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Abstract Due to high-density anthropic activity, the urban environment is regarded
as one of the major sources of microplastics (MPs). MPs can be produced in the
process of tire wear, landfill and sewage treatment, construction, industrial activity,
household laundry, and so on. According to recent studies, MPs have been widely
detected in urban atmosphere, ground surface dust or soil, and municipal rivers. Due
to lightweight and low density, MPs can easily float and transform between different
environmental matrices in urban ecosystems. Storm-water runoff is regarded as an
important pathway of MP from land to urban rivers or coastal waters. By wind
transportation, MPs on the municipal ground surface can be transferred to urban
rivers or the atmosphere. After treating sewage treatment plants, concentrations of
MPs can be extremely reduced in the discharged water but increased in the sludge.
MPs have also been found in landfills and may leak into other environmental
substrates. It can be concluded that MPs can migrate and transform among multiple
urban environments through physical and biochemical drivers. Distribution and
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transformation of MPs are closely related to the urban ecological environment and
also pose a potential risk on the health of urban residents. More research work needs
to fully reveal the source and fate of MPs in urban environments.

Keywords Characteristics, Microplastics, Occurrence, Source, Urban

1 Introduction

Increasing urbanization is an actual threat to the surrounding environment. The
urban environment is characterized by high-density residential and anthropic activ-
ity. Since plastic products are increasingly used by urban resident, plastic waste and
their decomposition outcome microplastics (MPs) have become an emerging envi-
ronmental issue of increasing concern. Cities are commonly regarded as one of the
major sources of MPs, which mostly include packaging, textile, furniture container,
transportation, electronics, and construction materials. These plastic products can be
further crushed and fragmented into MPs [1–3]. MPs can be transferred among
different environment matrices, such as urban atmosphere, surface grounds (dust),
soil, and water body (urban rivers or lakes).

Figure 1 shows the schematic diagram of sources and transference of MPs in
urban environments. MPs come from household activity, industrial production,
urban runoff, atmospheric activities, sewage treatment plants, etc. [4]. Specifically,
MP items largely generate from accidental loss of plastic particles during the factory

Fig. 1 schematic diagram of sources and transference of MPs in urban environments
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and transportation and fiber loss during the washing process of textiles and other
daily activities [5]. Browne et al. [6] considered that domestic sewage provided a
possible way for the entry of MPs. In addition, there are other ways, including the
fragmentation of larger items, the introduction of small particles used as abrasives in
cleaning products, and overflow of plastic powder and particles. Recent studies have
also shown that the high level of plastic contamination in urban freshwater systems,
whose concentration is comparable to that in marine systems [7]. Actually, the
presence of MPs in municipal water is considered as important transport carriers
for terrestrial MPs to the coastline and the open sea environment [2]. Freshwater
systems, especially urban rivers [8], are deemed as an important medium for
transferring plastic fragments [9]. MPs were widely detected in multiple urban
lakes, rivers, and sewage treatment plants in China [10–13]. Tire wear particles on
roads and the polymer of the paint are considered as sources of MPs in urban
environments [9]. Tire-derived MPs can further transfer into urban rivers or atmo-
sphere, through surface runoff or wind. In the urban ecosystem, MPs can be
randomly distributed into the atmosphere, soil, water column, and sediment, by
way of precipitation, surface water erosion, sedimentation, etc. [14]. Horton et al. [9]
pointed out that sewage, roads, and surface runoffs were sources of MPs in sedi-
ments of the Thames river [9]. Other studies had shown that anthropogenic influ-
ences and hydrodynamics have the potential to affect the accumulation and transport
of urban MPs [8, 15]. According to the diagram in Fig. 1, MPs show complicated
environmental behavior in the urban system. In this chapter, we will review the
possible sources, paths, and distribution of MPs in urban environments.

