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Abstract With the increasing reports on the environmental distribution and eco-
logical risks of petrochemical plastics and microplastics, degradable plastics are
considered as the optimal alternative to the traditional plastics. Compared with the
traditional petrochemical plastics, the market of biodegradable plastics is still small
but growing rapidly. At the same time, knowledge on the environmental distribution
and ecological risks of biodegradable plastics is still limited, although their produc-
tion and application continue to improve. Biodegradable plastics are divided into
semi-biodegradable plastics and fully biodegradable plastics. Their ecological risks
may show significant differences. In the soil environment, the particle size, shape,
molecular weight of plastics, the type of functional groups in the molecular structure,
and the additives added to plastics may play different roles in the biodegradation of
biodegradable plastics. In current chapter, the available information of current
researches on biodegradable plastics in the environment is reviewed. The environ-
mental risk and future development of degradable plastics are also discussed.

Keywords Biodegradable plastics, Biodegradation, Ecological risks,
Environmental distribution

1 The Concept, Composition, Application, and Output
of Biodegradable Plastics

1.1 Definition and Classification of Biodegradable Plastics

Biodegradable plastics are defined as degradable plastics in which the degradation
results from the action of naturally occurring microorganisms such as bacteria, fungi,
and algae by the American Society for Testing and Materials [1]. Ammala et al.
define biodegradable plastics as plastics that can be decomposed by the action of
living organisms, usually microbes, into water, carbon dioxide, and biomass [2]. The
national standard of the People’s Republic of China defines biodegradable plastics as
plastics degraded by the action of microorganisms in nature and eventually degraded
into carbon dioxide and/or methane, water, and mineralized inorganic salts
containing elements and new biomass [3].

According to the degradation degree of plastics under the action of microorgan-
isms, biodegradable plastics can be divided into completely degradable plastics and
semi-degradable plastics. The former can be completely degraded. In comparison,
the semi-degradable plastics are a blend of non-biodegradable plastics with degrad-
able polyesters or starch [4]. The purpose of destroying the structure of the copol-
ymer is achieved by biodegradation of natural components.

Biodegradable plastics can also be classified into bio-based plastics and fossil-
based plastics depending on the raw materials [5, 6]. Bio-based biodegradable
plastics derived from renewable resources can be used in medical and pharmaceu-
tical industries, such as polyhydroxyalkanoate (PHA) and polylactic acid (PLA).
Fossil-based biodegradable plastics have been widely employed in the packaging
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industry, such as polyethersulfone resin (PES) and polycaprolactone (PCL). Abbre-
viations for common types of plastic polymers are shown in Table 1.

1.2 Representative Materials and Their Applications

Representative biodegradable plastics include PLA, PHA, polybutylene succinate
(PBS), PCL, etc. The chemical structure and application of these plastics are shown
in Table 2.

1.3 Production and Environmental Flux

Based on the latest market data compiled by European Bioplastics in cooperation
with the research institute nova-Institute, the global production capacity of biode-
gradable plastics is 912 kt in 2018. The production capacities of biodegradable

Table 1 Full name and abbreviation of target plastics

Full name Abbreviation

Polyhydroxyalkanoate PHA

Polylactic acid PLA

Polyhydroxybutyrate PHB

Polybutylene succinate PBS

Polycaprolactone PCL

Polyethersulfone resin PES

Poly(butylene adipate-co-terephthalate) PBAT

Polypropylene PP

Polystyrene PS

Polyethylene PE

Polyvinyl chloride PVC

Polyethylene terephthalate PET

Polyurethane PUR

Polyamide PA

Polyurethane PUR

Polyethylene furanoate PEF

Acrylonitrile butadiene styrene ABS

Polybutylene succinate-co-adipate PBSA

Polyvinyl chloride PVC

Polyoxymethylene (polyformaldehyde) POM

Phthalate esters PAEs

Hyperbranched aliphatic polyester and cellulose HAPE-cell

Differential scanning calorimeter DSC
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plastics with good development and industrial scale are PLA of ~218 kt, PBS of ~97
kt, and PHA of ~30 kt [9].

