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Abstract The presence and ecological risks of microplastics (MPs) are increasingly
reported, whereas the impacts of MPs on human health remain largely unknown.
Recent studies have confirmed the MP contamination in food items, including
seafood, table salt, drinking water, etc. Dietary exposure is one of the inevitable
exposure pathways of MPs, which causes concern about the potential human health
risks. Whether we assess health risks or try to reduce food MP contamination, the
prerequisites are to figure out the contamination pathways of MPs and their actual
level in food items. At present, territorial system is facing serious environmental
problems, with soil, freshwater, and air suffering from MP pollution. This leads to
diversity and complexity of MP sources in food items. Therefore, we should not be
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confined to the food itself when considering MPs in food, but should take all
pollution possibilities into account. In this chapter, we reviewed the literature
concerning MPs in seafood, table salt, drinking water, and other food items. The
potential MP sources of food items during the whole process from food acquisition
to human ingestion were analyzed, with related human intake of MPs estimated. We
also discussed possible translocation and accumulation pathways of MPs within
human body. Given the lifetime inevitable exposure to MPs through multiple
pathways, we urgently call for a better understanding of the potential MP sources
in food items and a comprehensive assessment of human intake.

Keywords Drinking water, Health risks, Microplastics, Seafood, Table salts

1 Introduction

Since the concept of “microplastic” was introduced in 2004 [1], microplastics (MPs)
have been found in various environmental media and organisms globally [2–
6]. More recently, the threats of MPs to human health have gained increasing public
interests and media attention due to the wide detection of MPs in human-
related food.

As the marine environment attracted much attention, seafood has become the
most studied food [7–9]. More than 690 marine species have been reported to be
contaminated by MPs, including edible and nonedible ones [10, 11]. Since inedible
species do not normally enter human body, their contribution to MP intake by human
is negligible. Until now, MPs have been found in 202 edible species, including
201 marine species and 1 terrestrial species [12]. Subsequently, MPs are also
observed in table salt and other food such as honey, sugar, beer, and drinking
water [13–16]. Consumption of these food products will undoubtedly cause MP
exposure through human digestive tract. Numerous experiments have demonstrated
toxic effects of MPs, such as growth inhibition, oxidative damage, and immune
stress [17, 18]. A recent study shows that MPs of high concentration may have
caused evolutionary adaptations of some species (e.g., D. magna and G. pulex)
[19]. Mammal experiments have proved that polystyrene microplastic can induce gut
microbiota dysbiosis and hepatic lipid metabolism disorder in mice [20]. MP parti-
cles can also accumulate in marine organisms and transfer through the food chain to
higher trophic levels including humans [10]. Despite that ample evidence suggests
the MP contamination of human-related food and the related toxicological effects on
animals and cells, there is, however, large unknown fields.

Food is indispensable energy supplier for human survival. Therefore, it is neces-
sary to survey our current knowledge on direct human exposure concentration to
MPs via food consumption. Related topics have been discussed previously. For
example, seafood, as a carrier of MPs, should be treated cautiously considering the
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influence on human health through biological accumulation and biological amplifi-
cation [21, 22]. At the same time, some believe that the risk to higher trophic levels is
negligible due to the rapid depuration of MPs [23]. In fact, the issue of MPs in food
items is no longer about single investigation of MPs in food itself due to inevitable
MP contamination in water and air for human consumption in terrestrial environ-
ment. During the whole process from food acquisition, production, packaging, and
transportation to food intake, extra MPs may be introduced in any link [16]. This is a
complex problem that needs to be dissected in depth. When all factors are taken into
consideration, we will have more realistic data for risk assessment. Only in this way
can we put forward more effective measures to control the main links of food
contamination.

2 Microplastics in Seafood

Various foods are summarized in terms of contamination levels of MPs. Since these
data have been reported in detail in previous studies [12, 24–26], partial data are
listed in Table 1.

MPs have been found in fish from many countries and regions, ranging from 0 to
48 items/individual [40–42]. The reason that “items/individual” is used instead of
“MPs/individual” is that MPs in seafood are usually characterized by their sizes,
shapes, and colors, whereas compositions are not universally identified. Among
these studies that have completed particle identification, relatively high concentra-
tions occurred in China (13.54–22.21 items/individual) [43], Turkey (9.4 items/
individual) [44], and Malaysia (14 items/individual) [45]. However, different
methods among studies lead to poor comparability of the results. Therefore, direct
comparisons and accurate conclusion cannot be made, and such situation occurs in
shellfish and all the other food items.

