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Abstract Pharmaceutical compounds (PhCs) are continually discharged to sewer
systems through human excreta. In wastewater treatment plants, these compounds
are partially removed by biodegradation or retention onto the sludge generated
during wastewater treatment. As a result, they can end up in the aquatic environment,
through the discharge of wastewater effluents to the receiving waters, or to the soil,
through the application of the sludge as organic amended, or by the irrigation with
recycled water. Moreover, these compounds are partially metabolized after their
consumption, and, as a result, PhCs and their metabolites are present in the envi-
ronment. This chapter summarizes recent research on the occurrence of PhCs and
their metabolites in sewage sludge stabilization processes and on sludge-amended
soils. Recent studies have shown that antibiotics, non-steroidal anti-inflammatory
drugs, antidepressants, and antidiabetics are the most abundant PhCs found in sludge
matrices. Overall, attenuation of PhCs concentrations occurs during sludge stabili-
zation, and particularly during anaerobic digestion and composting. The potential
ecotoxicological risk associated with the presence of PhCs in amended soils is
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medium-low for most PhCs. The most critical compounds found in sludge-amended
soils are ciprofloxacin, 17α-ethinylestradiol, and 17β-estradiol.

Keywords Environmental risk, Metabolites, Occurrence, Sludge stabilization
treatments, Sludge-amended soil

1 Introduction

In the last years, numerous studies have described the presence of pharmaceutical
compounds (PhCs) in the environment [1]. These compounds are continually
discharged to the sewer system through human excreta. In wastewater treatment
plants (WWTPs), these compounds are partially removed by biodegradation or
retention onto the sludge generated during wastewater treatment. As a result, they
can end up in the aquatic environment, through the discharge of wastewater effluents
to the receiving waters, or to the soil, through the application of the sludge as organic
amended, or by irrigation with recycled water [2]. Moreover, veterinary pharmaceu-
ticals used in livestock are excreted by the animals and end up in soils via grazing
livestock or manure used as agricultural fertilizer [3]. Among PhCs frequently
detected are anti-inflammatories like acetaminophen, ibuprofen, naproxen, or
diclofenac [1, 4, 5]; antibiotics as sulfamethoxazole, trimethoprim, norfloxacin, or
sulfonamides [4]; or antiepileptics as carbamazepine [6]. Moreover, these com-
pounds are partially metabolized after their consumption [1, 2, 7]. Consequently,
both pharmaceuticals and their metabolites have been detected not only in their
sources, wastewater, and sludge [8, 9], but also in their main fates, surface waters
[10], and soil [11, 12].

The amount of sewage sludge generated in WWTPs has increased strikingly in
recent years. In the European Union, the most usual final destiny of these sludges is
their use as organic amended in soil [5, 13]. For example, it is estimated that around
40% of the sludge produced in 2021 will be used as a source of organic matter and
nutrients for agricultural purposes [5, 14], although different application rates are
used among the Member States of the EU [14, 15]. The main stabilization processes
applied to the sludge previously to their application onto the soil are anaerobic and
aerobic digestion, composting, and, particularly in little municipalities, low-cost
wastewater treatments, as lagooning [5, 14, 16]. However, several studies have
described the persistence of PhCs along these treatments [2, 16–19].

In this chapter, a discussion is carried out on the main studies reported in the last
years about the distribution of the most recurrent PhCs and their metabolites in
sludges stabilization processes, and in soils amended with these sludges. Moreover,
the risk associated with the presence of these compounds in sludge applied to the soil
is discussed too.
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2 Occurrence of PhCs and Metabolites Alongside Sludge
Stabilization Treatments

The most usual sludge stabilization treatments are their digestion under anaerobic
(in high-populated cities) and aerobic conditions (in low populated municipalities).
In both processes, the sludge separated from influent wastewater in the primary
sedimentation tank is concentrated in a gravity thickener (primary sludge) and mixed
with the secondary sludge obtained from the secondary settler and concentrated in
the flotation thickener. Mixed sludge is digested under anaerobic (in anaerobic
stabilization plants) or aerobic (in aerobic stabilization plants) conditions. The
final product of these treatments is usually subjected to composting processes carried
out in the open air, forming piles in which the aeration is thermally controlled by
turning [2].

In small municipalities, low-cost wastewater treatment is usually applied to
wastewater treatment and sludge stabilization. The most usual treatment is
lagooning, in which the sludge stabilization takes place at the bottom of a lagoon
under anaerobic conditions [2].

