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Abstract Monitoring water quality is of great importance and mainly adopted
for water pollution control of conventional and nonconventional water resources.
Generally, water quality is evaluated using several indicators, including chemical
oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved
oxygen concentration (DO). In the present investigation, two artificial intelligence
techniques, namely, adaptive neuro-fuzzy inference system (ANFIS) and artificial
neural networks (ANN), were applied for predicting two water quality indicators:
(1) chemical oxygen demand (COD) at Sidi Marouane Wastewater Treatment
Plant (WWTP), east of Algeria, and (2) dissolved oxygen concentration (DO) at
the drinking water treatment plant of Boudouaou, Algeria. The models were devel-
oped and compared based on several water quality variables as inputs. Three ANFIS
models, namely, (1) ANFIS with fuzzy c-mean clustering (FCM) algorithm called
ANFIS_FC, (2) ANFIS with grid partition (GP) method called ANFIS_GP, and
(3) ANFIS with subtractive clustering (SC) called ANFIS_SC, were developed.
The ANFIS models were compared to standard multilayer perceptron neural network
(MLPNN) and multiple linear regression model (MLR). Results obtained demon-
strated that (1) for predicting COD, ANFIS_SC is the best model, and the coefficient
of correlation (R), Wilmot’s index (d), root-mean-square error (RMSE), and mean
absolute error (MAE) were calculated as 0.805, 0.880, 6.742, and 4.944 mg/L for
the validation dataset. The worst results were obtained using the MLR model
with R, d, RMSE, and MAE equal to 0.750, 0.840, 0.7658, and 5.916 mg/L for the
validation subset, and (2) for predicting DO concentration, the best results were
obtained using ANFIS_SC with R, d, RMSE, and MAE equal to 0.856, 0.922, 1.528,
and 1.123 mg/L for the validation subset, respectively.

Keywords ANFIS, Chemical oxygen demand, COD, Dissolved oxygen, DO,
MLPNN, Modeling, Water quality indicators

1 Introduction

Over the year, the control of water pollution is becoming of great importance, and
several regulations have been put in place [1]. Monitoring wastewater treatment
plant (WWTP) using online sensors has become an essential and crucial task
to handle rapid and seasonal variations that occur during all the months of years
[2]. Consequently, real-time supervision of the process of WWTP is nowadays a
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challenge [3]. To deal with these challenges, WWTP must be highly efficient [4].
Evaluation of the WWTP performances is mainly based on the measure of water
quality indicators (WQI), which are generally hard to measure regularly [5]. In the
last few years, soft computing models have been largely employed for modeling and
forecasting water quality indicators (WQI) in several water ecosystems. Chemical
oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen
concentrations (DO) were the most important WQI that have received great impor-
tance, and modeling chemical oxygen demand in wastewater treatment plant
(WWTP) is broadly discussed in the literature [6–13].

Ay and Kisi [6] compared several machine learning approaches in modeling
daily COD measured at the upstream of a WWTP in Turkey, using discharge
(Q) and three water quality variables as inputs: (1) suspended solid (SS), (2) temper-
ature (T), and (3) pH. The proposed models included (1) multiple linear regres-
sion (MLR), (2) multilayer perceptron neural network (MLPNN), (3) radial basis
function neural network (RBFNN), (4) generalized regression neural networks
model (GRNN), (5) adaptive neuro-fuzzy inference system techniques with grid
partitioning, (6) adaptive neuro-fuzzy inference system techniques with subtractive
clustering, and (7) a new model called MLPNN embedded k-means clustering
(K_MLP). The authors demonstrated that the K_MLPN using three input variables
(SS, T, and pH) provided the best accuracy with a coefficient of determination (R2)
equal to 0.88 in the validation phase. Kisi and Parmar [7] applied three data-driven
models, namely, (1) least square support vector machine (LSSVM), (2) multivariate
adaptive regression splines (MARS), and (3) M5 model tree (M5Tree) for modeling
monthly COD in India. According to the results obtained, the authors demonstrated
that the MARS and LSSVM performed better than the M5Tree. Nadiri et al. [8]
proposed a new model called supervised committee fuzzy logic (SCFL) for
predicting COD in WWTP in Iran. The proposed model is a combination of
the artificial neural network (ANN) paradigm and several individual fuzzy logic
(FL) models: Takagi-Sugeno, Mamdani, and Larsen. According to the results
obtained, the authors demonstrated that a linear combination of several FL models
outperforms the individual FL model.