In China, the production capacity of biodegradable plastics has expanded rapidly
in recent years. In 2018, China’s biodegradable plastic industry was about 5.44
billion RMB (7.75 million $) with an increase of 21.13% compared with that in 2017
(4.941 billion RMB or 7.03 million $), which included 1.584 billion RMB for
completely biodegradable plastics and 3.856 billion RMB for semi-degradable
plastics. In 2018, China’s biodegradable plastic industry produced about 650,000
tons, including 95,000 tons for completely biodegradable plastics and 555,000 tons
for semi-degradable plastics.

2 The Occurrence, Degradation Efficiency,
and Environmental Impact of Semi-biodegradable
Plastics

2.1 Environmental Distribution of Semi-Biodegradable
Plastics

Most of the fossil-based and bio-based plastics, used nowadays, are
non-biodegradable, such as polypropylene (PP), polystyrene (PS), polyethylene
(PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and polyurethane
(PUR) [7]. These plastics are highly stable and do not readily enter into the
degradation cycles of the biosphere. Most of the employed plastics are either
non-biodegradable or their degradation rate is too slow to be disintegrated
completely [10]. Therefore, these non-biodegradable plastics were accumulated in
the soil environment in large quantities because of improper waste management and
uncontrolled littering, posing a serious threat to our planet eventually [6].

The semi-biodegradable plastics are a blend of non-biodegradable plastics with
biodegradable polyesters or starch [4]. The blending of biodegradable polymers is
one approach of reducing the overall cost of the material and modifying the desired
properties and apparent decomposition rate. Compared to the copolymerization
method, blending may be a more efficient way to achieve the properties of plastic
degradability. Former study has reported blend plastics by combining PCL with
conventional plastics (such as low-density PE, PP, PET, and PS) [8]. The blends of
PCL and low-density PE, PCL, and PP both retained the high biodegradability
of PCL. On the contrary, the degradability of the PCL part in the blends of PCL
and PS, PCL and PET both dropped off remarkably. In the case of blends of PCL and
PS, the biodegradability of PCL did not change significantly [4].

The global distribution of bioplastics in 2014 and 2018 is shown in Fig. 1.
Bio-based non-biodegradable plastics (semi-biodegradable plastics), including the
drop-in solutions bio-based PE and bio-based PET and bio-based PA, account for
around 53% (0.9 million tons) of the global bioplastic production capacities in 2014
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and 48% (1 million tons) in 2018, respectively. The proportion of semi-
biodegradable plastic in the world was reduced from 60.9% in 2014 to 56.8% in
2018, indicating the demand for completely biodegradable plastics is gradually
increased today.

The global production capacities of bioplastics from 2018 to 2023 are shown in
Fig. 2. Currently, bioplastics represent roughly 1% of the 335 million tons of plastic
produced annually. The global semi-biodegradable plastic production capacity is
predicted to increase gradually from 2018 to 2023, increasing from around 1.20
million tons in 2018 to approximately 1.33 million tons in 2023 [9]. Specifically, the
production of bio-based PE is predicted to continue to grow as new capacities are
planned to come online in Europe in the coming years. The intention to increase
production capacities for bio-based PET, however, has not been realized at the rate
predicted in previous years [6]. Polyethylene furanoate (PEF), a new polymer, is
expected to enter the market in 2023. PEF is 100% bio-based and is said to feature
superior barrier and thermal properties, making it an ideal material for the packaging
of drinks, food, and nonfood products. In 2023, bio-based PP is expected to enter the
market at a commercial scale with a strong growth potential due to the widespread
application of PP in a wide range of sectors. Additionally, bio-based PUR is another
important group of polymers that have huge production capacities with a well-
established market and is expected to grow faster than the conventional PUR market
due to their versatility.