In this chapter, the main findings included in more than 50 works published in the
last 20 years about the presence and distribution of PhCs and their metabolites in
sludge are evaluated (Fig. 1). About 70% of the published data have focused on
compounds measured in the final product of the stabilization treatment (digested,
dehydrated, or composted sludge). The studies about the distribution of metabolites
in sludge stabilization treatments are even scarcer. Anti-inflammatories (36 papers,
mainly about diclofenac, ibuprofen, naproxen, and ketoprofen), antibiotics
(33 papers, mainly about ciprofloxacin, ofloxacin, enrofloxacin, norfloxacin, sulfa-
methoxazole, sulfamethazine, tetracycline, oxytetracycline, and trimethoprim), and
antiepileptics (33 papers, mainly about carbamazepine) are the most studied thera-
peutic groups in sludge, followed by beta-blockers (22 papers, mainly about pro-
pranolol, metoprolol, atenolol), antilipemics (19 papers, mainly about bezafibrate
and gemfibrozil), and stimulants (18 papers, mainly about caffeine).

Considering metabolites, the most studies have been focused on those derived
from anti-inflammatories, antilipemics, or antiepileptics (mainly the metabolites of
carbamazepine). On the contrary, the studies of the metabolites of antibiotics are
very sparse.

Moreover, most of these studies evaluate the distribution on sludge stabilization
treatments for only a few metabolites, as the ones from diclofenac [2], ibuprofen [2],
carbamazepine [2, 15, 20], or sulfamethoxazole [20] (Fig. 1). This could be due to
the complexity of the analysis of these samples and to the lack of commercial
analytical standards that allow their determination.

Figures 2 and 3 show the concentrations of 180 PhCs, measured in sludge
samples worldwide in the last 20 years, grouped by therapeutic group (data collected
from [5]). Measured concentrations ranged from ng or μg per kilogram to even mg
per kilogram, depending on the consumption, physicochemical properties of the
compounds, and the characteristics of the sludge.
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The higher concentrations in fresh sludge (primary, secondary sludge, and mixed)
have been described in the case of antibiotics (in mixed sludge) and anti-
inflammatories (mainly in primary sludge), followed by stimulants (mainly caf-
feine). The compounds more frequently measured and at the highest concentrations
in these sludges are fluoroquinolones [14, 15, 20–22] as ciprofloxacin, norfloxacin,
and ofloxacin (for example, concentrations of ciprofloxacin up to 12,858 ng g �1

were measured in raw sludge from France [22]), the anti-inflammatories diclofenac
[2, 20, 22–26] (up to 7,020 ng g�1 measured in Germany) and ibuprofen [2, 24, 25]
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Fig. 2 Concentration of antibiotics, anti-inflammatories, antiepileptics, and stimulants measured
alongside sludge stabilization processes. Raw sludge was considered as mixed sludge (Data
collected from [5])
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(ranging from 11.1 to 4,105 ng g�1), the antilipemic gemfibrozil (concentrations up
to 2,026 ng g�1 have been measured in primary sludge from Spain [27]), the
stimulant caffeine (up to 2,828 ng g�1 measured in Canada [28]) or hormones
[22, 26, 28–31] (up to 599 ng g�1 dw and 421 ng g�1 dw in the case of 17-
α-ethynylestradiol and estrone, respectively [31, 32]).

Other compounds, as sulfonamide or macrolide antibiotics, anti-inflammatory
drugs as acetaminophen, naproxen or ketoprofen [5, 8, 27–31, 33–35], antidepres-
sants as carbamazepine [19, 29, 31, 33, 36] or beta-blockers as propranolol and
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Fig. 3 Concentration of antidepressants, hormones, and other pharmaceuticals measured alongside
sludge stabilization processes. Raw sludge was considered as mixed sludge (Data collected from
[5])
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atenolol [8, 19, 20, 22, 27, 29, 31, 33] have been frequently detected, although at
lower concentrations.