Moral et al. [9] applied the standard MLPNN for predicting effluent COD at the
Iskenderun WWTP, Turkey. Yilmaz et al. [10] compared three data-driven models,
GRNN, RBFNN, and MLPNN for predicting the effluent COD using influent COD,
hydraulic retention time (HRT), and influent cyanide concentration (CN). MLPNN
was found to be the best model compared to the two others, with an R2 equal to 0.876
in the validation phase. Pai et al. [11] compared ANFIS and MLPNN for predicting
effluent COD at WWTP in Taiwan. The authors selected four water quality variables
as inputs, the influent SS, TE, and pH, in addition to the influent COD. According
to the results obtained, the ANFIS model was found to be slightly better than the
MLPNN. Perendeci et al. [12] proposed the use of the ANFIS model for predicting
the effluent COD using the COD measured at previous 10 days and reported very
encouraging results with an R2 equal to 0.84. Singh et al. [13] compared several
linear and nonlinear models for predicting weekly effluent COD at WWTP
using four water quality variables as inputs measured at the influent of the
WWTP. The proposed models were (1) partial least squares regression (PLSR),
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(2) multivariate polynomial regression (MPR), and (3) MLPNN models, and it is
observed that the MLPNN model has better performance than the other models with
an R2 equal to 0.84 in the test phase. Different modeling approaches can be found in
the literature [14, 15]. Contrary to the COD, which has received great attention
worldwide, modeling DO in DWTP is rarely reported in the literature. Hence, in the
present study, we reported an application of the ANFIS, MLPNN, and MLR models
for modeling DO in drinking water treatment plant (DWTP) and COD in WWTP.

2 Wastewater and Drinking Water Datasets

In the present study, effluent wastewater and drinking water data were obtained from
two different stations (Fig. 1): (1) Sidi Marouane Wastewater Treatment Plant
(WWTP) located at Sidi Marouane town, at about 12 km northeast of Mila Province,
east Algeria.

 Boudouaou (DWTP)  Sidi Marouane (WWTP)

Algeria 
Libya 

Tunisia 

Morocco

Mali 

Niger

Mauritania 

  Constantine  
 Algiers

 Oran 

  Tlemcen 

  Taghit 

 Djemila   Africa  

 Europe   

Western 
Sahara  

Fig. 1 Location of Sidi Marouane Wastewater Treatment Plant (WWTP) and Boudouaou Drinking
Water Treatment Plant (DWTP) in Algeria country
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The WWTP is located near the Beni Harroun Dam Reservoir [16], and
(2) Boudouaou Drinking Water Treatment Plant (DWTP) is located at Boudouaou
province and is the principal DWTP in Algeria [17]. The DWTP has a capacity of
540,000 m3 of water per day and provides drinking water to more than four million
inhabitants [18]. The treatment consists essentially of preliminary disinfection,
coagulation-flocculation, settling, filtration, and final disinfection [18, 19] (Fig. 2).
Regarding the WWTP, the treatment scheme is based on the conventional activated
sludge plant and consists essentially of coarse and fine screens, grit and grease
removal, primary sedimentation tanks, activated sludge aeration tanks, secondary
sedimentation tanks, and final clarification and chlorination facilities [16] (Fig. 3).
As explained above, two different datasets were used in the present study for
modeling COD and DO, respectively. The first dataset was collected from the Sidi
Marouane WWTP. It is composed of 364 patterns and includes four input variables:

Preliminary 
disinfection

Coagulation 
flocculation

SettlingFiltrationDisinfectionStorage tank 
(2 × 50000 m3)

Conductivity (SC)
Turbidity (TU)
Temperature (TE)
pH  

Dissolved Oxygen

Raw water pumped 
From Dam of KeddaraDam 

Distribution Pipeline 

Fig. 2 Schematic diagram of Boudouaou Drinking Water Treatment Plant (scheme adopted
from [12])

Beni Haroun Dam 
Reservoir 

SPSSPS SPS

Raw sewage Pumped 
from many sewage station 

Coarse
Screens

Fine
Screens

Grit and Grease 
Removal

Waste Waste
Sand and 

grease

Biological
Treatment

Clarification 

Sludge
Treatment

Effluent from a WWTP is 
discharged into a Dam reservoir

Gas
Freeing

Measured water quality 
variables effluent :( TE, pH, 

SC, SS, and COD)

Fig. 3 Schematic diagram of Sidi Marouane Wastewater Treatment Plant (WWTP)
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(1) effluent water temperature (TE), (2) effluent suspended solids (SS), (3) effluent
specific conductance (SC), and (4) effluent pH. Consequently, the dependent
variable (output) is the effluent chemical oxygen demand (COD), and the indepen-
dent variables are TE, SS, SC, and pH. Of this 364 patterns, 255 (70%) were
randomly selected as the model training subset, and 109 patterns (30%) were used
as validation subset. The second dataset was collected from Boudouaou DWTP. It is
composed of 902 patterns and includes four input variables: (1) raw water TE, raw
water turbidity (TU), raw water SC, and raw water pH. Consequently, the dependent
variable (output) is the dissolved oxygen (DO), and the independent variables
are TE, TU, SC, and pH. Of these 902 patterns, 632 (70%) were randomly selected
as the model training subset, and 270 patterns (30%) were used as validation subset.