2 Microplastics in Urban Atmosphere

MP appearance in the urban atmosphere is generally closely linked to intensive
anthropogenic activities [15]. Nevertheless, to date, a few researchers have investi-
gated the emerging pollutants in the atmosphere. Dris is the first scholar who pays
attention to MPs in urban atmosphere [16]. He pointed out MPs were easily
transported by wind and could exist in the atmosphere for a long time. Due to
their small size and relatively low density, atmospheric MPs thereby can have
impacts on the urban ecosystem [17]. MPs can also be potentially inhaled by animals
and humans and thus pose a threat to human health [18]. According to a recent study
[16], wind and atmospheric deposition can transfer MPs to remote places, eventually
entering marine environments.
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2.1 Source and Characteristics of Microplastics in Urban
Atmosphere

A number of recent studies showed the presence of MPs in urban atmospheres
(Table 1). According to the shape of MPs, fiber is the dominated type, but small
percentages in other shapes include foam, fragment, and film [17, 19–22, 24]. So the
fiber-dominated is one of the pivotal characteristics of MP pollution in urban air. MP
fibers (MFs) present in the atmosphere can originate from a variety of sources on the
ground. Due to wind and air flow, MFs can float and enter into the human respiratory
system like other pollutants [17]. It is presumable that synthetic textiles, erosion of
synthetic rubber tires, and city dust are the main sources of these MFs [18]. It was
reported that more than 90 million metric tons of textile fibers were globally
produced in 2011. Two thirds of the production is synthetic and plastic fibers, mostly
including polyethylene terephthalate (PET), nylon (rope and woven products), and
rayon [20, 21, 24]. The fibrous plastic has grown by about 6.6% per year over the
past decades [25]. It is predictable that the degradation and fragmentation of these
fibers produce the prevalence of fibrous MPs. It is noted that fiber-dominated MPs
have also been observed in indoor space as well as in atmospheric fallout of outdoor
environments [19]. In addition, the commercial use of fine diameter (1–5 mm) plastic
fibers was considered to produce MFs in certain ways, such as in the sportswear
industry [26]. Significant developments in the synthetic fiber industry and the
widespread use of inexpensive non-woven fabrics may be helpful to explain the
prevalence of microfiber in the atmospheric environment [27].

In daily life, plastic fibers are commonly produced from textiles. These
microfibers may be shed and released directly or indirectly when the clothing is
worn or during washing and drying [28, 29]. In addition, the physical breakdown of
compounds also results in microfibers in daily activities including walking and
strenuous exercising, through wearing and tearing of pants. In addition, MP fibers
can be produced because of mechanical wear or damage of textile clothing and
bedding including pillows, blankets, and curtains. In the sun, photooxidation and
thermal effects of drying clothes can easily promote decomposition and degradation
of these textiles, which causes the release of microfibers [30]. Afterward, these
fibrous MPs can be broken into smaller-sized fine items through wind shear or
wear and other environmental drivers [26].

In urban atmosphere, multiple shape MPs can come from waste disposal, road
traffic, and so on. Actually, the majority of plastic waste is disposed by dumping into
open soil landfills, which gives plastic plenty of exposure to the atmosphere. The
continuous exposure can increase the chance of coarse plastic fragments breaking
up, which results in the release of MPs [31, 32]. In addition, human activities on the
ground, such as industrial cutting or grinding synthetic materials, mowing grass, and
automobile tire wear, can produce a significant amount of MPs, which are further
transferred into the atmosphere [27, 33].

A recent study showed that atmospheric MPs appear at different rates and sizes
for several months [24]. It was because meteorological factors, such as weather,
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wind speed and direction, humidity, temperature, and cyclones, can affect the
amount of MPs in urban air [17]. The amount of atmospheric MPs may be dependent
on a number of factors. For instance, rainfall can change MP abundance [22];
however, no significant correlation had been found between MPs in atmospheric
fallout and the rainfall in a study of Paris [17]. Another report showed that the
deposition flux of MPs varied seasonally with lowest deposition flux in autumn,
which was mostly due to the variability of meteorological conditions in different
seasons [21]. In addition, consumption habits and socioeconomic status of local
humans, transportation, and urbanization are also related to the amount of MPs in
urban atmospheres.

In a closed or semi-closed compartment, MPs are usually produced through
mechanical wear or damages of textile clothing and bedding such as pillows,
blankets, and curtains. A study showed that the MP concentration, especially
microfibers, in indoor air (1–60 fibers m�3) was higher than that in outdoor air
(0.3–1.5 fiber m�3) [19]. Therefore, indoor exposure to airborne MP fibers or
particles may pose a threat to human health [19, 34]. Comparatively, occupational
air exposure to MPs may be of high risks than household exposure. It is noted that
some special factories using high volumes of polymeric materials, and lack of
efficient ventilation, may result in chronic exposure to high concentration of airborne
MPs. Furthermore, indoor MPs can persistently enter outside atmospheres [19]. But
only 30% of outdoor particles can penetrate the indoor rooms in terms of an
estimation [35]. Therefore, indoor air is the main source of atmospheric MPs in
the urban environment [18].