MP abundance in shellfish (0–57.2 items/individual, 0–75 items/g) is generally
higher than that in fish, with blue mussels being the most studied species
[46, 47]. The largest numbers occurred in mussels from Canada (34–75 items/g)
[29], followed by China (0.9–4.6 items/g) [48] and Equatorial mid-Atlantic area
(2 items/g) [49]. In addition to wild mussels, some ones from fishery farms, as well
as supermarket, have also been confirmed to be contaminated by MPs. Li et al. have
investigated commercial bivalves from fishery farms and supermarket and found that
all mussels were contaminated by MPs [27, 28].

3 Microplastics in Table Salt

MPs have been widely identified in table salt of more than 100 brands all over the
world [16, 33, 36, 50], with their concentrations varying widely. The highest
concentration was reported in Croatia (1.35 � 104–1.98 � 104 MPs/kg salt),
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followed by Indonesia (1.36 � 104 MPs/kg), Italy (1.57 � 103–8.23 � 103 MPs/kg)
[32, 33], the USA (0.47 � 102–8.1 � 102 MPs/kg), and China (5.5 � 102–6.8 � 102

MPs/kg) [16, 36]. A recent study compared MP concentrations in table salts col-
lected from different regions, using sea salt as a seawater MP pollution indicator,
which indicated a significant higher MP concentration in Asia than in other

Table 1 Microplastics in food items

Food type Abundance Location Reference

Shellfish
(items/g)

2.1–10.5 China [27]

0.2 � 0.3 France [5]

0.7–2.9
(coastal),
0.9–1.4
(supermarket)

UK [28]

Fish (items/
individual)

0.3–1.1 (GIT) Indonesia [29]

0.57–1.85
(muscle)

Iran [30]

1.9 (liver) Spain [31]

Table salt
(MPs/kg)

7–681 China [16]

13,500–
19,800

Croatia [32]

98–232 Korea [33]

5–280 Spain [34]

Drinking
water
(MPs/L)

338–628
(DWTP)

Czech [35]

3.66–13 (tap
water)

England [36]

2,649–6,292
(bottled
water)

Germany [37]

58.2–1,410
(bottled
water)

USA [38]

Honey 166 � 147
fibers/kg,
9 � 9 frag-
ments/kg

Germany, France, Italy, Spain, Mexico [13]

Sugar 217 � 123
fibers/kg,
32 � 7 frag-
ments/kg

Germany, France, Italy, Spain, Mexico [13]

Beer (MPs/L) 2–89 fibers/L,
12–109 frag-
ments/L

Germany [14]

0–14.3 USA [36]

Canned sar-
dines and
sprats

– Canada, Germany, Iran, Japan, Latvia, Malaysia,
Morocco, Poland, Portugal, Russia, Scotland,
Thailand, Vietnam

[39]
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continents [38]. The lowest concentrations of MPs were reported by Karami et al.
[51]. This was probably due to its filters with larger pores (149 μm), which allowed
smaller-sized MPs to escape in the filtration process and thus underestimated the MP
abundance.

4 Microplastics in Drinking Water

Compared to seafood and table salt, relatively few studies reported MP contamina-
tion in drinking water. The available data cover raw and treated water from drinking
water treatment plants (DWTP), tap water, and bottled water [37, 38, 52]. According
to the MP abundance in raw and treated water, particles larger than 50 μm can be
removed from water at the treatment plants. The removal rate of MPs by traditional
drinking water treatment processes varied from 25 to 90%, depending on treatment
technologies [35]. For tap water samples, the lowest abundance was observed in
Italy and Denmark (0 MPs/L), while the highest abundance (9.24 MPs/L) was found
in the tap water of the USA [36]. The abundance of MPs in bottled water varied from
0 to 5.4 � 107 MPs/L [37, 38, 52]. Water in returnable-used plastic containers had
significantly more MPs compared with that in single-used bottles [37].

The difference of detection limits among studies in the drinking water field is
obvious. MPs in tap water were often analyzed by micro-Fourier transform infrared
spectroscopy (μ-FTIR), capturing MPs> 20 μm [45]. All bottled water and the water
from Czech DWTP were analyzed using non-FTIR or μ-FTIR combined with other
method [43, 47]. These methods included μ-Raman, dyeing method combined with
μ-FTIR, and “method for the extraction and determination of MPs in organic and
inorganic matrix samples,” making “small-sized MPs (< 10 μm)” detectable. The
MP concentration in tap water samples may be underestimated due to the
non-detectable smaller MPs using μ-FTIR, which leads to the biased result that
the higher concentrations of MPs were detected in bottled water than in tap water.
The identification of “small-sized MPs (<10 μm)” is in an urgent need for accurate
recognition of MPs and the relative risk assessment, regarding not only drinking
water but other food items [37].

