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Abstract Pesticides are chemical compounds designed to be used as plant
protection products (PPPs). They are applied in the field for the protection of plants
against pests, weeds, and several diseases that affect and decrease the quantity and
quality of agricultural crop products. After their environmental release, these syn-
thetic substances undergo a variety of abiotic and biotic processes which determine
their distribution in the environmental compartments, and consequently their fate
and persistence. Sorption, desorption, and leaching are some of the processes that are
included among the most important transportation pathways. Due to their extensive
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application and their potential ecotoxicological effects, the global scientific interest
focusing on the research of the environmental fate and behavior of pesticides after
their entrance in the environmental matrices is undiminished. The present chapter is
a review of the recent scientific literature regarding the recent research on the fate of
pesticides in soil regarding the processes of sorption/desorption and leaching. Based
on the gathered information derived from the reviewed articles on the subject
published in the last 5.5 years (from 01/01/2016 to 30/06/2021), useful conclusions
and observations are reported about research trends. Furthermore, knowledge gaps
in the current research are highlighted and suggestions for future research on this
topic are also discussed.

Keywords Desorption, Environmental fate, Leaching, Organic micropollutants,
Persistent organic pollutants, Pesticides, Soil distribution, Sorption, Transportation

1 Introduction

A wide variety of anthropogenic compounds with organic nature that are synthetic
compounds produced for multiple purposes or applications are extensively used
worldwide, such as personal care products, drugs and medicines, pharmaceuticals,
plastics and polymers, dyes, solvents, endocrine-disrupting compounds, and several
others. Pesticides, also known as PPPs, are also included among this long list of
persistent organic pollutants (POPs) which are characterized as potential toxicants
toward nontarget organisms.

More specific, the term pesticide is used for substances designed to be applied as
PPPs against various pests, weeds, and diseases that are harmful to cultivated plants,
and consequently threat and affect the crop yields. Their molecules are characterized
by different physicochemical properties, mobility, bioavailability, and toxicity.

Concentrations of pesticides have been detected and measured in numerous
environmental samples such as soil [1], surface water [2, 3], groundwater [4],
sediment [2, 3], edible cultured fruits, vegetables, and agricultural products
[5, 6]. In a recent study of Zhang et al. [3] investigating the occurrence of five target
neonicotinoid insecticides in soil-water-sediment systems of urban and rural areas in
South China the concentration levels of reported results were within the range of
0.003-229 ng g~ (dry weight, dw), 7.94-636 ng L™, and 0.017-31.3 ng g~
(dw) for soil, water, and sediment samples, respectively. According to a different
study of Pico et al. [6] the pesticide residues of 15 compounds (mainly insecticides
and fungicides) out of a list of 62 substances belonging to a wide variety of chemical
classes were detected in fruits from Saudi Arabia, whereas in 20% of the samples the
detectable concentrations were above the maximum residue limits (MRLs). The
results of a survey conducted by Zambito Marsala et al. [4] revealed the presence of
seven pesticides (chlorantraniliprole, dimethomorph, fluopicolide, metalaxyl,
penconazole, and tetraconazole) in 30% of the studied wells (situated in the Tidone
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Valley, Province of Piacenza, North-West of Italy) at a level higher than 0.1 ug L™"
that is the Environmental Quality Standard (EQS) for groundwater.

Based on the relevant published scientific literature, the occurrence, distribution,
and persistence of those POPs in the ecosystems is a subject on which the interest of
the global scientific community is focused undiminished. Therefore, the aim of the
present study is to carry out a review concerning the scientific articles published
within the last 5.5 years (from 01/01/2016 to 30/06/2021), regarding the research of
the environmental fate of pesticides in natural soil samples and under different
environmental conditions.

In more details, the current chapter provides a review of pesticides and selected
transportation and distribution processes, which take place into soil environments
and therefore determine the bioavailability and persistence of the selected molecules
into field systems. The first section provides general data about the topic of discus-
sion, i.e., pesticides classification, pathways of their entry into terrestrial matrices,
and interactions between different environmental compartments. Subsequent sec-
tions discuss selected migration and mobility mechanisms on which the global
scientific research interest has been focused. Particularly, the studies focusing on
the phenomena of sorption/desorption and leaching are reviewed, and their main
findings are summarized.

2 Pesticides in Soil Samples

An expansive range of synthetic pesticides belonging to different chemical classes,
possessing diverse physicochemical properties, and targeting to multiple and dis-
similar pests are available in the market. Those compounds are mainly used in
agriculture and applied in the cultured fields.

Based on the criteria of their chemical structure pesticides are subdivided into
categories of anilides, amides, organophosphates, organothiophosphates, carba-
mates, benzothiazoles, triazines, neonicotinoids, organochlorines, and many other
chemical classes. The classification of pesticides based on their target organisms
includes the classes of acaricides, fungicides, herbicides, insecticides, nematicides,
and plant growth regulators. According to the World Health Organization (WHO)
the classification of pesticides, based on their hazard towards exposed organisms,
contains five classes which are: extremely hazardous (Class la), highly hazardous
(Class Ib), moderately hazardous (Class II), slightly hazardous (Class III), and
unlikely to present acute hazard (Class U) [7].

The introduction of pesticides into the environment takes place mainly through
agricultural and urban applications of disease vectors control. Once in the soil,
pesticides can enter aquatic environmental bodies through alternative pathways.
The main phenomena that are responsible for the mitigation of pesticides are diffuse
processes, surface runoff, leaching, erosion, spray-drift, and atmospheric deposition
after their volatilization [8, 9].
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MAJOR MIGRATION AND DEGRADATION PROCESSES

h
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Fig. 1 Major migration and degradation processes to which pesticides substances are subjected to
after their application in the field and interactions between other environmental compartments

As shown in Fig. 1, possible transfer and distribution of pesticide compounds
between soil, water, air, and biota matrices occur while the extent of each interaction
and exchanging phase phenomenon is affected by several parameters, which in turn
are simultaneously dependent on: (1) the molecule and its physicochemical proper-
ties, (2) the characteristics of the environmental substrate that contains the pesticide,
(3) the application practice in terms of method, pesticide load, frequency, time
season, and other factors, (4) the environmental conditions such as temperature,
wind, etc., and finally (5) the geological and climatic characteristics of the site of the
application [10, 11].

After entering the environmental matrices, they go under chemical, (direct/indi-
rect) photochemical, or biological degradation processes that are possible to take
place concurrently with other physical phenomena that determine their removal and
distribution into different environmental substrates, such as adsorption, evaporation,
and surface movement [9].

Data concerning the major factors affecting the environmental fate and persis-
tence of a pesticide are detailed in Fig. 2. Consequently, due to their unquestionable
occurrence in residual quantities contained in various natural matrices and the
potential ecotoxicological impacts increased scientific concerns have been raised.

In the subsequent sections, some of the main distribution and degradation path-
ways that determine the fate of pesticides in soil-water systems are discussed and the
most important results of reviewed bibliography are summarized and presented.
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2.1 Sorption on Soil

Sorption of organic pesticides’ molecules onto the solid phase constituents of soil
(such as clay minerals, organic matter (OM), oxides and hydroxides of aluminum
and iron) is one of the most important and primary processes that can occur either via
areversible or a non-reversible mechanism and therefore influence the amount of the
pesticide that remains mobile in soil-water systems or not. When present in the soil
many pesticides are bound to soil colloids (clay, OM), and consequently become less
readily available to plants than the molecules that are not adsorbed and continue to
move in the soil solution.