2.2 Fate and Distribution of Airborne MPs

Airborne MPs could become a source of contamination for terrestrial and aquatic
ecosystems. Due to light and low density, dynamic exchange of MPs among various
environmental systems occurs frequently [18]. Just like over the sea, atmospheric
aerosols can spray and generate MP particles in the urban air [36, 37]. This process
could be associated with the MP cycle in the urban environment. MPs in the urban
atmosphere can be carried by wind and fall to the ground and plants on the surface
and by precipitation or unstable atmospheric disturbances [38]. A recent study
showed some similarities in morphological characteristics and chemical composition
between marine MPs and terrestrial MPs, which indicates that marine MPs may be
derived from terrestrial environments through atmospheric transportation and depo-
sition. These MPs, major microfibers in the atmosphere, could be also transported
and deposited on surfaces of ground in cities [39].

The environmental behavior of MPs in the atmosphere may be similar to other air
pollutant particulate matters [18]. Influenced by density and buoyancy, atmospheric
MPs present vertical distribution characteristics, usually higher concentrations near
the ground. A recent study investigated the content of MPs at different altitudes of
atmospheres and showed the highest MP concentration was at 1.7 m above the
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ground [9]. Additionally, wind erosion should be considered as a transport driver of
MPs in terrestrial environments [40]. For instance, an increase of wind speed leads to
a decrease in atmospheric MP concentrations [24]. Similarly, outdoor temperature
affects the migration of MPs in the atmosphere. Additionally, urban topography, like
distances between buildings, and local meteorology and thermal circulation (heat
islands perturbing air flow) could also affect the distribution of MPs in air [41],
especially to low-density polymers such as PE and PP MPs [9, 42]. Compared with
outdoor air, the migration behavior of MPs in a closed indoor environment is not
subject to these restrictions; room partition, ventilation, and airflow can have impacts
on the behavior of indoor MPs [35]. Of MPs, airborne nanoparticles (<100 nm) can
rapidly diffuse in indoor compartments in terms of a recent analysis [43]. However,
there are, to date, limited studies on atmospheric MPs especially in urban environ-
ments. Furthermore, there are no uniform method standards for analyzing atmo-
spheric MPs. More studies are needed to investigate the environmental behavior of
MPs in the urban atmosphere.

3 Microplastics on Ground Surface of Urban Environments

High density of vehicles is another characteristic in urban areas. Some studies have
shown that particles released by automobile tire wear are an important part of MPs
on urban ground surfaces [27]. According to Unice et al. [44], tire wear degradation
caused multiple-color paint to peel off road signs and then flowed into rivers through
rainfall. Tire and road wear particles (TRWP) are formed at the frictional interface of
the tire and road surface and consist of polymer-containing tread with pavement
mineral and binder encrustations. Some scholars are consistent to recognize TRWP
as an important source of MPs on urban surface grounds [45–48]. Due to its physical
properties, tire wear could be mixed with particulate matters from the pavement or
road dust and change into aggregates. It was pointed out that tire materials would
account for up to 70% of MP release into the urban environment [49]. TRWP and
their aggregates are eventually transported off the street through surface runoff or
street cleaning and can migrate into the atmosphere by suspension [50, 51]. As
another way, after crushing and recycling, these tire materials [52] can be used as
filling embankment materials in lawns [53], playgrounds [54], and so on. In addition,
the environmental concentration of automotive tire particles can be estimated by
chemical markers, such as plastic additive in tire and rubber type [55]. The other
sources of ground surface MPs include road sign paint shedding [9], beads in
personal care products, and household dust generated by household plastic products
[56]. Totally, these MPs can further enter into water bodies or atmospheres in the
urban areas.

In the urban environment, another store of MPs is dust on the surface of the
grounds. The main types of municipal waste disposal are usually dumped and
exposed to sunlight. In this process, plastic waste has undergone a combination of
biodegradation, photodegradation, thermal oxidation, and thermal degradation
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[31, 32], as well as mechanical wear, and increases the chance of coarse plastic
fragments breaking up into MPs. Therefore, many factors can determine the settle-
ment of MPs in road dust or urban topsoil. For example, the practice of mowing
grass on the roadside causes littering to be decomposed by lawn mowers, which
includes plastic, and produces MPs in the process [29]. Street dust is an ideal
indicator of urban environmental quality, since it can reflect pollutants from different
media such as urban air, water, and soil [57]. The main sources of dust pollutants
include vehicle traffic, road wear, brake pad tear and wear, road paint wear, and
atmospheric deposition [58]. Pollutants generated by urban street construction can
also be contained in street dust pollutants. A recent study showed that street dust was
dominated by spherical particles, film, fragments, and fibers, among which large
amounts of type particles were detected in the road dust in the city of Iran [38]. In
another city, Bushehr, the majority of MPs was found as fibers (75.87%), and was
detected in all street dust samples, with an MP concentration of 210–1,658 MP items
10 g�1 dust [59].