In Table 1, we report the mean, maximum, minimum, standard deviation, coef-
ficient of variation values, and the coefficient of correlation with COD and DO, i.e.,
Xmean, Xmax, Xmin, Sx, Cv, and R, respectively. Among the input variables for DO,
TU has the highest variation, while for the COD, SS data have higher variation
than the others (see the variation coefficients, Cv in the table). On the other hand,
the training ranges of DO (5.084–11.16 mg/L) and COD (23.217–49.8 mg/L)
do not cover the validation ranges (5.266–13.2 mg/L for DO and 22.289–55 mg/L
for COD). This may cause some extrapolation difficulties for the applied models.
In the present study, COD and DO and all the input variables were normalized using
the Z-score method [20, 21]:

Zn ¼ xn � xm
σx

ð1Þ

where Zn is the normalized value of the observation n, xn is the measured value of
the observation n, and xm and σx are the mean value and standard deviation of the
variable x. This normalization was applied because it considerably improves
the performances of the AI models [22, 23].

3 Methodology

In the present study, three kinds of models were developed and compared: multilayer
perceptron neural network (MLPNN), adaptive neuro-fuzzy inference system
(ANFIS), and multiple linear regression (MLR). The flow chart for training and
validation of the MLPNN, ANFIS, and MLR is shown in Fig. 4.

3.1 Multilayer Perceptron Neural Network (MLPNN)

Artificial neural network (ANN) is a mathematical model that learns from examples
similar to human brain, and the structure of the artificial neuron was inspired
from the function of the biological neuron. ANN is structured in several layers,
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and generally, there is an input, an output, and several hidden layers, and the
information flows from the input to the output layer in which a series of processing
operations is carried out, using a multiplication, summation, and transformation
using a nonlinear activation (transfer) function. The available information repres-
ented by a matrix of input variables designed as xi that represent the independent
variable is stored in the input layer, while the response variable ( y) is fixed into the
output layer [24]. The hidden layers are the most important part of the ANN model,
and its success and its ability to solve a highly complex problem are attributed to the
role accomplished by the neurons arranged in the hidden layer that are characterized
by the presence of a nonlinear function, generally the sigmoid function. The con-
nection between different neurons, in different layers, is achieved using the weights
and bias, sometimes called connection strengths. Similar to any other statistical
models, weights and bias represent the parameters of the ANN model that must be
optimized and adopted using a learning algorithm, generally the back-propagation,
during a training process. Development of ANN models is mainly governed by
the presence of dataset. The most well-known ANN model is certainly the MLPNN
[25] that is frequently used for nonlinear mapping of input variables to an output
variable based on function approximation. The goal of the training process is the

Modelling Water Quality

Conventional Water Non-Conventional Water

Models 

Training & Validation  

RMSE R MAE 

Best Model: high R, d and lowest RMSE and MAE

CODDO

Output: CODInput: SS, TE, pH, SCInput: TU, TE, pH, SC Output: DO

ANFIS_SC ANFIS_FCANFIS_GP MLPNNMLR

d

Fig. 4 Flow chart for the proposed MLPNN, ANFIS, and MLR models
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minimization of an objective function. Generally the mean square error (MSE) is
estimated between the measured value and the calculated value via the model
[24]. In the present study, we used a MLPNN model having only one hidden layer
with sigmoid activation function and a linear activation function also called identity
function for the unique neuron in the output layer. MLPNN is a universal
approximator [26, 27].

From the input layer to the output layer (Fig. 5), the mathematical formulation
of the MLPNN can be split into the following equations:

Ij ¼
Xn
j¼1

xiwij þ δj ð2Þ

where xi is the input variable, wij is the weight between the input i and the hidden
neuron j, Ij is the net internal activity level of neuron j in the hidden layer, and δj
is the bias of the hidden neuron j.

Εj ¼ f 1 Ij
� � ð3Þ

Ej is the output from neuron j in the hidden layer, and f1 is the activation sigmoid
function, represented by Eq. (4).

f 1 xð Þ ¼ 1
1þ e�x ð4Þ

O ¼
Xn
j¼1

Ejwjk þ δ0 ð5Þ

wjk is the weight of connection of neuron j in the hidden layer to unique neuron k in
the output layer; O is the input of the output neuron k, and δ0 is the bias of the output
neuron k. Finally the output of the neuron k in the output layer is calculated using
a linear activation function f0:

Input Layer 

Hidden Layer 

Output Layer 

Wij

Wjk

x1

x2

x3

x4

COD/DO

Fig. 5 Multilayer
perceptron neural network
(MLPNN) structure for
modeling COD and DO
concentrations
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Y ¼ f 2 Oð Þ ð6Þ