Several reviews, overviews, and meta-analysis studies on the sorption of pesti-
cides among other POPs have been published in the past few years [8, 10—
19]. According to the conclusions and findings of all published review works, the
general agreement that sorption of pesticides by soils has been stated and reported.

Moreover, according to the findings of the present review in the same period of
the last 5.5 years (2016-2021), a large number of modeling studies dealing with the
pesticides transport and mobility in soils, leaching risk assessments, sorption data
(such as adsorption constants K,.), subsurface fate and dynamics have been
published [20-34].

Numerous theoretical and empirical sorption and desorption isotherm models
have been used for the kinetics of the studied processes. Undoubtedly, (ad)sorption
and/or desorption isotherms are frequently described by linear and nonlinear models
among which Freundlich, Langmuir, Elovich, and Henry isotherm adsorption
models are included which fit well the acquired experimental data. In Eq. 1 the
logarithmic Freundlich model is described:

X 1
%:CSZKF*CC./" (l)

where K is the Freundlich equilibrium constant (usually in pg"' " mL'"g™"), C, is
the concentration of the selected and studied pesticide (usually in pg mL ") after the
equilibration, Cy is the concentration of the (ad)sorbed pesticide in soil matrix
(g g1, and finally 1/n is the linearity degree.

With the condition that the adsorption of pesticides’ reactive groups over the
soils’ particulates proceeds through a homogeneous distribution onto the adsorbents’
surface and that no later interactions occur between adjacent adsorbed molecules that
occupy a single surface site, the Langmuir adsorption isotherm can be applied which
is described by the mathematical formulations of Eqs. 2 (nonlinear form) and 3
(linear form):

_KL*b*Cg
Qe_l_’_b*ce (2)



Sorption/Desorption, Leaching, and Transport Behavior of Pesticides in. . . 143

% T K. >1k q % G)
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where g, and K, are the concentration of adsorbed pesticide and the adsorption
equilibrium constant, respectively, whereas ¢,, and C, are the maximum adsorption
capacity and the concentration of the pesticide compound in soil-water system,
correspondingly after the equilibration.

A multilayer adsorption is described by Elovich’s model that is expressed by the
mathematical expression of Eq. 4:

de — b, C,™ (4)

m

Among the several main mechanisms that have been proposed to explain the
adsorption of pesticides onto the soil colloid components, van der Waals force
attraction (dipole—dipole interactions), hydrophobic bonding, hydrogen bonding,
charge transfer (electrostatic attraction), ion exchange, and ligand exchange mech-
anisms are included. Depending on the nature and physicochemical characteristics of
pesticide molecules and soil constituents (acidity or basicity, solubility, charge
distribution on the molecule, polarity, molecule size, polarizability, etc.) simulta-
neously mechanisms may occur [14, 15, 18, 30, 32].

2.2 Leaching in Soil

Frequently, the movement of solute pesticides occurs through the soil profile by the
effect of water, rainwater, or irrigation water. In this way, the vertical transportation
of several pesticides into the soil column by runoff is often observed and the removal
of those molecules from topsoil into lower subsoil depths takes place. This process is
known by the term leaching and via this phenomenon, the downward migration of
organic pollutants through the unsaturated zone to groundwater is possible to
happen. Therefore, the potential displacement of organic pesticides from the soil
surface and root zone to aquifers which are consequently vulnerable to pollution
toward pesticides used in crop production is a subject on which the scientific interest
has been focused.

Diffusion and mass flow phenomena that take place simultaneously may be
involved in the leaching process of pesticides through soil in the solution phase.
According to the published scientific literature, numerous models have been devel-
oped and evaluated that describe the leaching of organic pesticides in the root zone
and the intermediate vadose zone, and the flushing of residual solute mass in the
aquifer [25, 32, 33].
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3 Results and Discussion

3.1 Overview of Found Data Published in the Last 5.5 Years
Regarding the Transportation Behavior of Pesticides
in Soils

The search was based on “Scopus Database” using as keywords the terms “pesti-
cide,” and “soil,” and “sorption” or “desorption” or “leaching” process. Only
original research publications since 2016 were considered, while all critical reviews
and overviews published in the same period were excluded. Target pollutants are
tested either individually or in mixture with other toxic pollutants.

Numerous scientific publications have arisen by researchers in the last 5.5 years
concerning the investigations on the distribution and mobility of pesticides into soil
compartments after their entrance into the field. More specific, during the current
overview a great number of publications, overall 228 reports retrieved by “Scopus
Database” have been found for the period 20162021 (during 01/01/2016 to 30/06/
2021) regarding several different pesticides that belong to a wide variety of chemical
families and have been investigated for their efficiency to be (ad)sorbed, desorbed on
soils, and transported into groundwater.

The annual number of records published for each year overviewed on investigat-
ing the (ad)sorption, desorption, and leaching processes of pesticides in natural soil
substrates is illustrated in Fig. 3. In this point it must be underlined the fact that the
survey for 2021 is restricted only to the first half of the year (from 01/01/2021 to
30/06/2021) that explains the low number of findings. In general, a slightly variable
annual number of scientific published data regarding the theme is noticed that
approaches the mean value of 40 reports per year (Fig. 3).

Table 1 provides a summary of all the 228 reviewed published data found during
the present review work for each individual pesticide compound reported. The
search was based on “Scopus Database” using as keywords the terms pesticide,
soil, and sorption or desorption or leaching process. Only original research publica-
tions since 2016 were considered, while all critical reviews and overviews published
in the same period were excluded. Target pollutants are tested either individually or
in mixture with other toxic pollutants.

According to the findings of the current review it is observed that among the
overall 186 individual pesticides for which evaluation of adsorption/desorption
capacity on soil, leaching, and transportation process has been surveyed the triazine
herbicide atrazine is the one on which scientific interest has been focused
(24 reviewed articles, Table 1), followed by the organophosphorus insecticide
chlorpyrifos (21 reviewed articles, Table 1), the nicotinoid insecticide imidacloprid
(15 reviewed articles, Table 1), the organophosphorus insecticide glyphosate
(13 reviewed articles, Table 1), and the systemic fungicide metolachlor (13 reviewed
articles, Table 1).

Hence, it can be stated that the scientific interest has been focused on the most
commonly used and frequently detected pesticides or/and the pesticides exhibiting
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Fig. 3 Annual number of records published during the period from 01/01/2016 to 30/06/2021
regarding the (ad)sorption, desorption, and leaching processes of pesticides into soil/water systems.
The plotted data have been located by “Scopus Database” by entering the keywords “pesticide,” and
“soil,” and “sorption” or “desorption” or “leaching”

the longer half-lives that can remain in soil at levels above several hundreds of
pg kg~ and therefore pose a higher ability to threat exposed ecosystems and humans
through food chain.