Large amounts of MPs can enter into aquatic environments through runoff from
urban areas. The conveyance of MPs dependent on overland runoff can be viewed as
a pathway of MPs from land to sea [56]. Flowing through the road and urban
pavements, MPs are washed by the rain; some will enter the artificial pipes, and
others will enter the natural reservoirs, such as ponds [27]. Additionally, a recent
study showed that wind erosion would be considered as a transport pathway of MPs
in terrestrial environments [40]. MPs on the surface of the ground can be blown into
the atmosphere by wind through buoyancy. Therefore, MPs are itinerant on urban
surface; and via various pathways, MPs likely migrate into other environmental
matrices, such as aquatic environments.

4 Microplastics in Aquatic Environments of Urban Areas

4.1 Urban Natural Water Body

Urban river systems are important sinks for the discharge of various pollutants from
local residential and industrial areas. Urban rivers can receive MPs via atmosphere,
surface runoff, industrial production processes, and sewage treatment plants. Natural
water body could provide a temporary reservoir of MPs in the short term [8]. Subse-
quently, these pollutants in urban rivers could enter into mainstreams, bigger river, or
even open sea [8]. Some rivers and estuary environments have been identified to have
heavy MP contamination. Rivers, especially those flowing through large cities, were
considered to be the main source of land-basedMPs entering the ocean [60]. In recent
years, increasing studies have globally explored the presence of MPs in urban lakes
and rivers (Table 2). Despite the variance of MP concentration, the presence of MPs
has been widely determined in urban rivers in terms of previous studies (Table 2). Of
these reports, the highest abundance of MPs was 8,925 � 1,591 nm�3, which was
found in urban lakes in Wuhan, China [65]. According to Eriksen et al. [72], the
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average abundance ofMPswas about 43,000 km�2 in the lakes near cities; the highest
abundance is up to 466,000 km�2. Morritt et al. [73] compared the size of MP
fragments in the Thames in the UK and found that sewage treatment plants were
the main source of MPs.

Abundance of MPs in urban freshwater is closely related to anthropic activities;
high density of population usually causes high abundance of MPs [74]. Lasee et al.
[75] demonstrated that the presence of large amounts of MPs in water bodies around
densely populated urban areas. Another study also confirmed that human factors
affected the abundance of MPs in urban regions [65]. Nevertheless, some researchers
reported relatively high concentrations of MPs in remote freshwater environments,
with extremely low population densities and low levels of industrialization
[39, 76]. Even though the reason is largely unknown, we speculate that complex
mechanisms can be involved in this transport process.

MPs in urban rivers might deposit into sediment and more likely to accumulate
through sedimentation. On the contrary, MPs in the sediment can be released into
water bodies under the action of water flushing [69]. Peng et al. [14] proved that
urban river sediment might be a reservoir of land-based MPs and also a source of
marine MPs. They surveyed sediment in the rivers of Shanghai, China, and found
that secondary MPs accounted for the majority of the MPs in urban water environ-
ments. However, due to the lack of the practice of waste classification in China and
other developing countries, most of plastic productions has not been recycled for the
usage, which leads to the big possibility that primary plastic can be fragmented into
MPs, which is ultimately discharged into water environments of urban areas.

4.2 Municipal Sewage System

In municipal sewage system, wastewater treatment plants (WWTPs) are attributed to
a major pathway for MPs to enter into the aquatic environment in urban areas. To
date, the presence of MPs at WWTPs has been widely reported in Australia [77],
Europe [78–80], and the USA [81, 82]. In a recent study, researchers have investi-
gated MPs at a full-scale WWTP, Eastern China, with two parallel wastewater
treatment systems, including oxidation ditch and membrane bioreactor. They
found that MP concentrations increased across the treatment systems and depended
on the facility of the treatment process. Influent MPs were removed by 99.5% in
membrane bioreactor system, while 97% in oxidation ditch system [83]. Other
investigators reported that MP removal at WWTPs could reach around 99%, but
the residual MPs discharged into surface water receivers were still in huge amount
[81, 84]. These MPs fromWWTPs will continuously be discharged into urban rivers
as one of the important sources for freshwater MPs [85].