Considering pharmaceutical metabolites, the highest concentrations have been
measured in the case of those derived from salicylic acid (concentrations up to
931 ng g�1 have been detected in sludge stabilization treatments from the south of
Spain [8, 33]) and ibuprofen (up to 204 and 100 ng g�1, in the case of
carboxyibuprofen and 2-hydroxy ibuprofen, respectively [2]). Other compounds
measured in fresh sludge (although at lower concentrations) are metabolites of
antilipemics as clofibric acid [14, 26, 30], metabolite of clofibrate;
N-desmethylcitalopram [37, 38] and norsertraline [19, 22, 37–39], metabolites of
antidepressants, and paraxanthine (PX) [2], metabolite of caffeine. These metabo-
lites have usually been found at lower concentrations than their parent compounds in
fresh sludges (Figs. 2, 3, 4, and 5). This contrasts with the results obtained in
aqueous environment, where some metabolites, as 2-hydroxyibuprofen
(2OH-IBU) and carboxyibuprofen (CBX-IBU), have been measured at higher
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Fig. 4 Concentration of metabolites of anti-inflammatories, antiepileptics, and antidepressants
measured alongside sludge stabilization processes. Raw sludge was considered as mixed sludge
(Data collected from [5])
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concentrations than their parent compounds (specifically in wastewater samples).
However, this could be explained by the high number of studies reporting the
concentration of PhCs in sludge in relation to those reporting concentrations of
their metabolites. On the contrary, Malvar et al. [2] found in sludge samples
concentrations of 10-hydroxycarbamazepine (10OH-CBZ), 4-hydroxydiclofenac
(4OH-DIC), 2OH-IBU and CBX-IBU higher than those measured for their parent
compounds, as it was described for water samples. This shows the concentrations in
influent wastewater as the main factor governing the concentration of these com-
pounds in fresh sludge, in spite of the different sorption capacity of these compounds
onto the sludge [5]. Moreover, the concentration of PhCs and metabolites in
secondary and mixed sludges could be affected by the biodegradation of these
compounds in secondary wastewater treatment. For example, recently Malvar
et al. [2] related the concentrations of 10OH-CBZ, 2OH-IBU and CBX-IBU mea-
sured in secondary sludge (higher than those measured in primary sludge) with the
biodegradation of ibuprofen during secondary treatment.
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Fig. 5 Concentration of metabolites of antilipemics, stimulants, and other PhCs measured along-
side sludge stabilization processes. Raw sludge was considered as mixed sludge (Data collected
from [5])

26 J. L. Santos et al.



The PhCs and metabolites more frequently studied in fresh sludge and found at
highest concentrations were the compounds most studied and detected in treated
sludge: anti-inflammatory drugs, antibiotics, and antiepileptics, and, in less exten-
sion, antidepressants. Data published in the literature showed higher concentrations
of antibiotics in treated sludge than those measured in fresh sludges, especially in the
case of fluoroquinolone antibiotics, with concentrations up to 12,858 ng g�1 (cip-
rofloxacin), 6,049 ng g�1 (norfloxacin) and 6,712 ng g�1 (ofloxacin). The same
behavior could be observed in the case of antiepileptics (mainly carbamazepine),
which shows the high persistence of these compounds in the digestion processes.
Other compounds, as anti-inflammatories, show a decrease of the concentrations
measured in digested sludges with respect to those measured in fresh sludge (Fig. 2).
In spite of that, concentrations up to 7,020 and 4,105 ng g�1 have been measured for
diclofenac and ibuprofen, respectively. In the case of other PhCs, as stimulants,
antidepressants or hormones, their behavior in sludge stabilization treatments seems
to depend on the digestion process. Most of them showed lower concentrations in
aerobic processes than those measured in sludge treated under anaerobic conditions.
The differences in concentration pattern between aerobic and anaerobic stabilization
processes have been previously described in the case of pharmaceuticals as
azithromycin, irbesartan, sertraline, which are more frequently detected in aerobi-
cally digested sludge [15]. Other studies [40–42] showed a higher mitigation of the
concentration of clarithromycin and azithromycin under anaerobic conditions, while
caffeine showed a high persistence to the anaerobic treatment [8, 42], whereas under
aerobic condition was widely removed. Moreover, several works have described the
importance, not only of the anaerobic or aerobic conditions, but also of other
parameters, such as temperature or treatment time. For example, 60% of diclofenac
and diazepam were removed under mesophilic anaerobic conditions (38�C), while
under thermophilic conditions (55�C) only 38% of diclofenac and 73% of diazepam
were removed [43]. Other works have even showed an improvement in the removal
of these compounds by the combination of the two conditions. For example,
removals up to 90% have been measured in the case of diclofenac, oxazepam,
ofloxacin, or propranolol using combined anaerobic and aerobic conditions
[44, 45]. Regarding composting, in general the concentrations measured after the
composting process are lower than those measured in digested sludge for the most of
the PhCs. Some works showed the photodegradation of hydrosoluble PhCs, as well
as mineralization and even the dilution due to the mixture with other products, as
potential ways of removal [46].