Based on the gathered and reviewed information of Tables 1 and 2 was created
after the classification of each pesticide compound into 20 main chemical groups and
one last group that was named “others” containing all the compounds that could not
be classified to any of the previous 20 ones, such as aminomethylphosphonic acids,
thiadiazines, triketones, uracils, nitriles, dicarboximides, anthranilic diamides; halo-
genated pyrroles; benzoylureas; pyridazinones; dimethoxybenzenes chloro
substituted; isoxazolidinones; pyrazole carboxamides; disulfides; thiazole
carboxamides; benzofuranyl alkylsulfonates; organobromines; thiadiazoles;
phosphoramido compounds; phenylamides; dinitroanilines; isoxazoles; pyrimidines,
phenols, etc.

As shown from the obtained information, it is obvious that the majority of the
studies (= 18%) are dealing with the chemical group of organophosphorus pesti-
cides and their transportation behavior in soils (Fig. 4). Afterward, the chemical
groups of amide and acetamide herbicides and fungicides (with 12 totally studied
chemical compounds), sulfonylurea herbicides (among which the most studied
compounds were sulfometuron-methyl with five reports and nicosulfuron with four
reports) and conazole fungicides (among which the most surveyed molecules were
tebuconazole with 12 reports and penconazole with four reports) are following in the
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Table 2 Classification of reports reviewed in the current overview regarding the recently
published scientific published data on (ad)sorption/desorption and leaching of pesticides in natural
soil matrices. The search was based on “Scopus Database” and only original research publications
since 2016 are included

Chemical groups

No. of
target
pesticides

Pesticide compounds (number of
found and reviewed data)

Amide and acetamide herbicides, and
fungicides

12

Boscalid (5); Cymoxanil (3);
Diclocymet (1); Dimethenamid (3);
Flutolanil (3); Napropamide (1);
Oxadixyl (1); Penflufen (1);
Penoxsulam (1); Pethoxamid (1);
Prochloraz (2); Propyzamide (1)

Anilide herbicides, and fungicides

Acetochlor (1); Alachlor (5);
Butachlor (2); Flufenacet (3);
Flumetsulam (1); Fluxapyroxad (1);
Metolachlor (13); Propanil (1)

Benzoic acid herbicides

Bispyribac-sodium (3); Quinclorac

@

Carbamate, thiocarbamate, and dithio-
carbamate insecticides, herbicides, and
fungicides

Benomyl (1); Carbaryl (3);
Carbendazim (3); Carbofuran (6);
Fenobucarb (2); Pirimicarb (2);
Prosulfocarb (3); Thiram (1)

Conazole fungicides

10

Difenoconazole (1); Epoxiconazole
(3); Flusilazole (2); Hexaconazole
(2); Myclobutanil (1); Penconazole
(4); Propiconazole (3); Tebuconazole
(12); Tetraconazole (1); Triadimefon

@

Diphenyl ether herbicides

Oxyfluorfen (1)

Imidazolinone herbicides

Imazamox (1); Imazapic (1);
Imazapyr (1); Imazaquin (2)

Neonicotinoid insecticides

Acetamiprid (3); Clothianidin (9);
Dinotefuran (2); Imidacloprid (15);
Paichongding (1); Thiacloprid (10);
Thiamethoxam (5)

Organochlorine insecticides, fungi-
cides, and acaricides

Aminocyclopyrachlor (2);
Chlorothalinil (3); 2-Chlorophenol
(1); DDT (2); Dicofol (1),
2,4-Dichlorophenol (1); Endosulfan
(3); Pentachlorophenol (4)

10

Organophosphorus insecticides, herbi-
cides, fungicides, and nematicides

33

Azinphos-methyl (1); Cadusafos (2);
Chlorfenvinphos (3); Chlorpyrifos
(21); Chlorpyrifos-methyl (1);
Crotoxyphos (1); Demeton (1); Diaz-
inon (5); Dichlorvos (2); Dicrotophos
(1); Dimethoate (4); Disulfoton (1);
Ethion (2); Ethoprophos (1);
Fenchlorphos (1); Fenitrothion (2);
Fenthion (3); Fosthiazate (4); Glyph-
osate (13) Malathion (1);
Methidathion (1); Mevinphos (1);

(continued)
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Chemical groups

No. of
target
pesticides

Pesticide compounds (number of
found and reviewed data)

Monocrotophos (1); Parathion (2);
Parathion methyl (4); Phenthoate (1);
Phorate (1); Phosmet (1); Pirimiphos-
ethyl (1); Sulfotep (1); Terbufos (1);
Trichlorfon (or Metrifonate) (1);
Toclofos-methyl (1)

11

Phenoxy herbicides

2,4-D (9); 2,4-dB (1); Fluazifop (1);
MCPA (5); Na-K-DMA MCPA salt
(1); Quizalofop-P-ethyl (1)

Phenylurea herbicides

Chlorotoluron (6); Diuron (21);
Isoproturon (9); Linuron (3); Monu-
ron (2); Siduron (1)

Pyrazole

Ethiprole (1); Fipronil (4);
Metazachlor (2)

Pyrethroid insecticides

Bifenthrin (1); Cypermethrin (3);
Deltamethrin (1); Lambda-
cyhalothrin (1); Permethrin (1)

Pyridine and pyridine carboxamides
insecticides and herbicides

Boscalid (5); Diflufenican (3);
Flonicamid (1); Picloram (2);
Triclopyr (1)

16

Strobilurin fungicides

Azoxystrobin (3); Kresoxim-methyl
(2); Phenamacril (1); Trifloxystrobin
()

17

Sulfonylurea herbicides

11

Azimsulfuron (1); Chlorsulfuron (1);
Flucetosulfuron (1); Iodosulfuron (1);
Metsulfuron-methyl (2);
Nicosulfuron (4); Sulfometuron-
methyl (5); Thiencarbazone-methyl
(1); Thifensulfuron-methyl (1);
Triasulfuron (4); Tribenuron-methyl

€))

18

Triazine herbicides

Ametryn (2); Atrazine (24);
Indaziflam (1); Prometryn (2);
Pymetrozine (1); Simazine (4);
Terbuthylazine (5); Terbutryn (1)

19

Triazinone herbicides

Hexazinone (12); Metribuzin (2)

20

Urea herbicides

Tebuthiuron (2)

21

Others: Aminomethylphosphonic
acids, Thiadiazines, Triketones, Ura-
cils, Nitriles, Dicarboximides,
Anthranilic diamides; Halogenated
pyrroles; Benzoylureas;
Pyridazinones; Dimethoxybenzenes
chloro substituted; Isoxazolidinones;
Pyrazole carboxamides; Disulfides;
Thiazole Carboxamides; Benzofuranyl
alkylsulfonates; Organobromines;
Thiadiazoles; Phosphoramido

42

Abamectin (2); AMPA (1); Bentazone
(5); Benzobicyclon (1); Bromacil (1);
Bromoxynil (1); Captan (1);
Chlorantraniliprole (1); Chlorfenapyr
(1); Chlorfluazuron (1); Chloridazon
(1); Chloroneb (1); Clomazone (4);
Cyantraniliprole (1); DMDS (1);
Ethaboxam (1); Ethofumesate (1);
Ethylene dibromide (1); Etridiazole
(1); Fenamiphos (2); Fenarimol (2);
Fludioxonil (1); Flumioxazin (1);

(continued)
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Table 2 (continued)

No. of

target Pesticide compounds (number of
Chemical groups pesticides | found and reviewed data)
compounds; Phenylamides; Iprodione (1); Metaldehyde (1);
Dinitroanilines; Isoxazoles; Pyrimi- Mesotrione (3); Metalaxyl (12);
dines, Phenols, etc. 2-Nitrophenol (1), Nonylphenol (1);

