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Abstract Since the inception of drinking water treatment systems, ensuring the

production of microbiologically safe drinking water has been a primary objective.

While chemical oxidants are often successfully employed to mitigate microbial

risks, the chemical reactions that occur between oxidants and the dissolved or

particulate constituents present in source waters, e.g., natural organic matter

(NOM), can produce byproducts associated with unintended health consequences.

These disinfection byproducts (DBPs) are potentially carcinogenic, mutagenic,

genotoxic, and/or teratogenic. Since the discovery of DBPs in the early 1970s,

considerable effort has been afforded to develop regulations or guidelines striving

to simultaneously control microbial pathogens and DBPs. As advanced oxidation

processes (AOPs) gain traction as an integral part of advanced treatment trains in

water, wastewater, and water reuse scenarios, their impact on DBPs, in terms of

both formation and destruction, is an increasingly important consideration and is

the focus of this chapter.

This chapter begins with a brief overview of major drinking water disinfection

processes, followed by an introduction to common classes of disinfection

byproducts (DBPs) and their precursors, and concludes with discussion of the

influence of AOPs on DBP formation, formation potential, and removal.

Keywords Disinfection byproducts (DBP), Haloacetic acids (HAA), Natural

organic matter (NOM), Oxidation, Trihalomethanes (THM)

B.K. Mayer (*) and D.R. Ryan

Department of Civil, Construction and Environmental Engineering, Marquette University,

Milwaukee, WI 53151, USA

e-mail: Brooke.Mayer@marquette.edu; Donald.Ryan@marquette.edu

A. Gil et al. (eds.), Applications of Advanced Oxidation Processes (AOPs) in Drinking
Water Treatment, Hdb Env Chem (2019) 67: 345–386, DOI 10.1007/698_2017_82,
© Springer International Publishing AG 2017, Published online: 25 October 2017

345

http://crossmark.crossref.org/dialog/?doi=10.1007/698_2017_82&domain=pdf
mailto:Brooke.May&spi1;er@marquette.edu
mailto:Donald.Ryan@marquette.edu


Contents

1 Brief Introduction to Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

1.1 Common Disinfectants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

1.2 Advanced Oxidation Process-Based Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

2 Disinfection Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

2.1 Disinfection Byproduct Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

2.2 Conventional Disinfection Byproducts: Trihalomethanes, Haloacetic Acids,

and Oxyhalides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

2.3 Emerging Disinfection Byproducts, Including Brominated, Iodinated,

and Nitrogenous Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

2.4 Non-halogenated Organic Disinfection Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3 Disinfection Byproduct Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.1 Bulk Organic Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

3.2 Natural Organic Matter Fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

3.3 Structure and Reactivity of Natural Organic Matter (NOM) Fractions . . . . . . . . . . . . . 364

3.4 Synthetic Organic Disinfection Byproduct Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

4 Disinfection Byproduct Formation in Relation to Advanced Oxidation Processes . . . . . . . 366

4.1 Disinfection Byproduct Formation in Advanced Oxidation Processes . . . . . . . . . . . . . . 367

4.2 The Impact of Advanced Oxidation Processes on Disinfection Byproduct (DBP)

Formation Potential: Influence of Oxidation on Precursor Organic Matter

and Subsequent DBP Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

5 Mitigation of Disinfection Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

5.1 Alternative Disinfectants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

5.2 Removal of Precursor Natural Organic Matter Prior to Disinfection . . . . . . . . . . . . . . . 374

5.3 Mitigation of Preformed Disinfection Byproducts Using Advanced Oxidation

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

1 Brief Introduction to Disinfection

The five most commonly used drinking water disinfection strategies are free

chlorine, combined chlorine, chlorine dioxide, ozone, and ultraviolet (UV) light.

Figure 1 shows the relative distribution of the use of these disinfectants in the

United States based on surveys conducted by the American Water Works Associ-

ation (AWWA).