Considering PhC metabolites, only one study has been reported in the literature
[42], which shows the importance of performing a further investigation on this issue.
The results obtained in this work described that the distribution of PhC metabolites
depend on the compound and the conditions applied to the stabilization. Compounds
as PX or the metabolites of ibuprofen showed high decrease of their concentrations
alongside the sludge stabilization treatments, while other, as the metabolites of
carbamazepine and diclofenac, were highly persistent to all treatments evaluated.
Moreover, transformations between metabolites and parent compounds were only
observed in the case of ibuprofen.
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3 Distribution of PhCs and Metabolites in Soil

One of the main disposal options for the sludge generated during sludge stabilization
treatments is its application to the soil as organic amended. As a result, organic
contaminants in the sludge, among them PhCs and their metabolites, end up into the
soil. In a study carried out in the Slovak Republic [15], it was estimated a total input
load of up to 120 kg/year of fexofenadine disposed into the soil through the
application of sewage sludge, together with other PhCs, including antihistamines,
antidepressants, or antihypertensives. PhCs frequently detected and measured at
highest concentrations in soil are antibiotics, as fluoroquinolones (up to
550 ng g�1), tetracyclines (tetracycline and oxytetracycline, up to 63.8 and
101 ng g�1, respectively) and sulfamethoxazole (47.9 ng g�1) [47, 48], as well as
other compounds as diclofenac [11, 49], ibuprofen [11], carbamazepine [11, 50], or
caffeine [11].

Considering PhC metabolites, only a few data have been reported in the literature
about their presence in soils. García-Galán et al. [51] evaluated the presence of
several sulfonamide antibiotics and their metabolites in soils collected in rural areas
from Catalonia (North East of Spain). Among the measured compounds were
acetylsulfamethoxazole (up to 1.38 ng g�1) and acetylsulfapiridine (up to
0.77 ng g�1). Other metabolites as CBX-IBU [52] and 4OH-DIC [35] have been
measured in soils at concentrations up to 46.1 and 3.3 ng g�1, respectively.

In the soil, PhCs and their metabolites may undergo different routes, such as
sorption/desorption processes [53, 54], transport by leaching [55], or degradation/
transformation [2, 11]. The concentrations of PhCs and metabolites in the soil
depend, in addition to the sludge application rates and frequency, on several factors,
as soil properties, physicochemical characteristic of the compounds, precipitations or
even land relief. Highly mobile compounds could contaminate surface water through
runoff or groundwater by leaching. Highly adsorbed compounds could be accumu-
lated into the soil [5]. In this way, several works have showed the mobility of
ibuprofen, acetaminophen, or sulfamethoxazole [56, 57], which have been measured
in leachates from sludge-amended soils, while other compounds as carbamazepine,
diclofenac, trimethoprim, or propranolol showed high retention in the soil matrix
[6, 56, 58]. Regarding PhCs metabolites, several works have shown, in laboratory
experiments, the adsorption behavior of these compounds, mainly for carbamaze-
pine [54, 55, 59]. These studies show different soil retention of PhC metabolites
compared to those observed in the case of their parent compounds, what could be
due to the different physicochemical characteristics of the metabolites. For example,
Paz et al. [54] showed how the relative charge densities for metabolites of carba-
mazepine, due to the electronegative oxygen atoms, could contribute to the different
adsorption behavior of these compounds.

Considering the degradation of these compounds in soils, only a few studies have
assessed its dissipation in the edaphic environment. Some compounds as
norfloxacin, ciprofloxacin or azithromycin have shown high persistence [60],
while other as sulfamethoxazole, diclofenac or caffeine showed a high dissipation
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in a few days [42]. Until now, only one study has been reported in the literature about
the dissipation of metabolites of PhCs in soil [42]. In this work, batch experiments
carried out with three different soils spiked with these substances showed differences
between metabolites and parents compounds regarding their persistence in soil. For
example, carbamazepine and epoxy-carbamazepine showed high persistence, while
the metabolites 3OH-carbamazepine and 10OH-CBZ showed a rapid dissipation
(up to 20 days). Other compounds, as caffeine and its metabolite PX and sulfameth-
oxazole and its metabolite acetylsulfamethoxazole, showed persistence between
20 and 60 days, depending on the soil characteristics. Only in the case of ibuprofen,
transformation of ibuprofen in its metabolite 2OH-IBU could be considered.