Pendimethalin (6); Procymidone (3);
Pyrasulfotole (1); Pyrimethanil (2);
Quinoxyfen (1); Sedaxane (1);
Sulfentrazone (2); Tetradifon (1);
Thiabendazole (1); Thymol (1);
Triadimenol (1); Triclosan (1);
Triflumezopyrim (1)

Amides & acetamides

6.4555_\

Anilides 4.30%

Benzoic acds 1.08%

Carbamates,
thiocarbamates, and
= __~dithiocarbamates 4.30%

Ureas
0.54%

Diphenyl ethers 0.54%

Triazinones
/ Imidazolinones

o\

2,15%
Neonicotinoids
3.76%
Organochlorines
4.30%
Pvl‘ldiﬂlbecaﬂd I:;TWM | Organophosphorus 17.74%
carboxamides
2.69% Phenylureas \ Phenoxy

p'mn;:;m 3.23% 3.23%

2.6

Pyrazoles
1.61%

Fig. 4 Opverall relative frequency of reports for different chemical groups of pesticides concerning
their (ad)sorption/desorption and leaching phenomena in natural soil matrices overviewed in
present review. The search was based on “Scopus Database” using as keywords the terms pesticide,
soil, and sorption or desorption or leaching; only original research publications since 2016 were
considered, while all critical reviews and overviews published in the same period were excluded.
Target pollutants are tested either individually or in mixture with other toxic chemicals
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second, third, and fourth place by scoring almost 6.5%, 6%, and 5.5% of relative
literature found, respectively.

In Table 3 detailed information is presented regarding the recently published
scientific published data on the performed experimental procedures for the assess-
ment of some selected pesticides’ transportation capacity and the main findings of
some selected reviewed articles. According to the reviewed records addressed in this
overview most studies employed and applied the OECD 106 guideline of batch
equilibrium method for adsorption-desorption proposed by the Organization for
Economic Co-operation and Development (OECD) [248] while the use of soil
columns is also an alternative method preferred in a lower number of published
research.

Furthermore, from the selected data that are presented in Table 3 it is obvious that
there is a great variation between the estimated adsorption and desorption coefficient
values of pesticides depended not only on the physicochemical properties of the
tested soils but also on the characteristics of the pesticides. This observation is in
accordance with other data published previously in research and review studies
which highlighted the fact that besides the various sorption parameters which can be
observed and measured for the same pesticide in different soil matrices, also a
variability among different pesticide compounds adsorbed on the same soil matrix
can exist [8, 14, 18, 145]. In the study of Zhang et al. [135] who investigated the
sorption, desorption, and degradation kinetics of three neonicotinoid insecticides in
four agricultural soils of different texture (two loam and two clay loam type) and
different physicochemical properties such as cation exchange capacity (CEC), OM
content, and pH a wide variety of sorption and desorption parameters were reported.
For instance, the values of Freundlich equilibrium constant K (in (mg/kg)(mg/L)™")
for clothianidin were calculated between the range of 0.992 and 3.39, whereas the
same parameter of sorption affinity for the other two selected neonicotinoids
imidacloprid and thiacloprid varied between 1.01-3.42 and 1.16-9.06, correspond-
ingly. Low sorption of all three neonicotinoids was generally observed that was
mainly affected by the SOM content following the order thiacloprid > imidacloprid ~
clothianidin [135].

Many of the reported data were explained by the phenomenon of hysteresis in soil
(ad)sorptive and/or desorptive processes. Based on our observation sorption-
desorption hysteresis phenomena have been reported in several overviewed bibliog-
raphies influencing and controlling the distribution of pesticides into soil-water-biota
systems [57, 60, 125, 173, 174, 199]. As reported in the literature, the effect of
desorption hysteresis may be observed when the desorption of adsorbed pesticide
molecules is not allowed to occur immediately due to the high-strength chemical
bonds that were developed in the sorption process [57, 60, 125, 173, 174, 199]. Usu-
ally, hysteresis is quantified in terms of the extra Gibbs free energies of high-energy
sorption sites that are sorbate- and sorbent-dependent, varying across sorption iso-
therms [125]. In the recently published study of Durovi¢-Pejcev et al. [125] regard-
ing the adsorption-desorption behavior of clomazone in two Serbian agricultural the
hysteresis effect that was observed in both tested soils increased with the increase of
clomazone’s initial concentration in the soil-water system, whereas the percentage of
desorbed amount during successive desorption cycles decreased. On the contrary,
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decreased hysteresis coefficient of the atrazine desorption with increasing its con-
centration in the case of low value of initial atrazine concentration was reported by
Huang et al. [57], while in the case that the initial atrazine concentration was high
acted reversely, indicating that the mechanism for delaying desorption in the sor-
bents varied with the initial atrazine concentration.

3.2 Effects of Selected Factors on Pesticide Sorption
and Leaching in Soils

3.2.1 Impact of Soil Organic Matter

Several published studies have shown that soil OM (SOM) content is regarded as
one of the most crucial and predominant soil characteristics that control the extent to
which sorption of organic hydrophobic molecules in natural soils happens [10, 118,
249].

As it has been well established in the relevant bibliography the chemical com-
position, physicochemical properties or characteristics, and nature of OM differ
between soils originating from variable regions. Among the several different key
factors on which the nature of SOM is dependent, the origin and age of the soil
matrix, the occurring environmental conditions, and the practicable agricultural
methods are included [118, 183]. For instance, according to the results a survey
conducted by Xu et al. [250] regarding the carbon stabilization in aggregate fractions
responding to straw input levels under different soil fertility levels it was found that
varied rates of organic C occurred based on the soil fertility and plant input levels.

SOM in general consists of vegetal and animal detritus at different levels of
decomposition and mineralization. SOM is correlated with the fertility of the soil as
it is considered to play the primary role of the soil carbon sink, whereas its
concentration varies between 1 and 6% overall. A wide range of saturated and
unsaturated complex organic molecules with aromatic, aliphatic, hydrophilic, and
hydrophobic substances are included in the diverse composition of SOM. Among
other organic compounds carbohydrates, fats, lignins, proteins, and humic sub-
stances (fulvic acid (FA), humic acid (HA), and humin) are included. The allocation
of contained functional groups (oxygenated: -OH, -COOH, -C=0, -C-O-C-, -C-O-
O-C, etc.; nitrogen containing amine and amide: -NH,, -NH, aromatic ring, etc.)
which act as sites of adsorption determine and regulate the degree of pesticides’
sorption on the soil surface and therefore the leaching behavior of pesticides into
aquifers.

The recent findings of the study conducted by Wang et al. [62] regarding the
FT-IR spectra characterization of soil-derived dissolved organic matter (DOM) for
the investigation of atrazine binding during the sorption process onto black soil
indicated that main compositions of soil DOM among others mainly contained
proteins, polysaccharides, and humic substances that significantly enhanced the
adsorption efficiency of atrazine by soil.
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Numerous studies have shown that a positive correlation between SOM and
adsorption coefficient values, for instance for alachlor (R> = 0.80) [42]
(R* = 0.87) [43], carbendazim (R* = 0.77) [94], chlorpyrifos (R* = 0.82,
p < 0.001) [119], endosulfan (R2 = 0.96) [168], flucetosulfuron (r = 0.910) [174],
jiodosulfuron (R? = 0.87) [197], and triasulfuron (r = 0.987) [246].