The estimation showed that China released about 209.7 trillion MP microbeads
(306.9 t) per year into the water environment, 80% of which came from sewage
treatment plants [86]. Primary MPs are originally derived from personal care prod-
ucts such as toothpaste, cleansing gels, and soap and enter the sewage treatment
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plants through sewers [87]. Secondary MPs are produced by the treatment process of
the facility in sewage treatment plants, mostly via photolysis, oxidation, and degra-
dation [4]. Of these MPs in municipal sewage systems, fibers such as polyester and
nylon in synthetic garments [88] are the main types [6]. Peng et al. [14] identified the
amount of polyester, rayon, and other microfibers, which indicates that clothes
washing lead to a large part of microfibers entering water bodies. Except for
microfiber, a small number of other MPs types, such as chips and films, are available
in WWTPs. Despite the variance of the composition of MPs in different sewage
treatment plants, fibers were commonly reported as the dominated morphotype
[8]. Mark et al. [6] conducted a comparative test of MPs in wastewater discharged
from marine sediments, sewage treatment plants, and wastewater originally from
washing machines. The ratio of polyester fibers in marine sediments and sewage was
similar to that used for textiles; further analysis showed that a piece of clothing can
fall off more than 1,900 fibers per wash, releasing up to 100 fibers per liter of
discharged sewage. It is predicted that more fibers will enter the sewage treatment in
winter. Dris et al. [16] collected raw water, sedimentation water, and treated con-
ventional water from the Seine-Center wastewater treatment plant downstream of the
Paris water. After assay they found high concentration of MPs, i.e., 260 � 103–
320 � 103 particles m�3, in the raw water. The majority of the MPs were fibers and
in the size of mm scale. The domination of microfibers in the wastewater can be due
to the washing machine. After pretreatment before cloth washing, the amount of
MPs was greatly reduced to 14 � 103–50 � 103 particles m�3, and the MP
dimensions all decreased to below 1,000 μm. It indicated an effective approach of
the removal of MPs in the sewage treatment plant.

The fate of MPs across the treatment system in the WWTP is also associated with
the accumulation of MPs in sludge. After trapped in the sewage treatment plant, the
sludge may contain a large amount of MPs, which may be applied for agriculture,
and result in MP contamination in farmland soil [9, 89]. Lassen et al. [49] reported
that 1.00–24.0 � 103 MP particles kg�1 (�10 μm) were contained in sludge of a
sewage treatment plant in Germany. According to a study in Vancouver, Canada, the
wastewater treatment plant retained up to 99% of MPs and mostly accumulated in
the sludge [85]. In the sludge, content of microfibers was up to 9.7 � 3.7 fibers g�1

and higher than other MP shapes. Another study showed that average numbers of
MPs were 22.7 � 12.1 � 103 particles kg�1 (dry sludge) in waste sewage sludge
collected from 28 WWTPs in China [90]. In fact, a large proportion of MPs in the
sewage tend to mix with the sludge and precipitate in WWTPs [91]. According to a
survey in two sewage treatment plants in Turkey, the removal rate of MPs can be up
to 73–79% [87]. Despite practical efficiency of MP removal in WWTP, a large
amount of MPs can still be released into the sewage outlet. Therefore, pioneering and
targeting designs need to be developed to elevate MP removal in WWTP [60].
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5 Microplastics in Municipal Solid Waste

With the development of urbanization, solid waste is dramatically increasing [92]. It
is estimated that about one billion tons of municipal solid waste is globally pro-
duced; less than 200 million tons are processed in waste-to-energy plants. There is a
large amount of plastic waste in solid waste. In 2017, China’s plastic production was
84.58 million tons [93]. It was estimated that 8.82 million tons of plastic waste were
poorly managed in China, of which 133.353 million tons entered the ocean in 2010
[94]. Although some plastic wastes have been recyclable, the majority is often mixed
with other types of domestic wastes [95] and burned or landfilled together with
municipal solid wastes [92]. Landfill is a waste treatment strategy all around the
world. Due to poor management, landfills are predicted to store 21–24% of global
plastic waste [42]. A large amount of plastics are buried in landfills and are subject to
relatively more severe environmental conditions, including the leachate pH (from
4.5 to 9), high salinity, temperature fluctuations, the generation of gas (such as
carbon dioxide and methane), physical stress, and microbial degradation. These can
cause plastics to break into smaller fragments and produce MPs or even NPs [5].