5 Microplastics in Other Food Items

MP contamination also occurred in other food products according to the literature.
These rarely reported food types include beer, sugar, honey, chicken, tea, as well as
canned sardines and sprats [13–15, 39, 53–55]. Besides, we have found MPs in
edible seaweed (unpublished data). However, the data of these food items are so
limited that more investigations are needed on a broader range, covering more
regions and food types.
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In recent years, MP pollution has been widely recognized in soil, where the crops
and edible vegetables we eat grow. This undoubtedly poses a risk to land plants.
Although there is no evidence from field investigations, laboratory studies have
shown that polystyrene microsphere (0.2 μm) can be absorbed by lettuce roots and
then migrate to shoots and accumulate in edible stems and leaves [56]. Although
larger MPs are difficult to enter root cortex, they may adhere to plant surface and be
ingested by human [57].

6 Source, Human Burden, and Potential Health Risks

6.1 Source Diagnostics

To date, MPs are ubiquitous in terrestrial environment. Together with the whole
process from food acquisition to ingestion, the sources of MPs in food become
diverse and complex. Figure 1 shows the potential MP sources during the whole
process of seafood consumption, and other food items experience similar processes
to seafood.

In the beginning, the main factor affecting food contamination is the pollution
degree of the surrounding environment. Typical examples are table salt and seafood.
MPs in the surrounding environment can fuse into, adhere to, or be ingested by
marine animals [58, 59]. Several studies found that the abundance of MPs in sea salt
was higher than that in rock salt or lake salt, which could be explained by the high
level of MP pollution in coastal zones [16]. Besides, both mussel and sea salt are
proposed as indicators of MP pollution in marine environment [6, 33]. There are also
some plastic appliances and ropes acting as pollution sources of MPs in cultured
seafood. Another MP source of farmed seafood is the feeding materials produced
from MP-contaminated fish or other animals [21].

Fig. 1 Potential microplastic sources of seafood from marine environment to the table
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After acquisition, food items commonly experience food processing. The
presence of MPs in table salt suggests that MPs might be introduced during
collection, transportation to surface water, concentration, drying, crystallization, or
refinement processes [16]. Some food items are processed with additional substances
such as salt or water. If these additives have been already contaminated, MPs will be
introduced. Moreover, food packaging materials are often made of plastics, causing
the possibility of food contamination. According to the latest research, a single
plastic tea bag can release approximately 11.6 billion MPs and 3.1 billion
nanoplastics into a single cup of the beverage [55]. The staggering data reminds us
to pay more attention to food packaging and all external factors that may have
similar effects. For instance, takeout food industry is booming in today’s quick
living pace, resulting in more plastic packaging for food. Such situation makes food
more likely to be contaminated.

There is also an important source that needs special emphasis, which is airborne
MPs. Air contact exists almost throughout the entire process of food consumption,
from food acquisition to human ingestion. To date, atmospheric MPs have been
discovered in many countries and regions, both indoor and outdoor environments
[60, 61]. Airborne MPs may have greater contribution to food MP pollution than
other sources. The risk of plastic exposure caused by mussel has been confirmed to
be minimal compared to fiber ingestion through air fallout during a meal [62].

6.2 Human Body Burden

Contaminated food items are undoubtedly sources of gastrointestinal exposure for
human. A preliminary estimate on the body burden of MPs was made based on
detected MP concentrations in table salt, seafood, and drinking water. MP intake
through other food items cannot be estimated due to scarce data. The abundance of
MPs in table salt ranges widely from 0 to 2.0 � 104 MPs/kg. Considering the global
mean intake of table salt of 10.06 g/day [63], the intake of MPs ranges from 0 to
198 MPs per day, equivalent to 0 to 7.3 � 104 MPs per year. The highest value is
calculated according to the data of salt from Croatia [32]. The actual MP exposure
through salt intake depends on the types and brands of table salts, as well as the study
regions.