In order to estimate the influence of SOM quality in the abamectin and atrazine
Koc values the quality of contained HAs was analyzed by Novotny et al. [35]
through the means of '*C solid state Nuclear Magnetic Resonance ('>*C NMR) and
Principal Component (PC) Regression. Negative loadings for aliphatic compounds
and positive loadings for aryl C, typical of partially oxidized pyrogenic C were
reported. Because no correlation between K values and SOM was observed, the
normalized by OC values (Koc)were obtained that varied within the range of
1,100-11,400 mL gfl for abamectin and 30-150 mL gfl for atrazine. The SOM
content was not enough to explain the wide K¢ variation, whereas on the contrary
the chemical structure of SOM could. Acquired results showed strong correlation of
HAs with the abamectin Koc values (R = 0.91, p <5 10~®) and weaker with
atrazine Koc (R> = 0.63, p < 0.0001), in addition to a smaller standardized slope for
abamectin than for atrazine (1.01 and 0.76 respectively), which were explained by
the higher hydrophobicity of abamectin, being thus more prone to interact with the
polycondensed aryl groups from the pyrogenic C.

According to Parolo et al. [118], who investigated the sorption behavior of the
nonionic pesticide chlorpyrifos on 12 representative natural soils of the North
Patagonian Argentinian region the process of sorption was mainly affected by soil
aliphatic components that were measured by FT-IR analysis on the whole soil
samples. The values of normalized by the organic carbon (OC) content sorption
coefficients varied between 9,000 and 20,000 L kgfl (for %OC content 1.25-6.82),
while a significant relationship between chlorpyrifos sorption (Koc) and the vari-
ables pH and A/B height band ratio (band A: aliphatic components,
2,947-2,858 cm ! and band B: hydrophilic components, 1,647-1,633 cmfl) was
found and reported (R2 = (0.66). Based on the derived model, Koc = 22,757 + 4,364
A/B —1,564 pH, it was observed that the ratio of the peaks’ height A/B seemed to
influence favoring sorption whereas on the contrary soil pH seemed to have a
significant opposite effect on sorption.

Recently, a positive correlation was reported by Mendes et al. [183] among SOM,
clay content, and sorption K values of tebuthiuron and hexazinone in soil samples
taken from an agricultural area of Sdo Paulo, Brazil. The values of sorption coeffi-
cients K for the two tested pesticides after using the batch equilibrium method ranged
from 1.2 to 2.9 mL g~ for tebuthiuron and from 0.4-0.6 mL g~ for hexazinone,
respectively.

Humic substances and their relation to the sorption of eight selected agricultural
pesticides (atrazine, carbaryl, flumioxazin, hexazinone, imidacloprid, MCPA,
metsulfuron-methyl, and terbuthylazine) in eight volcanic soils that differed in the
fulvic and humic constituents of their OM were evaluated by Alister et al. [50] and
published results of their study indicated that HA content regulated the sorption
between pesticide and soil, especially through the carboxylic groups.
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The study of Gaonkar et al. [115] focusing on the evaluation of soil organic
amendments and their impacts on the sorption of organophosphate pesticides on an
alluvial soil highlighted that the net effect of the application of organic amendments
was an increase in the sorption of two selected organophosphates, dichlorvos, and
chlorpyrifos that depended on both the nature of DOM and pesticide properties,
whereas according to the spectroscopic characterization large amounts of highly
humified and aromatic material were mainly contained in used organic amendments.

The significance that SOM has in the environmental fate of acetamiprid, as well
as the investigation of the interactions between acetamiprid and three fractions of
humic substances was surveyed by Murano et al. [38] by performing batch equilib-
rium experiments by using various combinations of a field soil sample and three
different fractions prepared (HAs, FAs, and humin isolated from the same soil).
Based on the reported Freundlich isotherm constant values for the tested fractions
(KF: 6.100 for humin, 4.179 for HAs and 4.756 for FAs) interactions of hydrophobic
nature between humin and HAs or FAs were revealed, in which their dissociated
carboxyl and phenolic groups became oriented to face the soil solution.

The influence of soil organic components determined by '*C CP/MAS NMR
spectroscopy on the sorption of chlorpyrifos was assessed by Savini et al. [119] who
reported that whereas aryl C relative proportion was positively correlated with Koc
values, on the contrary, the correlation between alkyl C and O-aryl C proportions
with Koc data is negative (R* = 0.82, p < 0.001).

According to the research of Cwielag-Piasecka et al. [90] who compared the
effect of two types of organic sorbents, HAs, and biochar, on the sorption-desorption
processes of different polar pesticides (carbamates, phenoxyacetic acids, and aniline
derivatives), the investigated HA exhibited high affinity to polar, ionic pesticides of
high water solubility, which were adsorbed via specific interactions with HA func-
tional groups. Specifically, HAs exhibited strong affinity for the ionic substances
(percentage uptakes: 74.6 and 67.9% initial dose of 2,4-D and MCPA, respectively)
and much weaker retention of nonionic carbamates (35.4% of carbofuran and 10.2%
of carbaryl sorbed).

The published work of Chitolina et al. [184] investigating the Influence of soil
depth on sorption and desorption processes of hexazinone revealed that the small
differences that were observed in OC content between soil depths (of 0-10, 10-20,
and 20-30 cm) affected hexazinone retention and the corresponding decreasing
order of determined Freundlich coefficients (Kz) values were 0.18, 0.11, and
0.08 g™ L g1

Furthermore, the impact of exogenous OM (composted sheep manure) on the
sorption and leaching of boscalid, flonicamide, myclobutanil, and penconazole
pesticides was assessed by Pérez-Lucas et al. [82] and the obtained results of the
conducted equilibrium experiments on an agricultural soil (SE Spain) showed that
the sorption capacity of amended soil was significantly increased in all cases
minimizing their potential for groundwater pollution. In addition, leaching experi-
ments indicated with amended soil columns significantly limited the vertical move-
ment of the pesticides in leachates especially for the cases of boscalid and
penconazole.



Sorption/Desorption, Leaching, and Transport Behavior of Pesticides in. . . 173

3.2.2 Impact of Soil Inorganic Components

Minerals and rocks are the predominant inorganic soil components that are formed
through lithogenesis and subjected to further diverse changes that are dependent on
several factors and processes such as diagenesis, metamorphism, erosion, deposi-
tion, weathering, and transport [251]. The average chemical constituents of minerals
(as natural inorganic compounds of Earth’s crust) are oxygen (50% w/w), Si (25%
w/w) and mainly AI’*, Fe**, Fe’*, Mg?*, Ca®*, Na*, and K* cations (the rest 25%
wiw) [251].

According to the overviewed data of the present study the clay minerals group
(kaolinites, smectites, vermiculites, illites, and chlorites) has been demonstrated as
the most important inorganic fraction for the sorption of synthetic pesticides.
Inorganic portion of soil that is mainly the clay fraction contained in cases of soil
matrices which are characterized with low OM contents is very important for the
adsorption process of organic pesticides [110]. Therefore, apart from the SOM that
has by definition high compatibility and strong association affinity for many non-
polar pesticides (thus offers adsorption sites for such molecules especially into soils
with >3% OM) clay minerals also play an important role and have a substantial
contribution to the process of sorption, specifically in the case of polar pesticides and
soils and sediments with low OM content [252].