Fig. 2 Global production capacities of bioplastics from 2018 to 2023 [9]. Source: European
Bioplastics, nova-Institute (2018). More information: www.european-bioplastics.org/market and
www.bio-based.eu/markets
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2.2 Degradation Characteristics of Semi-Biodegradable
Plastics in the Environments

Non-biodegradable plastics mainly consist of conventional synthetic plastics such as
PE, PS, PP, PET, and PVC, which have accumulated massively in the soil environ-
ment because of the randomly littering and poor waste management [6]. The bio-
degradation of major synthetic plastics in the soil environment is a very slow process
that includes many environmental factors [2]. The basic mechanism for biodegrada-
tion of the high molecular weight plastics is the hydrolysis or oxidation by enzyme.
Therefore, the main chains of plastics are biodegraded into polymer with feeble
mechanical properties and low molecular weight, making it more convenient for
further microbial assimilation [7]. The backbone of synthetic plastics is consisted of
only long carbon chains. The characteristic structure makes polyolefins
non-susceptible to degradation by microorganisms. However, a comprehensive
study of polyolefin biodegradation has shown that some microorganisms could
utilize polyolefins with low molecular weight [13].

PE is one of the non-biodegradable plastics with high hydrophobicity and high
molecular weight. Hydro-biodegradation and oxo-biodegradation are two mecha-
nisms of biodegradation of PE. These two mechanisms coincident with the modifi-
cations owing to starch and prooxidant are used as the two additives in the synthesis
of biodegradable PE. Starch blend PE has a continuous starch phase that contributes
to the hydrophilic of plastics, so it can be catalyzed by amylase enzymes. Microor-
ganisms can easily access, attack, and remove the starch blend PE. Consequently, the
hydrophilic PEwith matrix is considered to be hydro-biodegraded [14]. Additionally,
compatibilizer can also enhance the biodegradability of low molecular weight
PE/starch blends. Generally, the blending of PE with additives enhances auto-
oxidation and reduces the molecular weight of the plastics, leading microorganisms
to degrade the low molecular weight plastics more easily. Although all these
approaches can improve the biodegradation of PE blends, the biodegradability of
PE part is still relatively low [2].

2.3 The Ecological Effect of Semi-biodegradable Plastics

Due to the growing volumes of semi-biodegradable plastics, a strong concern of the
public opinion is about the environmental impact of persistent substances possibly
released during the process of degradation and composting. Only the biodegradable
components could be degraded in the environment. Therefore, the
non-biodegradable components are broken up into smaller particles and diffuse
into the environment [15]. Their ecological risk assessment can refer to that of
non-degradable plastics. In addition, toxic degradation products or harmful com-
pounds such as the additives in semi-biodegradable plastics will also release to the
environment. Soil health is a key component of agroecosystem sustainability; thus

430 L. Zhao et al.



there is a need to understand the effects of semi-biodegradable plastic on both crop
productivity and soils [16]. Accordingly, more research about the ecological effects
of semi-biodegradable should be done in the future.

3 The Occurrence, Degradation Efficiency,
and Environmental Impact of Completely Biodegradable
Plastics

3.1 Environmental Distribution of Completely Biodegradable
Plastics

Completely biodegradable plastics mainly include bio-based and fossil-based poly-
mers, which are advantageous in modern industrial applications because of their
high degree of biodegradability and microbial assimilation [13]. Owing to maintain
the advantages conferred through using plastic products without having the serious
pollution burden of waste plastics, the attention of completely biodegradable plastics
is continuously growing [6]. Compared to the majority of industrial plastics,
completely biodegradable plastics are supposed to convert into carbon dioxide,
water, and biomass once they end up in the environment. With the increasing
awareness of plastic pollution, the demand for completely biodegradable plastics is
urgent nowadays [17].

Figure 2 shows the global production capacity distribution of bioplastics. Based
on the market data in 2018 compiled by European Bioplastics, the production
capacity of global bioplastics is predicted to increase from 2.11 million tons in
2018 to approximately 2.62 million tons in 2023 [9]. Nevertheless, completely
biodegradable plastics (0.91 million tons in 2018) are only accounted for less than
0.3% of the total plastic production (335 million tons in 2018) [9].