3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive neuro-fuzzy inference system designated as ANFIS is a data-driven model
and belongs to the category of hybrid model, which combines two paradigms: the
ANN and the fuzzy logic (FL) [28]. ANFIS is a nonlinear mathematical model
that has a great capability of mapping any complex process characterized by a set
of independent variables (inputs) and one dependent variable (the output). From
the ANN approach, ANFIS is structured in several layers, and the information is
circulated from the first to the last layer, while from the FL approach, ANFIS model
uses the linguistic information and the concept of rules [28]. Among all the other
artificial intelligence (AI) models, ANFIS needs a hybrid learning process to update
the linear (consequent) and nonlinear (premises) parameters, composed of (1) back-
propagation method for updating the nonlinear parameters found in the membership
function and (2) the least squares (LS) for updating the linear parameters found in the
IF-THEN rules base [28]. The hybrid algorithm is achieved in two steps: forward for
updating the consequent parameters and backward pass for updating the premise
parameters [28]. ANFIS general architecture is shown in Fig. 6. From Fig. 6, it is
clear that the ANFIS model has five layers: two adaptive layers and three fixed
layers. The first layer is used only for presenting the input variables. The fuzzy rule
could be expressed as:

Rule 1 ¼ If x is A1ð Þ and y is B1ð Þ Then f 1 ¼ p1xþ q1yþ r1ð Þ ð7Þ
Rule 2 ¼ If x is A2ð Þ and y is B2ð Þ Then f 2 ¼ p2xþ q2yþ r2ð Þ ð8Þ

where x and y denote the inputs, Ai and Bi indicate the fuzzy sets, fi are the outputs
within the fuzzy region indicated by the fuzzy rule, and pi, qi, and ri show the design
parameters that are identified in the training phase.

Layer 1: the fuzzification layer with adaptive node

O1
i ¼ μAi

xð Þ, i ¼ 1, 2, ð9Þ
O1

i ¼ μBi�2
yð Þ, i ¼ 3, 4 ð10Þ

Ai (or Bi�2) is the linguistic label and μAi
xð Þ, μBi�2

yð Þ fuzzy membership function.
For a Gaussian membership function, Ai can be computed as:

μAi
xð Þ ¼ exp �0:5� x� cið Þ=σif g2

� �
, ð11Þ

where σi, ci are the premise parameters.
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Layer 2: the base rules layer

O2
i ¼ wi ¼ μAi

μBi, i ¼ 1, 2, ð12Þ

wi is the firing strength of a rule. The node numbers in this layer equal the number of
fuzzy rules.

Layer 3: the normalized firing strengths

O3
i ¼ wi ¼ wi= w1 þ w2ð Þð Þ, i ¼ 1, 2, ð13Þ

Outputs of this layer are named as normalized firing strengths.
Layer 4: the defuzzification layer

O4
i ¼ wi f i ¼ wi pi xþ qi yþ rið Þ, i ¼ 1, 2 ð14Þ

where wi the output of Layer 3 and pi, qi, and ri are the consequent parameters.
Layer 5: the output of the ANFIS model

Consequents parameters

Rules
Layer

Normalization
Layer

Defuzzification Layer Summation
Layer

x1 x2 x3 x4

∑

MF1-1

MF1-2

x3

MF1-3

MF2-1

MF2-2

MF2-3

MF3-1

MF3-2

MF3-3

MF4-1

MF4-2

MF4-3

Premise parameters

Input 
Layer

x2

x1

x4

ANFIS_GP

ANFIS_SC
ANFIS_FC 

GENFIS1

GENFIS2
GENFIS3

Specify the number of membership functions associated with each input

Specify the radii value for each input or a scalar value for all the inputs 

Specify the number of clusters to be generated.

Fuzzification
Layer

Fig. 6 ANFIS structure
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O5
i ¼

X
i¼1

wif i ¼
X
i¼1

wif i= w1 þ w2ð Þ
 !

: ð15Þ

ANFIS model can be built in three different forms: (1) ANFIS with grid partition
method called ANFIS_GP, (2) ANFIS model with subtractive clustering called
ANFIS _SC, and (3) ANFIS model with fuzzy c-means clustering (FCM) called
ANFIS_FC. In the present study, ANFIS was developed using the software Matlab.
For ANFIS_GP we used the GENFIS1 function; for ANFIS_SC and ANFIS_FC,
we used GENFIS2 and GENFIS3 functions.

3.3 Multiple Linear Regression (MLR)

The multiple linear regression (MLR) is the well-known kind of linear models, and it
represents an ideal relationship between a single variable called dependent (Y ) and
some explanatory variables (Xi) called independent variables. The relation between
Xi and Y is given as:

Ψ ¼ A0 þ A1 � x1 þ A2 � x2 þ A3 � x3 þ . . .Ai � xi ð16Þ

where Ψ is the calculated or the predicted value of Y, A0 is the intercept, and Ai are
the partial regression coefficients associated with input variables.