A wide diversity of mechanisms through which pesticides can be (ad)sorbed from
soil/water systems on soil clay mineral has been reported in the relative bibliogra-
phy, including H bonding, hydrophobic bonding, van der Waals interactions, anion
exchange, cation exchange, and ligand exchange pathways [244].

The effects of clay content in soil on the sorption process of two organophos-
phorus pesticides diazinon and chlorpyrifos were examined by Copaja et al. [110] in
a natural soil sample (Chile) and in a soil modified with clay addition (1% of
kaolinite or/and montmorillonite). Acquired results showed that the addition of
both clays into the soil resulted in increased amounts of both pesticides retained in
the soil and hence lowered the possible contamination of the groundwater.

These results are in accordance with the positive correlation that was found and
reported by Mendes et al. [183] among clay content, SOM, and tebuthiuron and
hexazinone sorption K, values (in the range of 1.2-2.9 mL. g_l and 0.4-0.6 mL g_l,
for tebuthiuron and hexazinone, respectively).

The results of Boskovi¢ et al. [169] who conducted a study concerning the
adsorption of the two conazole fungicides (epoxiconazole and tebuconazole) in
20 soils from the Czech Republic in relation to soil properties were very interesting.
More specifically, among the “basic” (TOC, pH, clay), “advanced” (surface area,
minerals) soil properties, and K, coefficients that were evaluated in the multivariate
analysis revealed for both fungicides a strong negative correlation with soil pH, and
a lower positive correlation with soil organo-mineral complex (by means of TOC,
clay, and surface area) and C and N in SOM. No correlation of adsorption parameters
with particle sizes or CEC was observed.



174 M. C. Vagi and A. S. Petsas

According to the published data of Kumari et al. [174], regarding the investiga-
tion of the adsorption-desorption and leaching of the sulfonylurea herbicide
flucetosulfuron in three Indian soils the acquired K exhibited positive correlation
with OC content (» = 0.910) and clay content (r = 0.746). On the contrary a negative
correlation with soil pH (r = —0.635) was revealed.

The statistical multivariate tests conducted in the survey of Sidoli et al. [211]
regarding the adsorption data of the herbicide S-metolachlor and two of its metab-
olites (metolachlor ethane sulfonic acid and metolachlor oxanilic acid) on 17 surface
soils and three geological solids related the highest K, values for the herbicide
S-metolachlor with the soils and geological solids with the highest OC and clay-
fraction contents. Similarly, the sorption values of the new insecticide
cyantraniliprole in different types of soils (Russia) were studied by Kolupaeva
et al. [137] via the batch equilibrium method and obtained Ko closely correlated
with the OC and clay contents.

In a recent survey of Agbaogun et al. [103] on the adsorption behavior of five
phenylurea herbicides by tropical soils (18 differently composed soils originating
from southwestern Nigeria) statistically significant correlations (Pearson) were
delivered between sorption parameters (K, Ky and n) and specific soil and herbicide
properties, among which pH, CEC, OC content, content of amorphous Fe and Mn
oxides, clay/silt mass proportions, as well as molecular descriptors of octanol-water
partition coefficient (log K,,) and molecular mass (MW) of the moderately hydro-
phobic herbicides, were included. Furthermore, the estimated Ky minerai Values of
diuron (2.71), linuron (1.98), monuron (0.85), chlorotoluron (0.59), and isoproturon
(0.56) reported in the same survey indicated that Ky mineras contributed between
15 and 40% to the Ky average T€ported for these compounds, a fact that is implying
that soil mineral fractions, vis-a-vis clay minerals, and the amorphous metal oxides,
also contributed fairly significantly (about 15-40%) to the sorption of the five test
compounds in the soils. Moreover, the intercorrelations between the basic properties
of the soils used in this study revealed that extractable Fe and Mn oxides are
significantly high and positive correlated with clay and silt contents and negative
correlations with sand content [103].

Hiller et al. [201] tested the adsorption of Na-K-DMA MCPA salt (dimethyl
ammonium-potassium-sodium salt of (4-chloro-2-methylphenoxy)acetic acid) on
three agricultural soils by using column experiments and demonstrated the effect
of clay and OC content on Na-K-DMA MCPA salt sorption despite the fact that
small number of soil samples were tested. In a previously published survey of Peng
et al. [247] both clay content and OM of soils were found to be important factors
affecting the adsorption of triflumezopyrim in water-soil environment system. In the
study of Rodriguez-Liébana and Pefia [146] examining the adsorption-desorption
capacity of dimethenamid and fenarimol onto three agricultural soils and how these
processes are affected by treated wastewater and fresh sewage sludge-derived
dissolved OC reported that in the case of fenarimol’s adsorption by the soil OC
content seemed to be the major factor controlling the process, whereas in the case of
the adsorption of dimethenamid the mineral fraction played the key role, especially
in the matrix where clay:organic content ratio was high.
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In a work of Marin-Benito et al. [26] studying and comparing the effect on the
mobility of ethofumesate and terbutryn in soils and two organoclays (swelling and
non-swelling clays modified with octadecyltrimethylammonium) was observed that
the effect of the organoclay barriers was more significant for ethofumesate, whereas
for terbutryn the effect of organoclays was close to that of certain organic residues.
The effect of soil organo-inorganic compounds different in particle size on butachlor
sorption was surveyed by Huang et al. [87] and results showed that the clay fraction
was the highest in butachlor adsorption capacity but the lowest in desorption rate,
while the sand fraction was the lowest in adsorption capacity but the highest in
desorption rate. The published results of Ahmad [238, 246] regarding a pedospheric
sorption investigation of the sulfonyl urea herbicide triasulfuron via regression
correlation and regression analysis in selected soils gave a positive correlation
between K, and clay content (r = 0.980).

In the study of Prado et al. [166] regarding the mobility of the pesticide 2,4-D in
clay soils it was concluded that the preferential flow caused by both high clay content
and the presence of macrofauna pores significantly reduced the buffering capacity of
the soil, increasing the risk of contamination by herbicides of the underlying aquifer.
The addition of synthetic clay (oleate-modified hydrotalcite) by Gamiz et al. [207] to
an agricultural soil affected the sorption, leaching, persistence, and enantiomeric
composition of soil residues of two chiral fungicides, tebuconazole and metalaxyl.
Specifically, the addition of clay at a rate of 1% increased metalaxyl soil sorption
coefficient (K;) from 0.34 to 3.14 L kg_1 and that of tebuconazole from 2.4 to
474 Lkg "

Based on the regression equation that was proposed Gao et al. [231] for the
sorption prediction of pymetrozine on six different soil samples: log
Ky = 4.3708-4.5709 x log (pH in 0.01 mol-L™' CaCl,) + 0.4700 x log OC
% + 0.0057 x sand (%) + 0.0022 x CEC (clay), with R?* =0.9982, the clay content
of soil positively affected the sorption of pymetrozine.