UV inactivates microorganisms on the basis of electromagnetic radiation, which

primarily disrupts nucleic acids. Each of the other four common disinfection

processes involves additions of oxidizing chemicals. These oxidizers damage

microbial proteins (amino acids) and genomes (nucleic acids) [3], thereby

preventing microbial replication, i.e., causing inactivation. However, these oxidants

are relatively nonselective, so they also react with other materials in the water (such

as natural organic matter, NOM), and can produce disinfection byproducts (DBPs),

which are potentially carcinogenic, mutagenic, genotoxic, and/or teratogenic. This

is represented by the generalized reaction:
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Oxidant e:g:;HOClð Þ þ Precursor e:g:;NOMð Þ ! DBP e:g:;CHCl3ð Þ

The extent of DBP formation is a function of the type of disinfectant used,

disinfectant dose, system parameters (e.g., contact time), and water quality (e.g.,

quantity and character of NOM, pH, and temperature).

1.1 Common Disinfectants

Free chlorine (primarily in the form of HOCl andOCl� [Eo¼ 1.49 V for HOCl/Cl�])
is typically added as gaseous Cl2 or NaOCl. It is the most commonly used disinfec-

tant for water treatment as it is broadly effective against microbial pathogens and is

comparatively inexpensive. Although free chlorine remains the dominant drinking

water disinfectant, concerns over chlorine-resistant microbes (e.g.,Cryptosporidium
and Giardia) and formation of halogenated DBPs have increased interest in alterna-

tive disinfection strategies. Free chlorine is associated with the production of clas-

sically regulated DBPs such as trihalomethanes (THMs) and haloacetic acids

(HAAs), as well as emerging DBPs, including chloral hydrate, chlorophenols,

formaldehyde, haloketones, halogenated furanones, and haloacetonitriles. In gen-

eral, the production of organochlorine compounds during chlorination is caused by

reactions between chlorine and humic substances [4]. There are three general

pathways through which free chlorine reacts with water constituents: oxidation,

addition, and substitution [5]. When organic compounds have double bonds, the

chlorine can undergo an addition reaction, but this reaction is often too slow to be

of importance in water treatment. Thus, most chlorinated DBPs are formed via
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Fig. 1 Temporal summary of relative disinfectant use in municipal drinking water treatment in

the United States. Adapted from [1, 2]. The cited surveys reported the use of multiple types of

disinfectants for some systems (yielding totals in excess of 100% of the number of systems

surveyed); here the relative distribution of type of disinfectant used is shown, resulting in a

maximum of 100%

Impact on Disinfection Byproducts Using Advanced Oxidation Processes for. . . 347



oxidation and substitution reactions, with reactions occurring much more rapidly at

high pH than at low pH [4].

Combined chlorine is the sum of the species formed through the reaction of

chlorine and ammonia: monochloramine (NH2Cl), dichloramine (NHCl2), and

trichloramine (NCl3). Combined chlorine, or chloramines, is not as effective as

free chlorine for inactivation of pathogens and is thus not commonly used as a

primary disinfectant. However, its longer residual makes it a common choice for

secondary disinfection to avoid biological regrowth in the distribution system.

Chloramines reduce the amount of THMs and HAAs formed in comparison to

free chlorine; however, they introduce concerns for nitrosamine and cyanogen

chloride DBP formation. Reactions of chloramines with humic materials and

amino acids produce haloacetonitriles and non-halogenated acetonitriles, following

a pathway similar to that for chlorine [4].

Chlorine dioxide (ClO2) is a powerful disinfecting agent (E
o ¼ 0.95 V for ClO2/

ClO2
�) but is volatile, typically requiring onsite generation. It is widely used as a

disinfectant in continental Europe but is not as commonly used in the United States.

At the dosages typically used in drinking water treatment, ClO2 (which is more

selective than free chlorine) does not react with NOM, so it avoids formation of

THMs and HAAs, and produces almost no identifiable organic byproducts

(although low levels of some aldehydes and ketones can result) [6]. Chlorine

dioxide reacts only by oxidation, which explains the lack of organochlorine com-

pound formation [4]. Although stable in pure water, ClO2 decomposes in drinking

water as it is photoreactive and can also undergo disproportionation to produce the

inorganic DBPs chlorite (ClO2
�) and chlorate (ClO3

�), the kinetics and degree of

which depend on ambient water quality parameters [7].