Completely biodegradable plastics mainly include bio-based and petroleum-
based biodegradable plastics [7]. Bio-based completely biodegradable plastics are
consisted of PHA and PLA. Petroleum-based completely biodegradable plastics
mainly include PBS, PCL, and PBAT [13]. PLA and starch blends are two most
contributors of the completely biodegradable plastics, accounting for 23.8 and
42.1% of the completely biodegradable plastics, respectively (Fig. 3). Compared
to that in 2018, the production capacity of PLA is predicted to grow by 60% by 2023.
It’s well known that PLA is a very versatile material that features significant barrier
properties and is available in high-performance PLA grades that are one of signif-
icant replacements for PP, acrylonitrile butadiene styrene (ABS), and PS in more
demanding applications [8]. Furthermore, polyhydroxybutyrate (PHB) as one of the
completely biodegradable plastics has gradually attracted significant attention
because of their biodegradation under both anaerobic and aerobic environments
without releasing toxic contaminants into the environment [18].
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The market and region distribution of completely biodegradable plastics in the
environment is provided in Fig. 3. Completely biodegradable plastics are applied to
several application markets, mainly including flexible packaging, adhesives, agri-
culture, coatings, and textiles. Particularly in agriculture, demand for completely
biodegradable plastics accounts for more than 60% of the total bioplastics. More
than 50% of bioplastics were produced in Asia in 2018. In comparison, only
approximately 20% of the global bioplastic production capacity is located in Europe.

3.2 Degradation Characteristic of Completely Biodegradable
Plastics Entering the Environment

Biodegradation is the process of organic substances broken down by living organ-
isms. Organic substances can degrade aerobically with oxygen or anaerobically
without oxygen [7]. CO2 and H2O are released during aerobic biodegradation,
while CO2, H2O, and CH4 are produced accordingly during anaerobic
biodegradation [19].

Biodegradation of bioplastics requires microorganisms to metabolize all organic
components of bioplastics [20]. Specifically, the process of plastic biodegradation
can be divided into three steps: (1) biodeterioration, the colonization of the polymer
surfaces by soil microorganisms; (2) depolymerization, depolymerize the polymer
into low molecular weight compounds by the secretion of extracellular microbial
enzymes; and (3) bioassimilation, microbial uptake and utilization of these com-
pounds, incorporating bioplastics carbon into biomass or releasing CO2 [21–23].

Step 1: Microbial colonization of plastic surfaces. In this step, the formation of a
microbial biofilm contributes to superficial degradation, fragmenting the polymeric
material into smaller particles. Microbial colonization appears on the bioplastic
surface through degrading soil fungi and bacteria. Factors that facilitate colonization
can increase the contact area between bioplastics and microbial degraders, thus
improving the biodegradation efficiency of plastics eventually [24].

Step 2: Enzymatic depolymerization of plastics. The microorganisms of the
biofilm secrete extracellular enzymes, catalyzing the depolymerization of the
bioplastic chain into low molecular weight oligomers, dimers, and monomers
[25]. Ordinarily, the abiotic hydrolysis of these bonds is generally slower than
enzymatic hydrolysis on the condition of pH and temperature that prevail in soil
[21, 26]. Enzymatic depolymerization plays a role in limiting the rate of plastic
biodegradation in soil. This is supported by much faster microbial utilization of
oligomers, dimers, and monomers when directly added to soil than of the
corresponding bioplastics in the same soil [23].

Step 3: Microbial utilization of plastic carbon. The last step in bioplastic biodeg-
radation is the microbial assimilation and utilization of oligomers, dimers, and
monomers released from bioplastics through enzymatic hydrolysis. The uptake of
the small molecules produced into microbial cells and the following production of
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primary and secondary metabolites is a process recognized as assimilation. Micro-
organisms utilize the hydrolysis products as substrates for both respiration and
synthesis of biomolecules. The most immediate solution to comprehend utilization
is to follow the conversion of plastic-derived carbon into CO2 and into microbial
biomass [2]. Concomitantly, several simple and complex metabolites may be
excreted and reach the extracellular surroundings (e.g., aldehydes, organic acids,
and antibiotics). These metabolites are mineralized, and end products such as CO2,
H2O, CH4, and N2 are formed and released into the soil environment eventually.

Figure 4 demonstrates several factors that influence the efficiency of biodegrada-
tion, mainly including plastic characteristics, type of organism, and nature of
pretreatment [11]. The plastic characteristics such as size, shape, molecular weight,
type of functional groups in molecular structure, and additives added to the
bioplastics all play significant roles in plastic biodegradation [27].