3.4 Performance Assessment of the Models

In the present study, we used four performance indices to evaluate and compare
the accuracy of the developed models: the coefficient of correlation (R), the Willmott
index of agreement (d ), the root-mean-squared error (RMSE), and the mean absolute
error (MAE).

R ¼
1
N

P
Οi � Οmð Þ Ρi � Ρmð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

Pn
i¼1

Οi � Οmð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

Pn
i¼1

Ρi � Ρmð Þ2
s

2
66664

3
77775 ð17Þ
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d ¼ 1�
PN
i¼1

Pi � Οið Þ2

PN
i¼1

Pi � Οmj j þ Οi � Οmj jð Þ2
ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Oi � Pið Þ2
vuut ð19Þ

MAE ¼ 1
N

XN
i¼1

Oi � Pij j ð20Þ

where N is the number of data points, Oi is the measured value, Pi is the
corresponding model prediction, and Om and Pm are the average values of Oi and
Pi [29–31].

4 Results

In the present work, we applied three types of models listed earlier: (1) the
standard MLR, (2) the MLPNN, and (3) three types of ANFIS models, the
ANFIS_GP, the ANFIS_SC, and the ANFIS_FC. The models were compared, and
their performances were evaluated for modeling DO and COD concentrations. Several
combinations of the water quality variables were selected, and in total five scenarios
(Table 2) were compared. The performance of the models used in this study was
computed using four performance criteria, including RMSE, MAE, R, and also the
d. For the MLPNN models, the Levenberg-Marquardt (LM) algorithm was employed.
For the hidden and output layers, the sigmoid and linear (identity) transfer functions
were employed, respectively. The minimum number of the hidden neuron was one,
and the maximum was 20, and a total of 100 epochs was adopted. By trial and error,
we find that the optimal number of neurons in the hidden layer for both COD and
DO was equal to 13 neurons. ANFIS is configured using three different identification

Table 2 The input combinations for different models

Models

Input combinations

Modeling
DO

Modeling
COD

MLR1 MLPNN1 ANFIS_SC1 ANFIS_GP1 ANFIS_FC1 TE, pH, SC,
TU

SS,TE, pH,
SC

MLR2 MLPNN2 ANFIS_SC2 ANFIS_GP2 ANFIS_FC2 TE, pH, SC SS, TE, SC

MLR3 MLPNN3 ANFIS_SC3 ANFIS_GP3 ANFIS_FC3 TE, SC,TU SS, pH, SC

MLR4 MLPNN4 ANFIS_SC4 ANFIS_GP4 ANFIS_FC4 pH, SC SS, pH

MLR5 MLPNN5 ANFIS_SC5 ANFIS_GP5 ANFIS_FC5 SC,TU SS, SC
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methods: (1) grid partitioning using Genfis1 algorithm for ANFIS_GP, (2) subtractive
clustering using Genfis2 algorithm for ANFIS_SC, and (3) fuzzy c-means clustering
using Genfis3 algorithm for ANFIS_FC. For ANFIS_GP, the number of membership
functions (MFs) for each input variable is two. The Gaussian curve membership
function Gaussmf is used for input variables, and output membership function type
is a linear type, and it is trained for 150 epochs. Using the grid partition method, the
numbers of fuzzy rules exponentially increase with the increase of the number of MFs
for each input variable, and it is hard to use this method if the number of input variables
is rather than six because of computation time and/or memory limitations. Hence, the
number of possible fuzzy rules is calculated as (MFs)n, where n is the number of input
variables. For ANFIS_SC, contrary to the ANFIS_GP, the optimum number of MFs
and consequently the number of fuzzy layers are determined using the subtractive
clustering (SC) algorithm. The number of fuzzy rules generated using the SC algo-
rithm is governed by one parameter: the radius value ra, determined at the beginning of
the training process. Large values of ra generate fewer clusters and vice versa.
Consequently, the number of fuzzy rules is equal to the number of clusters. In the
present study, we determined the optimal value of ra by trial and error, and the best
values for DO and COD were 0.26 and 0.85, respectively. Finally, for the ANFIS_FC
based on the fuzzy c-means clustering (FCM) algorithm, contrary to the SC algorithm,
the number of clusters generated is known and fixed at the beginning of the training,
and the number of fuzzy rules is equal to the number of clusters. In the present study,
we determined the optimal number of the cluster by trial and error, and the best values
for DO and COD were 20 and 3, respectively. Hereafter the results obtained are
summarized and discussed.