Of the common chemical disinfectants, ozone (O3, E
o ¼ 2.07 V for O3/O2) is the

strongest oxidizing agent and must be generated on-site as it is unstable. Ozone

provides effective oxidation of many chemical contaminants as well as inactivation

of microbial pathogens. Ozonation itself does not produce halogenated DBPs and

has thus become increasingly common. However, when bromide is present in

waters, ozone can produce brominated DBPs such as bromate (BrO3
�). In general,

bromate forms through a combination of molecular ozone attack and reactions of

bromide with free radicals, which are formed as ozone decomposes during water

treatment [4]. The radical pathway may play a more important role than the

molecular ozone pathway [4]. Ozone can also react with bromide to form bromi-

nated organics such as bromoform, dibromoacetonitrile, and dibromoacetone

[4, 8]. As ozone progressively degrades complex organics, non-halogenated

DBPs such as formaldehyde (CH2O) may also result.

In the case of UV disinfection, microorganisms are inactivated via disruption of

their genetic material (DNA or RNA) rather than via chemical oxidation. For the

fluences (i.e., UV dose, which is a function of intensity and exposure time) typically

used in drinking water treatment (<200 mJ/cm2), there is no evidence of DBP

formation, nor are DBP levels exacerbated using post-UV disinfection [9].
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1.2 Advanced Oxidation Process-Based Disinfection

Recalcitrant contaminants, such as endocrine-disrupting compounds (EDCs), phar-

maceuticals and personal care products (PPCPs), pesticides, etc., are typically the

primary targets for AOPs, and there are numerous reports of this application.

However, the hydroxyl radicals (HO•, Eo ¼ 2.70 V) or sulfate radicals (SO4•
�, Eo

¼ 2.5–3.1 V) generated from AOPs or sulfate-radical-based AOPs (SR-AOPs),

respectively, may also provide some degree of disinfection [10]. The use of AOPs

for disinfection is far less frequently reported in comparison to chemical degradation

(e.g., for UV/TiO2 [11–14]) but may be realized as a secondary outcome of the use of

AOP treatments in drinking water. Disinfection using solar irradiation-based AOPs

may be of particular interest for use in developing countries [15]. Hydroxyl radicals

may oxidize and disrupt cell walls and membranes, thereby lysing the cell, or they

may diffuse into the cells and react with intracellular components. AOP-based

disinfection may be limited by mass transfer through the cell walls or membranes

as HO• reacts with most biological molecules at diffusion-controlled rates. Although

there may be some oxidative enhancement in virus inactivation due to HO•, UV

appears to be primarily responsible for microbial inactivation using UV-based

AOPs [10].

Since the oxidation pathway in AOPs relies on radicals rather than halogens,

halogenated DBP production during AOP treatments is generally less of a concern

in comparison to traditional oxidative disinfectants. However, ozone-associated

DBPs may be generated during ozone-based AOPs, and non-halogenated organic

DBPs can occur as complex organic matter is degraded. DBP formation during

AOP treatments is discussed in greater detail in Sect. 4.1.

2 Disinfection Byproducts

Reactions between oxidizing disinfectants and the organic or inorganic precursor

material found in water can lead to the generation of potentially harmful DBPs, as

depicted in the generalized illustration in Fig. 2.

The range of DBPs produced via reactions between oxidants and organic pre-

cursors (NOM or anthropogenic organic pollutants) or inorganic precursors (i.e.,

bromide or iodide) include halogenated organics, organic oxidation byproducts, and

inorganics. Table 1 lists several important classes of DBPs, their main causative

agents, and examples of established drinking water regulations.

The formation of DBPs during drinking water disinfection has been recognized

since the 1970s [23, 24], but advances in analytical techniques and risk assessment

continue to facilitate discovery and better characterization of the more than 600 cur-

rently identified DBPs. Of note, the number of DBPs identified and quantified in

water to date is only a small fraction of those potentially formed. As illustrated for
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chlorinated drinking water in Fig. 3, more than half of the total organic halide

(TOX) formed during chlorination has yet to be chemically identified [25, 26].