The presence of MPs in municipal solid waste was supported by a series of
experiments and analysis [96]. Alimi et al. [97] proved that MPs could be intruded
into soil through landfill leachates. Kilponen [98] found that MPs in a creek were
stemmed from an old closed landfill leachate. He et al. [5] studied the occurrence and
characteristics of MPs in different MSW landfill leachates and explored the potential
of MPs as a source of MSW landfills. Seventeen different kinds of plastics were
detected in landfill leachate, with leading polymer types of PE (34.94%) and PP
(34.94%). They concluded that differences of plastic types in leachates might be
related to regional differences in waste composition and landfill conditions. The MPs
in landfill leachate were almost irregular in shape and rough in edges, which
indicated the fragmentation process of larger plastic wastes in landfills [99]. The
fragmentation might be the long-term process of producing MPs according to
analysis [5]. Most of these plastics were in the size of 100–1,000 μm (74.88%);
the number of MP particles increased with the decrease of MP sizes. The high
percentage of small MPs indicated that smaller plastic fragments were more likely
broken and further carried by leachate in the landfill environment. These small-sized
MPs could be easily uptaken by soil biota, even microorganisms in landfill, which
lead to a latent ecology risk [100–103]. Taking the typical megacity Shanghai, for
example, Su et al. provided a systematic overview of MP pollution characteristics in
landfill systems by investigating the MP abundances and fates in leachate and refuse
over different landfill age [104]. The results indicated that abundance, size, and
polymer type varied from landfill age, and the oxidative degradation of polyethylene
MPs occurred in the landfill process, especially for the landfill time of more than
20 years. This study concluded that the fates of MPs in landfills were determined by
the increase consumptions of plastic products and the degradation process of MPs in
landfills.
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Landfills are not the ultimate destination of plastics, but a potential source of MPs
in other environmental matrices. The MPs in the leachate can leak into the environ-
ment through leachate leakage and discharging from the leachate collection treat-
ment system. Foose et al. [105] demonstrated that leakage in the landfill system was
a pathway of MPs entering the aquatic environment. Additionally, soil application of
tiny solid components of landfills may introduce MPs into the terrestrial environ-
ment. MPs can accumulate in the soil and may be transported and redistributed by
wind or flow into the aquatic environment via surface runoff [106, 107]. In addition,
the MPs contained in the landfills can also be discharged through the ventilation of
the aeration or closed landfill in the aerated bioreactor landfills.

6 Conclusions

In urban environments, MPs can be produced in the process of tire wear, landfill and
sewage treatment, construction, industrial activity, household laundry, and so
on. Due to lightweight and low density, MPs can easily float and transform within
urban ecosystems. Meteorological conditions are the key factors for the migration of
MPs in urban atmospheres. Wind erosion should be considered as a transport
pathway of MPs, which makes MPs float in the atmosphere for a long time, and
fill into different parts of a city, making it easier for humans to contact with MPs
through breathing. Storm-water runoff is important for the conveyance of MP into
the aquatic environment, which can be deemed as a pathway of MP from land to
water bodies [56]. Rainfall also can result in atmospheric MPs falling down the
surface of the ground and eventually enter into urban rivers. A large amount of MPs
are produced by washing machines, cosmetics, plastic beads, and other processes
and then enter into sewage treatment plants through municipal sewers. After treat-
ment of sewage treatment plants, concentration of MPs can largely reduce in the
outfall water; but MPs will be accumulated in the sludge. Additionally, MPs have
also been found in landfills and can leak into other environmental matrices. We can
conclude that a mass of MPs can migrate among the ground, the air, the water, and
even the ocean. Distribution and transformation of MPs are closely related to urban
eco-environments and human activities.

To date, knowledge about MPs in urban environments is very limited. Future
researches need to focus on several aspects:

1. Standard sampling methods should be developed to facilitate the comparison of
MP distribution in different cities.

2. More research work needs to investigate MP content in urban atmospheres, to
further explore the joint pollution of MPs with other pollutants, and to analyze
latent health risks.

3. More work is necessary to discover the source and fate of MPs in multiple urban
environments.

4. New technology and methods need to be developed to control MPs, especially
microfiber released from household cloth washing to WWPT and urban rivers.
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