According to the findings of current review it is observed most of the found and
overviewed articles investigating how soil inorganic minerals can affect the
adsorption-desorption behavior of pesticides in the soil is focused mainly on crystal
silicate clay mineral (for example, montmorillonite and kaolinite), while on the
opposite the scientists focusing on soil metal oxides, such as iron oxides, aluminum
oxide, are much less in number. In this direction of research was the study of Huang
et al. [57] on the effects of amorphous Fe oxides on adsorption-desorption of atrazine
in soil. Based on the conclusions of the study amorphous Fe oxides with relatively
high specific surface area and relatively big number of protons donating functional
groups demonstrated a relatively high sorption capacity and affinity for atrazine even
though their complexation with SOM contained in natural soil inhibits their direct
adsorption capacity.

The role of soil iron oxides (IOs) in the distribution and interactions of penta-
chlorophenol in soils was investigated by Diagboya et al. [225] and batch sorption
studies were conducted on whole soils and soils selectively treated to remove 10s
(IOR) and OM (OMR). As revealed by the kinetic models, sorption equilibrium
occurred faster in the IOR soils than the untreated and OMR soils and therefore iron
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oxides played greater roles in the sorption of pentachlorophenol than the OM
content.

The influence of Al-oxide on pesticide sorption to woody biochars with different
surface areas (SA) was investigated by Shou et al. [199]. The published results of
this survey revealed the enhanced sorption of the pesticide isoproturon to the Al-
oxide-treated low-SA biochar that was positively related to the increased
mesopore area.

3.2.3 Impact of Pesticides’ Physicochemical Properties

The chemical structure of a pesticide and some specific characteristics of its mole-
cules determine its sorption behavior and its affinity to be sorbed on soil colloids.
The nature of functional groups contained in the compound is a crucial factor.
Several functional groups such as carboxyl, carbonyl, alcoholic and amino moieties
are very important as they govern the process of binding. Enhanced adsorption
capacity has been observed with the presence of the below functional groups in
pesticides molecules in the increasing order: R3N*, -CONH,, —OH, -NHCOR, —
NH,, -OCOR, and —-NHR [18]. Especially the ability of amino group to be proton-
ated (which is a property dependent on pK value of the molecule) leads to the
sorption as cations, and thus is very important. Moreover, the participation of amino
and carbonyl moieties into hydrogen bonding has also been revealed [18].

A study on the soil sorption of six basic (pirimicarb, pirimiphos ethyl, prochloraz,
prometryn, quinoxyfen, and triadimefon), and six neutral (a-endosulfan, chlorpyri-
fos, fenthion, parathion, parathion methyl, and cis permethrin) pesticides was
conducted by Vitoratos et al. [123] and based on the experimental data that were
acquired hydrophobic, electrostatic, and polar interactions were implied.

The charge characteristic of pesticides, the equal or unequal distribution of
electrons in its molecule producing temporary or permanent polarity, correspond-
ingly, its weak or strong tendency to donate or adopt protons are only some of the
pesticide properties that determine the mobility of pesticides into the soil-water bulk
systems.

The sorption behavior of both ionizable and nonionizable pesticides in the
presence of HA in soils was investigated by Cwielag-Piasecka et al. [90] and high
affinity of investigated HA to polar, ionic pesticides of high water solubility, which
are sorbed via specific interactions with HA functional groups.

Moreover, water solubility and hydrophobicity or lipophilicity, expressed with
means of octanol/water partition coefficient (K, or log K,,), are two of the most
important physicochemical properties whose impacts on the sorption have been
evaluated in several scientific surveys [20, 28, 122, 134]. Rodriguez-Liébana et al.
[138] evaluated the adsorption behavior of six different pesticides (a-cypermethrin,
deltamethrin, pendimethalin, thiacloprid, dimethenamid, and fenarimol) that differed
in hydrophobicity (range of log K, values: 1.26-5.8) in three organic poor soils (%
OC content <1.2%). Obtained results indicated lower kinetic rates for the more
hydrophobic pesticides (log Ky, > 4.6) compared with the other compounds under
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study. According to the intraparticle diffusion model that was used, a strong contri-
bution of a rapid initial adsorption on soil surface for thiacloprid, dimethenamid, and
fenarimol was observed, while moderate contribution for the hydrophobic pesticides
was achieved.

3.2.4 Impact of Carbon-Rich Organic Amendments Applied to Soils

Numerous recent studies have confirmed the advantages and benefits that are gained
in the improvement of soil characteristics (including fertility, adsorption capacity,
leaching and remediation by the reduction of the contamination of the neighboring
terrestrial and aquatic areas) after the application of a wide variety of carbon-rich
by-products (which are known with the term biochar) that are prepared by the
application of the pyrolysis technique on low cost by-products, agrowastes, and
organic materials under high temperatures in the absence of oxygen [14, 16, 84]. Sev-
eral different functional groups present in the structure of these biochars play an
important role and lead to a stronger adsorption of the organic pesticides’ molecules.
In general, it is well known that under higher temperature of pyrolysis the produced
biochars have more aromatic units and pores for capturing more sorbates.

According to the results of Chin-Pampillo et al. [84], the addition of three
different pyrolyzed agrowastes of pineapple stubble, palm oil fiber and coffee hull,
as amendments in a tropical soil it was observed that the sorption behavior and
persistence of bromacil and diuron was affected. More specific, the two first amend-
ments resulted in an increase of bromacil’s sorption of three to four-fold and a three
to six-fold change in diuron’s sorption, while the addition of the third biochar had
little effect. Similarly, the published results of a survey conducted by Aldana et al.
[67] on the effects of biochar addition on the leaching and sorption of the agro-
chemicals atrazine, diuron, enrofloxacin, oxytetracycline, and tetracycline in tropical
soils showed that sorption was higher in biochar-amended soils than soils without
biochar amendment and the used biochars were produced from mixed softwood, rice
husk, and miscanthus straw, after pyrolyzed at 700°C.

In a recently published study of Cheng et al. [233] it is reported that overall the
application of biochar in agricultural soils combined with arbuscular mycorrhizal
fungi inoculation can influence the decomposition and leaching of simazine, mitigate
its accumulation in the topsoil, and consequently reduce the availability of the
studied pesticide. Based on the findings of a review conducted by Siedt et al.
[249] regarding the comparison of straw, compost, and biochar on the fate of
pesticides in agriculture soils it is concluded that although biochar has the higher
effectiveness of all in increasing the sorption capacity of soils however it cannot
surpass straw and compost regarding the other aspects investigated (such as trans-
formation and retention of nutrients, soil microbial communities, etc.). The impact of
biochar addition to soils and sediments samples from four sites along Litani river
basin on the adsorption behavior of three commonly used herbicides fluazifop,
terbuthylazine, and triclopyr was assessed by Kchour et al. [173] and based on the
derived results of the survey K,q, values in biochar treated matrices increased
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considerably in comparison with the non-treated ones. Furthermore, according to the
same study in the presence of biochar the phenomenon of sorption was not revers-
ible, and hysteresis occurred.