2.1 Disinfection Byproduct Regulations

Since their discovery in the 1970s, DBPs have been widely regulated as drinking

water contaminants, as demonstrated by the list of select DBPs and applicable

regulations/guidelines shown in Table 1. For historical context, a brief description

of the regulatory basis for DBPs in the United States is provided here. Next, the

most commonly regulated, or classical, DBPs are introduced, including trihalo-

methanes, haloacetic acids, chlorate, chlorite, and bromate. This section concludes

with brief descriptions of several classes of emerging DBPs.

In the United States, DBPs were first regulated in 1979, beginning with the

TTHM (total trihalomethanes) Rule, which set a maximum contaminant level

(MCL) of 100 μg/L TTHM based on a running annual average of distribution

system samples. In 1986, amendments to the Safe Drinking Water Act (SDWA)

noted that disinfectants and DBPs should be regulated [28]. Thus, to simultaneously

control microbial pathogens, residual disinfectants, and DBPs, three related rules

were developed: the Information Collection Rule (ICR), the Disinfectants/DBP

Rule (D/DBPR, implemented in two stages), and the Enhanced Surface Water

Treatment Rule (ESWTR, implemented in stages, e.g., Long-Term 2 Enhanced

Surface Water Treatment Rule or LT2). In Stage 1 of the D/DBPR, the USEPA

reduced the existing TTHM standard to 80 μg/L and expanded regulations to

include haloacetic acids (HAA5s ¼ 60 μg/L), bromate (BrO3
� ¼ 10 μg/L), and

chlorite (ClO2
� ¼ 1,000 μg/L). In Stage 2 of the D/DBPR, the DBP MCLs were

maintained, but compliance was amended to a locational running annual average

basis (rather than the previous approach of averaging concentrations across distri-

bution system sampling points).

THMs, 13.5%

HAAs, 11.8%
Unknown TOX,

69.9% 

∑(Iodo THMs, Halofuranones, Haloacetonitriles,

Halogenated Aldehydes, Haloketones, Haloacetates,

Halonitromethanes), 4.8%  

Fig. 3 Distribution of

characterized total organic

halides (TOX) in

chlorinated drinking water,

including unknown TOX,

trihalomethanes (THMs),

haloacetic acids (HAAs),

and several classes of

emerging halogenated

disinfection byproducts

(DBPs) which account for

<5% of the total DBPs.

Adapted from [27]
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In addition to these established federal regulations, the USEPA also periodically

reviews the status of unregulated DBPs (and other drinking water contaminants) as

part of the Contaminant Candidate List (CCL) and Unregulated Contaminant

Monitoring Rule (UCMR). The CCL is a list of currently unregulated contaminants

that are known or believed to occur in public water systems and are thus identified

as research priorities in order to better inform determinations of risks and regula-

tions. The USEPA’s 4th version of the CCL (CCL4, announced in 2016) includes

several additional DBPs: acetaldehyde (an O3-DBP), chlorate (formed during ClO2

and hypochlorite disinfection), formaldehyde (O3 based), bromochloromethane, N-
nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-
propylamine (NDPA), N-nitrosodiphenylamine (NDPhA), and N-
nitrosopyrrolidine (NPYR) [29]. The state of California’s Department of Public

Health has already set a notification level of 10 ng/L for NDEA, NDMA, and NDPA

and a public health goal for NDMA of 3 ng/L [30]. Monitoring results from public

water systems collected as part of the USEPA’s UCMR program suggest that more

than 10% of the US’ chloraminated systems could be affected if a NDMAMCLwas

introduced at the California action level of 10 ng/L [31].

2.2 Conventional Disinfection Byproducts:
Trihalomethanes, Haloacetic Acids, and Oxyhalides

The trihalomethanes (THMs) were the first DBPs to be discovered and are one of

the most prevalent classes of DBPs resulting from chlorine disinfection

[25]. Together with haloacetic acids, THMs account for approximately 25% of

the halogenated DBPs from chlorination [32]. Chloramination can also generate

THMs, albeit typically to a much lesser extent, as can ozone through production of

bromoform. Many DBP regulations are based on total trihalomethanes (TTHMs),

which are calculated as the sum of four THMs: chloroform, bromoform,

bromodichloromethane, and chlorodibromomethane, of which chloroform is often

found at the highest concentrations [25]. All of the TTHM species demonstrate

carcinogenicity in rodents [25].