4.1 Modeling DO at Boudouaou Drinking Water Treatment
Plant

Table 3 shows the results obtained by the ANFIS, MLPNN, and MLR models
applied and compared together. According to Table 3, acceptable accuracy between
measured and calculated DO concentration was achieved by all the MLPNN and
ANFIS models, while the MLR models perform worse with high (RMSE and MAE)
and low (R and d ) values. In the training phase as seen in Table 3, the best R and
d across all compared models were achieved by the ANFIS_FC1 (R ¼ 0.939,
d ¼ 0.968), followed by ANFIS_SC1 (R ¼ 0.909, d ¼ 0.951), the MLPNN1
(R ¼ 0.901, d ¼ 0.947) in the third place, and the ANFIS_GP1 (R ¼ 0.894,
d ¼ 0.942) in the fourth place. The worst accuracy with low R and d was for the
MLR1 model (R¼ 0.649, d¼ 0.766). As can be seen from Table 3, ANFIS_FC1 has
the lowest RMSE and MAE values (RMSE ¼ 1.021 mg/L, MAE ¼ 0.710 mg/L),
while MLR1 has the highest RMSE and MAE values (RMSE ¼ 2.259 mg/L,
MAE ¼ 1.817 mg/L). Compared to the two other ANFIS models, it is clear that
the ANFIS_FC1 model has smaller RMSE and MAE values and higher R and
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d values than the ANFIS_GP1 and ANFIS_SC1 models. In the validation phase
as seen in Table 3, the best accuracy was achieved using the ANFIS_SC1. It is clear
that the ANFIS_SC1 model has smaller RMSE and MAE (RMSE ¼ 1.528 mg/L,
MAE ¼ 1.123 mg/L) and higher R and d values (R ¼ 0.856, d ¼ 0.922) than the
ANFIS_FC1, ANFIS_GP1, MLPNN, and MLR models. Also, the ANFIS_FC1
model has a lower RMSE and MAE, and slightly higher R and d than the
ANFIS_GP1 model, and was again better than the MLPNN1 and MLR1 models.
This indicates that in general, the ANFIS model is a good modeling tool for DO than
MLPNN and MLR. It is also clear from Fig. 6 that the ANFIS models have less
scattered estimates than the MLPNN and MLR models. This indicates that in
general, the ANFIS model is a good modeling tool for DO compared to MLPNN
and MLR. From Table 3, the second input combination provides better accuracy
than the third input combination. Similarly, fifth input combination has better
performance than the fourth one. Comparison of these combinations shows that
the SU variable is more effective on DO than the pH variable.