Moisture: Moisture can influence the biodegradation of plastics in different ways
because of the fundamental requirement of water for growth and the multiplication
of microbes. Abundant moisture can increase the swift action of microbial; thus the
efficiency of biodegradation is increased. Additionally, abundant moisture condi-
tions can also influence the process of hydrolysis by generating more chain scission
reactions [13].

pH: pH can modify the rate of hydrolysis reactions through controlling the acidic
or basic conditions. For instance, the efficiency of hydrolysis of PLA capsules is
optimal when the pH is controlled at 5. The pH conditions are altered during
degradation products of various plastics, changing the rate of the degradation
process and microbial growth eventually [11].

Temperature: Similarly, temperature can also have a significant influence on
enzymatic biodegradation through the softening of bioplastics. Plastics with a higher
melting point have less possibility of biodegradation, and potential enzymatic
degradability decreases with the increase of temperature [11]. Furthermore, the

Fig. 4 Factors affecting the
biodegradation efficiency of
biodegradable plastics
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efficiency of PHA biodegradation was not constant in various periods of the year
from 1999 to 2000 owing to various weather temperatures [28].

Enzyme characteristics: Different enzymes possess unique active sites and have
the ability to biodegrade various types of bioplastics. Depolymerases were obtained
from bioplastic-degrading microorganisms, playing a significant role in controlling
biodegradation of bioplastics [29]. Moreover, it was also shown that the extracellular
enzymes were involved in the depolymerization of PHB, and the specific microbially
produced depolymerase can influence the distinct mechanisms of degrading
PHB [6].

Molecular weight: Molecular weight plays a significant role in controlling the
efficiency of biodegradation of many bioplastics owing to it can influence many
physical properties of bioplastics. Ordinarily, bioplastic degradability by microor-
ganisms is a decline with the increase of the molecular weight of bioplastics. The
degradability of higher molecular weight PCL (>4,000) by lipase of a strain
R. Delmar was lower than that of the low molecular weight bioplastics [4]. It is
convenient for microbial enzymes to attack a substrate low in molecular weight; this
is maybe the reason for this phenomenon [30]. Furthermore, high molecular weights
can lead to a sharp decrease in solubility, making them unfavorable for microbial
attack owing to the substrate was required for the assimilation of bacteria, and then
further degraded by cellular enzymes.

Shape and size: The shape and size of the bioplastics play a significant role in
altering the biodegradation process [11]. The bioplastics having large surface areas
can be degraded rapidly when compared to those with a small surface area [31]. It
was reported that the PHA films are degraded faster than PHA pellets owing to their
larger surface area. Additionally, a larger polymer/water interface can enhance the
attachment of microorganisms to the surface of bioplastics.

Additives: The structure and the composition of bioplastics can significantly
influence the efficiency of biodegradation. Modifying the composition of bioplastics,
including the addition of additives with high soluble sugar content, and biodegrad-
ability may be enhanced accordingly [11]. Although bio-composite production from
bioplastics may have some improved mechanical properties such as high tensile
strength, the biodegradation process may not be favorable under certain circum-
stances or become interrupted at the same stage. Consequently, the optimization of
the bio-composite additives can engender a more applicable and biodegradable
product [6].

Biosurfactants: Biosurfactants are amphiphilic substances and mainly adhered to
the living surfaces. The low toxicity and high biodegradability of biosurfactants can
enhance the biodegradation of bioplastics [32]. Moreover, the presence of specific
functional groups on biosurfactants can improve the biodegradation of bioplastics
and can also enhance their activities even in the extreme pH, temperature, and
salinity conditions as well [33].
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3.3 The Ecological Effect of Completely Biodegradable
Plastics1

In order to assess the ecological effect of completely biodegradable plastics,
ecotoxicity tests have been conducted under controlled laboratory conditions using
model organisms [21]. The choice of the test organisms depends on the specific
ecosystem. The most commonly used test species for terrestrial ecosystems are soil
microorganisms, soil fauna, and terrestrial plant. For aquatic ecosystems, algae, crus-
taceans, and fish are generally investigated for their response to completely biodegrad-
able plastics. From a toxicology standpoint, the fragments of completely biodegradable
plastics incorporated into the soil are generally considered to be safe [16]. In theory,
completely biodegradable plastics should be completely catabolized by soil microor-
ganisms, converted to microbial biomass, CO2, and water. However, complete break-
down in a reasonable amount of time is not always observed in practice [34].