Bentazone sorption and desorption studies executed by Ponnam et al. [74]
revealed that the introduction of biochar not only improved several characteristics
of the soil among which pesticide adsorption efficiency is included (pH, CEC,
electrical conductivity), but also that lowered the desorption levels and thus
enhanced soil quality. In a separate survey, Ponnam et al. [95] reported the same
pattern of attitude for the case of carbofuran that was irreversibly sorbed by moder-
ately acidic soil amended with biochar. The effects of raw feedstock and biochar
(produced from soybean residues, sugarcane bagasse, and wood chips (grape))
amendments on sorption-desorption and leaching potential of the pesticides
aminocyclopyrachlor, metolachlor, and imidacloprid were studied by Mendes
et al. [47], and decreased availability of metolachlor and imidacloprid in soil was
observed via increased sorption process. For the case of aminocyclopyrachlor the
availability differed between the use of raw feedstock and biochar, while the most
important impact on pesticide behavior was derived from biochar produced from
wood chips pyrolysis. Reduced dissipation of thiamethoxam in a biochar-amended
agricultural soil was reported by You et al. [242].

Numerous published data during the period 2016-2021 have demonstrated the
increased adsorption efficiencies that were achieved (and possible lower pesticide
leaching mitigation) after biochar amendments applied on different soils and for
several pesticides, such as for acetamiprid [39], acetochlor [40], atrazine in the
presence of Cd(II) [52] or not [60, 63, 64], bentazone [75, 77], boscalid [75, 77],
cadusafos [88], carbaryl [90], carbofuran [90], chlorothalonil [109], chlorpyrifos
[116, 117], clomazone [80], clothianidin [136], difenoconazole [143],
2.4-dichlorophenoxyacetic acid (2,4-D) [90], diuron [117, 148], fenamiphos [88],
glyphosate [117, 180, 182], imazapic [190], imazapyr [190], imazamox [189],
imidacloprid [63, 136], isoproturon [63], 4-chloro-2-methylphenoxyacetic acid
(MCPA) [90, 120], metalaxyl [206, 207], metolachlor [90, 214], picloram [189],
pyrimethanil [75, 77], simazine [235, 253], tebuconazole [207], terbuthylazine
[189], and thiacloprid [136, 240, 241].

The published results of Cwielag-Piasecka et al. [90] who examined the biochar
as specific sorbents of several carbamate, phenoxyacetic acids, and aniline deriva-
tives pesticides indicated that the biochar that was produced from wheat straw and
used in the study preferentially attracted nonionic pesticides with relatively high log
K,w values and low water solubility probably because of its moderately hydrophobic
character. Therefore, the principal mechanism of pesticides’ attraction to biochar that
was proposed was the hydrophobic bonding.

According to the findings of Garcia-Jaramillo et al. [69], the role of biochar and
biochar water-extractable substances on the sorption of pesticides onto soils is
depended on soil and biochar properties and time of application, and these param-
eters need proper consideration before the application because reduction or increase
in the mobility of ionizable organic compounds may occur. That was based on their
observation that, in spite the enhanced soil sorption capacity of the herbicides
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azimsulfuron and penoxsulam that was observed after the application of raw biochar
as soil amendment in two rice paddy soils, on the contrary, lessened azimsulfuron
adsorption was reported in the washed biochar soil samples than in the washed
biochar. This was attributed possibly due to the reduction of polar groups of biochar
through washing step, which had no effect on penoxsulam adsorption.

3.2.5 Impact of Pesticide Mixture Interactions

It has been well documented that the co-presence of pesticides in chemical mixtures
promotes changes in its behavior into soil due to synergistic or antagonistic phe-
nomena that may occur [147, 153, 160].

The leaching of three selected pesticides, diuron, hexazinone, and sulfometuron-
methyl, applied in soils with contrasting textures (sandy or clayey) and by two
different modes, alone and in mixture was investigated by Dos Reis et al. [160]. The
results of soil column experiments showed that when herbicides were applied in
mixture of the commercial mixture diuron + hexazinone + sulfometuron-methyl,
interactions among them could potentially promote changes in herbicide behavior in
the soil. Hexazinone was reported to have the greater leaching potential and mobility
along the soil profile compared to the other two studied molecules, whereas diuron
remained at the top layer of the soil, and hence indicated that this herbicide has low
soil mobility.

In a similar study conducted by Sousa et al. [153] regarding the sorption and
desorption of diuron, hexazinone and their mixture in soils with different attributes it
was revealed that in all tested soils, diuron and hexazinone showed higher sorption
coefficients Ky values when mixed. Carneiro et al. [147] surveyed the way that
herbicide mixtures can affect the adsorption processes in soils under sugarcane
cultivation. For that purpose, the sorption process of diuron, hexazinone, and
sulfometuron-methyl in isolated and mixed conditions was examined. Results of
the study refer that herbicide mixtures reduced the maximum adsorption (ge) in ~50
(diuron), 56 (hexazinone), and 55% (sulfometuron-methyl) compared to isolated
tests. Also, herbicide mixtures reduced the sorption rate (Kp) 24 (diuron),
89 (hexazinone), and 66% (sulfometuron-methyl) compared to conditions isolated
tests.

4 Conclusions and Future Perspectives

Regardless of their mode of application several different pesticide compounds that
are unavoidably used in the terrestrial environment mainly for agricultural purposes
(protection of crop quality and quantity) reach the soil and are subjected to biotic and
abiotic processes which affect their distribution and transportation into the soil-
water-biota systems. Binding to soil particles, known as sorption, desorption into
the soil bulk, and vertical removal from topsoil into lower subsoil depths by leaching
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are unquestionably the predominant abiotic phenomena that influence their behavior
and bioavailability into these ecosystems.

According to the findings of the current overview a great number of publications,
overall 228 reports, have been found for the period 2016-2021 (from 01/01/2016 to
30/06/2021) regarding the sorption, desorption, and leaching of several different
pesticides which belong to a wide variety of chemical groups. Obtained data
revealed that the evaluation of adsorption/desorption capacity on soil, leaching,
and transportation process for 186 individual pesticides, in total, have been investi-
gated and reported in the scientific literature published in the last 5.5 years. More-
over, atrazine (triazine herbicide) is the pesticide on which scientific interest has
been focused, followed by chlorpyrifos (organophosphorus insecticide),
imidacloprid (nicotinoid insecticide), glyphosate (organophosphorus insecticide),
and metolachlor (systemic fungicide). Results showed that the scientific interest
has been focused either on the most used and thus frequently detected pesticides
or/and on the pesticides that exhibit the longer half-lives and can remain in the water
and soil at high levels (above several hundreds of pg L' or pg kg™') and therefore
pose a higher ability to threat exposed ecosystems and humans through the food
chain.

Different sorption, desorption, and leaching attributes, behaviors, affinities, and
characteristics were observed within the overviewed data indicating that the trans-
portation and distribution fate of applied pesticides is dependent upon the combina-
tion of the studied soil/pesticide system. In general, among the most important soil
factors that can affect the studied processes both OM and clay contents were
included, whereas soil pH and CEC played a secondary role. Extended research
concerning the enhancement of pesticide sorption and reduction of leaching into
aquifers by a variety of different biochar amendments has been conducted.

A knowledge gap concerning the impact of pesticide mixture interactions on the
adsorption on soils’ colloids, leaching potential, and mobility of pesticides along the
soil profile is observed, as the overviewed surveys examining this topic are very
scarce. Therefore, more surveys in this direction must be conducted in future
research, since it is indisputable fact that chemical cocktails can promote variations
in the behavior of individual pesticide compounds into the soil via possible and
simultaneous synergistic or antagonistic phenomena.
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