Table 3 Performances of the developed models for modeling DO concentration

Models

Training Validation

RMSE MAE R d RMSE MAE R d

(mg/L) (mg/L) / / (mg/L) (mg/L) / /

MLR1 2.259 1.817 0.649 0.766 2.275 1.824 0.635 0.768

MLR2 2.379 1.938 0.599 0.725 2.352 1.915 0.599 0.732

MLR3 2.661 2.319 0.444 0.574 2.654 2.311 0.431 0.566

MLR4 2.614 2.206 0.475 0.611 2.490 2.117 0.531 0.648

MLR5 2.452 2.013 0.564 0.687 2.383 1.953 0.584 0.705

MLPNN1 1.286 0.942 0.901 0.947 1.844 1.246 0.796 0.891

MLPNN2 1.669 1.214 0.827 0.900 1.854 1.315 0.779 0.878

MLPNN3 1.725 1.284 0.814 0.892 2.400 1.782 0.617 0.786

MLPNN4 2.249 1.767 0.653 0.772 2.154 1.756 0.681 0.780

MLPNN5 2.042 1.581 0.726 0.827 2.161 1.634 0.685 0.811

ANFIS_SC1 1.235 0.888 0.909 0.951 1.528 1.123 0.856 0.922

ANFIS_SC2 1.658 1.198 0.830 0.901 1.874 1.334 0.775 0.874

ANFIS_SC3 1.899 1.431 0.769 0.861 2.171 1.694 0.681 0.813

ANFIS_SC4 2.317 1.879 0.626 0.747 2.389 1.951 0.594 0.737

ANFIS_SC5 2.160 1.697 0.686 0.797 2.248 1.723 0.646 0.775

ANFIS_GP1 1.331 0.973 0.894 0.942 1.662 1.191 0.831 0.908

ANFIS_GP2 1.848 1.363 0.783 0.869 1.865 1.417 0.772 0.863

ANFIS_GP3 2.101 1.662 0.707 0.815 2.193 1.749 0.667 0.793

ANFIS_GP4 2.443 2.036 0.569 0.694 2.399 2.046 0.576 0.695

ANFIS_GP5 2.266 1.782 0.647 0.767 2.103 1.655 0.700 0.795

ANFIS_FC1 1.021 0.710 0.939 0.968 1.662 1.152 0.836 0.914

ANFIS_FC2 1.407 0.999 0.881 0.934 1.804 1.256 0.801 0.893

ANFIS_FC3 1.725 1.284 0.814 0.892 2.400 1.782 0.617 0.786

ANFIS_FC4 2.060 1.602 0.720 0.824 2.240 1.701 0.652 0.787

ANFIS_FC5 1.738 1.311 0.811 0.889 2.105 1.524 0.713 0.838

28 S. Heddam et al.



4.2 Modeling COD at Sidi Marouane Wastewater Treatment
Plant

Table 4 illustrates the obtained results from all five developed models for predicting
COD. From these results, it can be observed that MLPNN, ANFIS_SC, ANFIS_FC,
and ANFIS_GP have promising accuracy during the training and validation phases;
for all the five combinations, the ANFIS_FC1 has the best accuracy in the training
phase. However, during the training or validation phases, the models with two input
variables (combination 4 and 5) give low efficiency, low (R and d ) and high (RMSE
and MAE) values. Also, the models with first and third input combinations give
good results compared to the three other combinations; this is certainly due to the
inclusion of the pH variable as input. Taking into account the four statistical indices,
the ANFIS_FC1 model with four input variables (SS, TE, pH, and SC) gives the best
estimation (R ¼ 0.771, d ¼ 0.860, RMSE ¼ 7.362 mg/L, MAE ¼ 5.471 mg/L)

Table 4 Performances of the developed models for modeling COD concentration

Models

Training Validation

RMSE MAE R d RMSE MAE R d

(mg/L) (mg/L) / / (mg/L) (mg/L) / /

MLR1 8.476 6.656 0.680 0.785 7.658 5.916 0.750 0.840

MLR2 9.431 7.546 0.579 0.693 8.810 7.280 0.651 0.760

MLR3 9.084 7.242 0.619 0.733 8.235 6.788 0.704 0.790

MLR4 9.192 7.344 0.607 0.721 8.645 7.040 0.663 0.757

MLR5 9.602 7.808 0.557 0.671 8.932 7.491 0.637 0.739

MLPNN1 7.824 5.896 0.736 0.837 6.971 5.069 0.790 0.870

MLPNN2 8.390 6.383 0.688 0.795 7.986 6.029 0.710 0.815

MLPNN3 7.454 5.690 0.765 0.854 7.883 5.768 0.726 0.837

MLPNN4 8.254 6.397 0.700 0.807 8.219 6.185 0.689 0.803

MLPNN5 8.647 6.768 0.664 0.773 8.574 6.596 0.655 0.764

ANFIS_SC1 7.922 6.054 0.729 0.828 6.742 4.944 0.805 0.880

ANFIS_SC2 8.565 6.691 0.672 0.781 8.052 6.000 0.704 0.805

ANFIS_SC3 8.235 6.399 0.702 0.807 7.462 5.525 0.755 0.837

ANFIS_SC4 8.678 6.899 0.661 0.772 8.066 6.167 0.705 0.793

ANFIS_SC5 8.859 7.013 0.643 0.757 8.421 6.411 0.671 0.767

ANFIS_GP1 7.689 5.873 0.747 0.841 7.128 5.119 0.779 0.867

ANFIS_GP2 8.263 6.308 0.700 0.805 7.684 5.731 0.736 0.829

ANFIS_GP3 8.083 6.224 0.715 0.816 7.328 5.502 0.765 0.845

ANFIS_GP4 8.657 6.881 0.663 0.774 8.186 6.277 0.693 0.789

ANFIS_GP5 8.823 6.941 0.646 0.761 8.174 6.273 0.696 0.782

ANFIS_FC1 7.362 5.471 0.771 0.860 7.299 5.356 0.767 0.864

ANFIS_FC2 7.987 6.116 0.723 0.824 8.615 6.435 0.665 0.796

ANFIS_FC3 7.579 5.712 0.755 0.850 7.432 5.344 0.757 0.854

ANFIS_FC4 8.262 6.384 0.700 0.807 7.966 5.983 0.712 0.815

ANFIS_FC5 8.681 6.720 0.661 0.774 8.268 6.443 0.685 0.781
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among all the other models as shown in Table 4. According to the results in Table 4,
it is clear that the MLR1 model has smaller R and d and higher RMSE and MAE
in the training phase, compared to the MLPNN1 and the three ANFIS models,
and provides the poorest accuracy. Some clear conclusions could be drawn from
the Table 4 with respect to validation results. Firstly, for the entire five models
developed, it can be concluded from the table that the poorest accuracy was obtained
using the MLR1 model with the lowest R and d (R ¼ 0.771, d ¼ 0.860) and the
highest RMSE and MAE (RMSE ¼ 7.362 mg/L, MAE ¼ 5.47 mg/L). Secondly,
among the five input combinations (Table 2), the first (with all the input variables)
is the best, and the fifth combination (SS, SC) is the worst. Thirdly, according to the
results based on three ANFIS, the optimal models are ANFIS_SC1, ANFIS_FC1,
and ANFIS_GP1, respectively. It is observed that the ANFIS_SC1 presented the
lowest RMSE and MAE (RMSE ¼ 6.742 mg/L, MAE ¼ 4.944 mg/L) values and
the highest R and d (R ¼ 0.805, d ¼ 0.880) values. Accordingly, ANFIS_SC1 is
considered the optimal. It can simply be concluded that better performance results
can be obtained with ANFIS_SC1. Fourthly and finally, the results of R, d, RMSE,
and MAE suggest that the ANFIS_SC1 is slightly better compared to that of
MLPNN1 and the MLPNN1 is slightly better compared to those of the ANFIS_FC1
and ANFIS_GP1. From Table 3, the third input combination has better accuracy than
the second input combination. Moreover, the fourth input combination shows better
performance than the fifth one. Comparison of these combinations indicates that
the pH variable is more effective on COD than the TE and SC variables. It can be
observed from Fig. 7 that the ANFIS_SC1 model has less scattered estimates than
the other models. The slope and bias of its (ANFIS_SC1) fit line equation are,
respectively, closer to the 1 and 0 with a lower R compared to MLPNN1,
ANFIS_FC1, ANFIS_GP1, and MLR1 models (Fig. 8).