Table 3 shows the reported ecological effects of completely biodegradable
plastics. Most completely biodegradable plastics did not show adverse effects on
the selected organisms except PLA and PBAT. Souza et al. found cytotoxic and
genotoxic effects of PLA degradation products after 76 days of incubation in the
compost on the common onion (Allium cepa) [37]. Likewise, the negative effect on
the activities of both ammonium and nitrite-oxidizing bacteria caused by PLA mulch
films after 84 days of incubation in the soil was also detected [39]. PLA granules can
affect the health and behavior of lugworms and directly or indirectly reduce primary
productivity of these habitats after 31 days of incubation in the sand [40]. Zhang
et al. have shown that the four kinds of field-weathered biodegradable plastic mulch
(PLA/PHA, Organix, BioAgri, Naturecycle) could be dragged into the burrows of
earthworms when earthworms are foraging for food [44].

Although these studies measured the effects of degradation products at a specific
time, they did not provide enough information on the components of the product,
which are responsible for the toxicity. Identification of toxic degradation products
can help to further understand the toxic mechanisms and produce safe biodegradable
plastics.

4 Interaction of Biodegradable Plastics with Other
Contaminants

4.1 Interaction with Heavy Metals

Some polymers are designed as sorbents. In order to improve the adsorption capacity
of polymers, the surface of many polymer matrix composites can interact with the
target chemicals [45]. For example, on a degradable polymer made of hyperbranched
aliphatic polyester and cellulose (HAPE-Cell) [46], the adsorption capacity of

1Parts of this text are reused with permission from [21].
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HAPE-Cell to Cu2+, Hg2+, Zn2+, and Cd2+ was much higher when compared with
cellulose. Gao et al. measured the adsorption capability of PVC, PP, PA, PE, and
POM to Cu2+ and Cd2+. The adsorption capacities of those non-degradable plastics
to Cu2+ and Cd2+ are below 1 mg/g, which were much lower than that of HAPE-Cell
(Fig. 5) [47]. Compared with commercial synthetic polymers, HAPE-Cell is degrad-
able and will not cause secondary pollution. Thus HAPE-Cell is proposed as a
promising sorbent for removal of the heavy metals.

PLA has been recognized as an eco-friendly alternative polymer for packing,
clothing, and biomedical [48]. The degradation of the PLA is divided into two steps.
Firstly, under suitable temperature and humidity, the PLA would become oligomers
due to the hydrolysis of ester group. Then the smaller fragments could be degraded
by microorganisms [49]. The elements of Bi, Pb, Zn, and Cd are often used as
catalysts in PLA synthesis [50, 51]. When the polymers are degraded, these heavy
metals may be transferred to soils, which could cause some ecological risks.

4.2 Interaction with Organic Contaminants

Many researches showed that PLA fibers had higher sorption capacity to dyes since
they had more D-lactide units. Yang et al. used different disperse dyes to dye PLA
and PET. PLA had higher color strength compared to PET since PLA had a lower
refractive index under similar dyeing conditions [52]. Many studies have investi-
gated the influence factor about the sorption of dyes on PLA. Karst et al. studied the
effects of the structure of dyes on their sorption onto PLA [53]. The interaction
energies between dyes and PLA showed a negative correlation with the percentage
sorption of dyes on PLA. The functional groups –N(C2H4OCOCH3)2 and
(CO)2NC3H6OCH3 could form stronger interaction with PLA, while the functional
groups –Br and –Cl could form weaker interaction with PLA. An investigation on
the effects of dyeing on melting behavior of PLA using differential scanning
calorimeter (DSC) was conducted. It was concluded that dyeing progress could
decrease the restricting force and the crystallites became more perfect in the dyeing
progress [54]. It was also reported that the rate of dyeing PLA was positively
correlated with temperature, and the percentage exhaustion of dye reached 90% at
100�C [55].