4 Environmental Risk Assessment of Pharmaceuticals
and Metabolites in Soil

The most common approach used to assess the environmental risk caused by the
presence of PhCs and metabolites in soil is based on the European Medicines
Agency Guideline [61] through the use of the risk quotient (RQ). The RQ is the
relation between the measured (MEC) or predicted environmental concentrations
(PEC) and the predicted no-effect concentrations (PNEC). To calculate the PNEC
values, it is needed to use the lowest acute and chronic toxicity data in fish, Daphnia
magna, or algae organisms and dividing them with an assessment factor of 1,000 or
100, respectively, to consider the worst-case scenario. Because of the lack of
ecotoxicological data for terrestrial organisms, many authors usually take the values
in aquatic organisms to estimate the PNECsoil through the equilibrium partition
approach: PNECsoil ¼ Kd � PNECwater, as suggested by the European Commission
[8, 22, 33, 62]. Recently, Mejías et al. [5] recompiled the toxicity and Kdsoil data
reported in the literature. This work draws attention as regards the lack of available
data in the particular case of metabolites.

Once the RQ is estimated, the criteria proposed by Hernando et al. [63] is applied
to evaluate the risk, considering low risk for RQ< 0.1, medium risk for RQ between
0.1–1 and a high risk when RQ > 1. Table 1 shows the minimum and maximum RQ
values calculated based on the lowest and highest concentration levels found for
PhCs and metabolites in digested sludge or compost, and the Kd compiled from the
literature. The PEC values in soil were estimated according to the EC-TGD [62] by
the equation:

PECsoil ¼ Csludge � APPLsludge=DEPTHsoil � RHOsoil ð1Þ

where Csludge is the concentration measured in digested sludge or compost;
APPLsludge is the dry-sludge application rate (0.5 kg m�2 year); DEPTHsoil is the
mixing soil depth (0.20 m), and RHOsoil is the bulk density of wet soil
(1,700 kg m�3).
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Table 1 Risk quotient (minimum and maximum values) in soil amended due to PhCss and
metabolites measured in digested sludge or compost in worldwide (PNECwater and Kd data taken
from Mejías et al. [5])

Pharmaceuticals and
metabolites

PNECsoil

(ng g-1)
PECsoil (min)
(ng g-1)

PECsoil (max)
(ng g-1)

RQ
(min)

RQ
(max)