5 Discussion

In the present paper, we developed two artificial intelligence models, ANFIS and
ANN, for predicting COD and DO in WWTP and drinking water treatment plant,
respectively. Hereafter, we discussed the obtained results in comparison to the
results reported in previous similar studies in the literature. Especially, we focused
on the results related to the COD. Among all the developed models in our study,
ANFIS represents the best accuracy compared to the ANN. Various researchers have
attempted to develop models for COD using effluent and affluent water quality
variables. The supervised committee fuzzy logic (SCFL) model proposed by Nadiri
et al. [8] achieves an R2 equal to 0.82, significantly superior to 0.648 obtained using
ANFIS model in our study. Kisi and Parmar [7] utilized MARS, LSSVM, and
M5Tree models for modeling COD and demonstrated that an R2 ¼ 0.71 is obtained
using MARS model. In another study, Ay and Kisi [6] compared ANN, GRNN, and
RBFNN models for COD estimation, and they obtained an R2 equal 0.88. Similar
to our approach, Pai et al. [11] compared ANFIS and ANN models for COD
and demonstrated that ANFIS provided an R2 equal 0.86 which is superior to the
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Fig. 7 Scatterplots of predicted versus measured values of dissolved oxygen concentration
(DO) using MLPNN1, MLR1, ANFIS_SC1, ANFIS_FC1, and ANFIS_GP1 models in validation
phase

MLR1 MLPNN1 ANFIS_SC1

ANFIS_FC1ANFIS_GP1

Fig. 8 Scatterplots of predicted versus measured values of chemical oxygen demand (COD) using,
MLPNN1, MLR1, ANFIS_SC1, ANFIS_FC1, and ANFIS_GP1 models in the validation phase
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R2 (0.648) obtained using our model. Singh et al. [13] reported that ANN model had
an R2 of 0.84. In the study conducted by Yilmaz et al. [10], MLPNN model was
more accurate than GRNN and RBFNN, with an R2 equal 0.876. Finally, the ANFIS
model proposed by Perendeci et al. [12] provided an R2 equal 0.84. From the
discussion reported above, it is clear that our models worked less accurate than
the models proposed in the literature, and this is certainly related to the quality of
the data used for developing the models.

6 Conclusions

In the present investigation, MLPNN, MLR, and three ANFIS models, namely,
ANFIS_GP, ANFIS_SC, and ANFIS_FC, were developed to model two water
quality indicators: (1) chemical oxygen demand (COD) and (2) dissolved oxygen
concentration (DO). The models were developed using several water quality vari-
ables measured at daily time step at WWTP and DWTP, respectively. The input
variables used for predicting COD are daily water temperature (TE), suspended
solids (SS), specific conductance (SC), and pH, while the input variables used for
modeling DO were turbidity (TU), TE, pH, and SC. From the results obtained in
the present investigation, some conclusions can be drawn and are summarized as
follows:

1. By comparing several combinations of the input variables for modeling DO
concentration, the best results were obtained by the ANFIS_SC with TE, pH,
SC, and TU inputs, followed by the ANFIS_FC in the second order, ANFIS_GP
ranked third, MLPNN ranked fourth, and the MLR model in the last place.

2. In regard to modeling COD, the results showed that the ANFIS_SC with TE, pH,
SC, and SS as inputs had the best results and it can be used to estimate COD with
very acceptable accuracy, followed by the MLPNN, ANFIS_GP, ANFIS_FC,
and MLR, respectively.

Another conclusion we can draw from the results obtained is that the accuracy of
the proposed models is mainly dependent to the selection of the input variables, and
to obtain good prediction accuracy, it is necessary that all the variables be included
for the models.

7 Recommendations

Results obtained in the present study highlighted a number of points that need to
be addressed in the future. Firstly, the quality of data must be improved, and the list
of variables measured should be enlarged to other variables, notably to include
chemical and physical variables that can be good predictors for COD. Secondly,
the proposed models should be applied to other WWTP for further comparison of the
models’ performances.
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