Fig. 5 The chemical
structure of HAPE-Cell [47]
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PBAT was another typical biodegradable plastic (Fig. 6). When the sorption
behavior of phenanthrene on PBAT, PE, and PS was investigated [56], the Kd values
on PBAT, PE, and PS were measured to be 54,800, 15,600 and 1,340 L/kg,
respectively. Much higher Kd of phenanthrene on PBAT mainly attributes to the
rubbery subfraction of PBAT [56]. More researches need to be conducted since
biodegradable plastics had various functional groups and their interaction with
pollutants may be complicated.

4.3 Additives and Functional Monomers

Phthalate esters (PAEs) are plasticizers and additives that are also widely used in
degradable plastic production [57, 58]. Polyolefins such as polyethylene and poly-
propylene are usually not accessible to direct microbial attack. Starch, as a natural
polymer, can be degraded by microorganisms. When starch was mixed with poly-
olefins, the blends were easier to be degraded, if microorganisms can contact starch.

On the research of Siotto et al., aerobic biodegradation efficiency of ten biode-
gradable plastic monomer, adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol,
1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid, and terephthalic
acid, in soil was tested according to standard respirometric test, by measuring the
carbon dioxide evolution [59]. During the 27–45 days of experiment, it was found
that 1,4-butanediol, lactic acid, succinic acid, and glucose were completely
biodegraded and the degradation efficiency of terephthalic acid was only 60%.
The results showed that the degradation efficiency of the plastic monomer had a
positive correlation with the percent of carbon converted to biomass.

5 Conclusions

5.1 Ecological Risks of Biodegradable Plastics

Plastics with very high molecular weights are not directly available to the living cells
and therefore difficult to be harmless generally. However, low molecular weight
additives can be toxic. Intermediates formed during incomplete biodegradation can
accumulate in the surrounding soil, temporarily or permanently. These degradation
intermediates can be monomers, oligomers, or metabolic derivatives and can interact

Fig. 6 The chemical structure of PLA (left) and PBAT (right)
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with the living organisms. It is, therefore, important to assess the possible ecotoxic
effects of the biodegradable plastics introduced into the soil.

To date, biodegradable plastics are a promising alternative to conventional
plastic. Although there are a few studies on the effects of biodegradable plastic on
the soil ecosystem, considerable gaps in our understanding of biodegradable plastics
and their ecological risks on soil ecosystems are still present. First, while several
studies have focused on short-term effects or acute toxicity of biodegradable plastics,
and their long-term effects are unexplored. Second, the relationship between plastic
composition and soil organism responses needs to be identified, because the parent
polymer composition and breakdown products may lead to different risk. Third,
biodegradable plastic effects on soil nutrient biogeochemistry are largely
unexplored [16].

5.2 Development Prospect of Biodegradable Plastics

Currently, the biodegradable polymers have offered a possible solution to the
disposal of plastic waste produced from various sources associated with traditional
petroleum-derived plastics. Most biodegradable plastics are used in the packaging
industry, agriculture, and specialized biomedical applications. Among these biode-
gradable plastics, PLA is the most promising candidate to replace current plastics,
because of its good mechanical strength and low toxicity [60]. Nevertheless, biode-
gradable plastic represents just a tiny market as compared with the conventional
petrochemical plastics, and their production has not reached the level of conven-
tional plastics [61]. Although degradable plastics meet the environmental require-
ments, they have some limitations in heat resistance, barrier, and mechanical
properties.

Next-generation biodegradable plastics should be biodegraded and recycled in a
balanced way to make their reuse possible [61]. Consequently, we must understand
the degradation mechanism and degradation products of biodegradable plastics
under real environmental conditions. The effect of additives also needs to be
considered in a life cycle assessment of biodegradable alternatives. Researchers
related to different disciplines (chemistry, engineering, materials science, biogeo-
chemistry, and climate science) should design more environment-friendly biode-
gradable plastics and develop more application individually or in collaboration, to
make the society more sustainable [21, 61].

Similar to the plastics we currently use, the production of new materials must take
into account their raw materials and service life, as well as the basic standards of
production scalability and material performance. It will take time and the key
multidisciplinary developments will be required. However, biodegradable plastics
are the only known choice for the future development of plastics.
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