Ciprofloxacin 2.14 0.110 15.43 5.2E�02 7.2E+00

17α-ethinylestradiol 0.10 0.018 0.460 1.8E�01 4.6E+00

17ß-estradiol 0.03 0.062 0.062 1.9E+00 1.9E+00

Sulfamethoxazole 1.20 0.006 0.978 4.8E�03 8.1E�01

Sertraline 1.58 0.085 0.925 5.4E�02 5.8E�01

Tylosin 4.35 2.229 2.229 5.1E�01 5.1E�01

Carbamazepine 48.9 0.005 16.25 1.0E�04 3.3E�01

Diclofenac 34.2 0.016 6.233 4.6E�04 1.8E�01

Estrone 1.23 0.015 0.201 1.2E�02 1.6E�01

Fluoxetine 3.22 0.025 0.251 7.9E�03 7.8E�02

Atenolol 37.5 0.006 2.426 1.6E�04 6.5E�02

Ofloxacin 246 0.078 14.03 3.2E�04 5.7E�02

Oxytetracycline 213 0.002 10.83 7.6E�06 5.1E�02

Ketoprofen 140 0.012 6.553 8.4E�05 4.7E�02

Ibuprofen 46.5 0.071 1.686 1.5E�03 3.6E�02

Caffeine 10.3 0.011 0.365 1.1E�03 3.5E�02

Erythromycin 4.08 0.001 0.120 2.7E�04 2.9E�02

Tetracycline 146 0.006 3.493 4.3E�05 2.4E�02

Clarithromycin 6.72 0.008 0.147 1.1E�03 2.2E�02

Propranolol 40.6 0.015 0.545 3.7E�04 1.3E�02

Estriol 95.8 0.081 0.597 8.4E�04 6.2E�03

Naproxen 28.8 0.015 0.175 5.1E�04 6.1E�03

Simvastatin 68.9 0.382 0.382 5.6E�03 5.6E�03

Sulfamethazine 38.3 0.038 0.204 1.0E�03 5.3E�03

Trimethoprim 7.28 0.001 0.038 1.9E�04 5.3E�03

Metoprolol 146 0.009 0.588 6.3E�05 4.0E�03

Gemfibrozil 64.7 0.012 0.223 1.9E�04 3.5E�03

Acetaminophen 294 0.033 0.391 1.1E�04 1.3E�03

Sulfapyridine 173 0.036 0.178 2.1E�04 1.0E�03

Valsartan 365 0.038 0.221 1.0E�04 6.0E�04

Clofibric acid 113 0.012 0.054 1.1E�04 4.8E�04

Metformin 13,427 0.095 6.146 7.1E�06 4.6E�04

Bezafibrate 84.0 0.019 0.038 2.3E�04 4.6E�04

Salycilic acid 7380 0.027 2.390 3.6E�06 3.2E�04

Sulfathiazole 418 0.107 0.113 2.6E�04 2.7E�04

Irbesartan 273 0.071 0.072 2.6E�04 2.6E�04

Codeine 240 0.009 0.024 3.9E�05 9.8E�05

Norfloxacin 86,865 0.040 8.006 4.6E�07 9.2E�05

Azithromycin 40,964 0.032 1.232 7.9E�07 3.0E�05

Telmisartan 45,214 0.235 0.853 5.2E�06 1.9E�05
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Although the estimated results showed an overall low risk for most of the
compounds assessed, the evaluation of the environmental risks of ciprofloxacin
(RQ 7.2) and estrogens (17α-ethinylestradiol (RQ 4.6) and 17β-estradiol (RQ 1.9))
should not be underestimated when the highest concentrations found are used.

Similar results have been reported by other authors [8, 22, 33, 64, 65]. Martín
et al. [8, 33] indicated that 17β-estradiol, 17α-ethinylestradiol, ibuprofen, gemfibro-
zil, and sulfamethoxazole are among the most hazardous pharmaceuticals when
performing a risk assessment in digested sludge and compost. Nevertheless, an
important decrease in RQ was perceived when sludge is amended on soils, being
17β-estradiol the only substance showing some potential toxic effects. This practice
caused a “dilution” effect, resulting RQ < 0.10. More recently, Gros et al. [65] and
Bastos et al. [64] reported RQ > 1 for fluoroquinolones causing risk for soil life and
crops. The scientific data available on the potential environmental consequences of
sludge amendment to soils have increased the studies on the crop uptake of phar-
maceuticals in last years [66]; however, there are gaps in the literature regarding the
food chain and the risk to human health.

Finally, it is important to note that the use of highly sensitive organisms such as
H. attenuate or B. calyciflorus in the study could have a high implication on the
ecotoxicological risk assessment. In a near future, more research is needed to draw
firm conclusions in (1) terrestrial organisms and type of crops and endpoints;
(2) including metabolites; and (3) conducting these studies at lower environmentally
relevant concentrations.

5 Conclusions and Future Trends

Many works have been published in the last 20 years about pharmaceutical com-
pounds in the environment. Their distribution has been evaluated in their main
sources, wastewater, and their main fates, surface waters. However, the studies
reporting their distribution in sludge and, especially, their occurrence in sludge
stabilization treatments are scarce. The few studies reported in the literature show
that the decrease of the concentration of PhC and their metabolites in the sludge
stabilization treatments depends not only on the compound but also on the condi-
tions and the process applied to the sludge stabilization. In spite of these studies,
there is a lack of information about the behavior of PhCs, and especially their
metabolites (and not identified compounds), on both, wastewater and sludge treat-
ment technologies.

Regarding the distribution of PhC and metabolites in soils, their adsorption onto
the edaphic matrix as well as their degradation depends on the physicochemical
characteristics of the compounds and the properties of the soil. However, for most of
these pollutants, the mechanisms governing the occurrence of these compounds, the
influence of their characteristics, and the properties of the soil are unknown.

On this basis, in-depth studies are necessary to elucidate the behavior of phar-
maceuticals, and especially their degradation products, in different sludge
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stabilization treatments, with different technologies, as well as there is a need to
evaluate advanced technologies that allow their complete removal, especially in the
case of sludges that are going to be applied to the soil. Moreover, further studies
evaluating, not only the distribution in soil/water systems, but also their degradation
in soils with different characteristics, are necessary.

Concerning the potential environmental risk of PhCs and their metabolites, in
spite of the toxicological studies that are being carried out, more toxicological data,
especially in the case of pharmaceutical metabolites, are necessary, in order to
achieve a complete evaluation of environmental risks due to pharmaceutical
compounds.
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