse osmosis, biological denitrification, catalytical reduction, and
ion- exchange are the principal treatment techniques; however, they cannot fully
remediate nitrates at greater concentrations. Further, management entails source
reduction, removal or transformation technologies, groundwater conservation, edu-
cation, legislation, and guiding principles. The proposed options for safe drinking
water must be implemented in arid and semi-arid regions. The findings are antici-
pated to assist managers in enhancing water quality for environmental protection and
human health risk reduction. Considering the present research trends, it is possible to
conclude that the surface-to-groundwater profile perspective may encourage the
development of additional integrated nitrogen management.

13 Recommendations

Groundwater nitrate management in arid and semi-arid areas necessitates a holistic
approach that combines scientific understanding, stakeholder engagement, regula-
tions/laws, and policies. A successful nitrate management plan must include the
establishment of sophisticated hydrogeological models capable of modeling ground-
water movement and understanding the fate of nitrate. Models’ implementation at
the national or regional level will facilitate decision-making and management
strategy evaluation in arid and semi-arid regions. In addition, the development of a
comprehensive database and geographic information systems can help in data
analysis and decision-making regarding the best nitrate management plan. Also,
the involvement of local communities, farmers, industry leaders, and environmental
organizations in the development of inclusive efforts for nitrate groundwater control
will be beneficial. Governments should provide financial incentives, technical sup-
port, and capacity-building programs in arid and semi-arid regions to encourage
farmers and households to adopt sustainable nitrate management practices. Collab-
oration should be pursued with agricultural communities/departments to promote the
implementation of best management practices that reduce nitrate runoff, such as
precision agriculture, cover cropping, and controlled drainage. To enforce ground-
water protection in nitrate-vulnerable regions in arid and semiarid locations, gov-
ernments must enact laws and regulations for groundwater protection and land use
planning. Regulations or laws at each national or regional level would promote the
sustainable use of groundwater, such as permits for well drilling, restrictions on
groundwater abstraction, and pollution control measures. The sharing of resources,
information, and data between government agencies, research institutions,
non-governmental organizations, and local communities should always be taken as
a priority for the formulation and implementation of more effective groundwater
nitrate management policies. Every nation should invest in preventive measures for
nitrate pollution and nitrate remediation technologies research and development
programs. Governments should also utilize feedback loops to update policies and
plans in arid and semi-arid regions.
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