The presence of MPs in seafood has been widely recognized [27, 28, 48]. In 2014,
van Cauwenberghe and Janssen first estimated the potential MP intake through
seafood consumption. It showed that in Europe, where shellfish consumption was
high, an adult may ingest up to 11,000 MPs per year [22]. In countries with low
shellfish consumption, consumers ingest an average of 1800 MPs per year, which is
still a considerable exposure. The annual intake of MPs through seafood consump-
tion worldwide has been estimated by Hantoro et al., ranging from 11 to 3.5 � 104

particles per person [64]. Since MPs are mostly detected in gastrointestinal tracts
(GITs), which are normally removed before seafood consumption, species that we
eat whole pose greater threats than gutted ones. However, MPs in the eviscerated

Microplastics in Food: Health Risks 349



flesh of two commonly consumed dried fish species were significantly more than in
excised organs, evidencing that the evisceration does not necessarily eliminate the
risk of MP intake [45]. Moreover, MPs were also detected in the muscle of
commercial fish [30]. These findings raise concerns about possible implications for
human consumers.

With around 1.4 L water intake per day [65], the annual MP ingestion through
drinking water, including tap water and bottled water, could be in the range of
0–2.8 � 1010 MPs. However, the MPs detected in bottled water have different size
fractions (<10 μm) from those detected in tap water, seafood, and table salt. The
abundance, as well as the potential human risk of particles with different size ranges,
is not comparable. Therefore, when estimating the MPs in the three media, we only
calculated human MP intake through drinking tap water (0–4.7� 103 MPs per year),
without considering the data of bottled water.

Despite that we have estimated the intake of MPs by human through food
consumption, these data cannot represent the real situation. When calculating it,
we mostly take MP level of food itself into consideration but ignore other contam-
ination possibilities (from food processing, air, package, etc.). Thus, more attention
needs to be paid to these areas. When all factors are taken into consideration, the total
amount of MPs ingested by human through food is likely to rise by orders of
magnitude. However, excessive panic is uncalled-for before there is sufficient
toxicological evidence related to human body. Our body is in a process of dynamic
metabolism, and the unabsorbed MPs will be discharged with feces. Therefore, the
absorbed MPs and the amount of pollutants (organic pollutants and heavy metals)
released during MP metabolism are needed to make clear.

6.3 Translocation and Accumulation in Human Body
and Health Risks

After ingestion, MPs are capable of translocating and accumulating in different
organs and tissues. MPs have been found to be internalized in the gastrointestinal
tract, and the unabsorbed portion is excreted with human feces [66]. The studies on
other nano-sized particles provided evidence of penetration in the blood-brain barrier
and placenta and even crossing the cell membrane [67, 68]. However, there is still no
direct evidence showing the exact distribution and accumulation of MPs in human
organs such as the liver and kidney or in human blood.

Our current knowledge is very poor about whether MPs will reach human organs
and cause adverse health impacts. The available animal experiment results may have
some implications for human health effects of MPs. Ingestion of MPs caused
inflammatory responses in the digestive system ofMytilus [69]. The immune system
of fish was the target of MP attack [70]. Inflammations including chemokine
expression and pulmonary hypertension were induced by intrajugular injection of
polystyrene (PS) microspheres in rats, probably due to the increased blood
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coagulability or vascular occlusions [71, 72]. In vivo experiments showed that PS
could be internalized in macrophages, erythrocytes, as well as rat alveolar epithelial
cells, showing damages to intracellular structures [73, 74]. Moreover, persistent
organic pollutants, metals, and pathogenic microorganisms can be adsorbed on
MPs, and the leaching of chemical additives can also aggravate the toxic effects of
MPs [75–78]. MPs have been verified to be transport vectors for hydrophobic
organic chemicals (HOCs) in aqueous environments [79, 80]. Apparent enrichment
coefficients of HOCs on MPs might be up to five or six orders of magnitude higher
than the background concentration in the surrounding seawater. MPs may then
transport HOCs over long distances and affect the environmental and biological
systems [80]. The debate on the harmfulness of MPs to human health remains. Some
researchers emphasized the danger posed by food chain transfer, while others
claimed no adverse effect caused by MPs or MP additives [78, 81]. The controver-
sies mostly lie in the uncertainty of MP intake estimate, which calls for more precise
MP intake measurements or stimulating analysis. More research is urged to quantify
the concentrations of MPs in the tissue and to understand the mechanisms of the
induced human symptoms [82].

7 Conclusions

Food safety is an important issue closely related to human health. MP-contaminated
food poses a global concern, and humans are vulnerable to MP exposure through
consumption of these food items. The related information is scarce, and there may be
more kinds of food contaminated by MPs. What’s more, broader range of research
subjects and the detection technologies of small-sized particles are required in
addition to the uniformity of methods when we are assessing food safety. Besides,
we should take all pollution sources and possibilities into consideration. On this
basis, the human intake we calculate will be closer to the actual value.
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