Surface water typically contains higher concentrations of precursor NOM and,

as such, is associated with higher DBP production, as shown in Fig. 4. Other

commonly used indicators of THM formation include chlorine dose, pH, temper-

ature, bromide concentration, and disinfection contact time. In general, as these

parameters increase, so does DBP formation (although DBP responses to increasing

pH are mixed). A number of empirical and semi-mechanistic DBP formation

models have been used to predict DBP concentrations based on these and other

parameters, often using a multiple linear or nonlinear regression approach. When

applied to the treatment scenarios for which they were specifically developed, these

models can be helpful indicators of operation, risk assessment, etc. [33], although

they tend to overpredict DBPs for conditions least conducive to formation while
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underpredicting for the conditions most conducive for DBPs [8, 16, 34, 35]. How-

ever, Mayer et al. [16] reported that TTHM and HAA5 models generally performed

poorly when applied to DBP data not used to directly develop the model, regardless

of the use and extent of AOP treatment and type of source water. This suggests that

bulk indicators and/or models should be used cautiously as metrics for AOP

mitigation of DBP formation potential.

The main haloacetic acids (HAAs) include nine different halogenated com-

pounds, as shown in Table 1. When regulated, the HAAs are sometimes dealt with

on the basis of individual compounds but are sometimes grouped together, for

example, as HAA5, or the sum of five of the HAAs: bromoacetic acid, dibromoacetic

acid, chloroacetic acid, dichloroacetic acid, and trichloroacetic acid, all five of

which are mutagenic [25]. The remaining four main HAAs were more difficult to

quantify when the US regulation was promulgated and so were excluded from

regulation. Like THMs, chlorination generally produces the highest levels of

HAAs, although lower levels can result from chloramination, ClO2, and O3 [37].

The oxyhalides chlorite (ClO2
�) and chlorate (ClO3

�) are the inorganic DBPs

produced through reactions of NOM with ClO2. Chlorine dioxide rapidly reacts

with NOM and inorganic matter, degrading to chlorite, chlorate, and chloride [25].

When bromide is present in source water, brominated DBPs including inorganic

bromate (BrO3
�) and organic brominated DBPs may pose a concern. Bromate is of

particular concern for ozonation processes when bromide is present in source

waters at high levels (>50–100 μg/L) [25, 38]. Bromate is both genotoxic and

carcinogenic, and of the DBPs regulated in the United States, it is the most potent

carcinogen in laboratory animals [25]. It is formed by a series of oxidations

mediated by O3 or a combination of O3 and HO• reacting with natural bromide,

where O3 sequentially oxidizes bromide to hypobromite (BrO�), followed by

bromite (BrO2
�), and finally to bromate [39]. The HO• produced as part of the

ozonation process also participates in the intermediate reactions [39].
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2.3 Emerging Disinfection Byproducts, Including
Brominated, Iodinated, and Nitrogenous Species

To date, the greatest emphasis in DBP research and mitigation has been on a subset

of more conventionally regulated DBPs including THMs, HAAs, and BrO3
�.

However, there are a large number of “emerging” DBPs, including those not

currently widely regulated. As the majority of TOX often consists of unidentified

compounds (see Fig. 3), developing a better understanding of emerging DBPs is an

important area of research. In this section, several major classes of emerging DBPs

are introduced.

2.3.1 Organic Brominated and Iodinated Disinfection Byproducts

Bromide and iodide are naturally occurring inorganic DBP precursors for a variety

of DBPs. These ions may be present, and of concern, in source waters impacted by

seawater intrusion and natural salt deposits, e.g., coastal cities or areas affected by

oil and gas brines. When bromide is present, organic brominated DBPs (B-DBPs)

are primarily produced by chlorination in the same manner as the classical DBPs. In

contrast, iodinated DBPs (I-DBPs) are primarily produced by chloramination of

iodide-containing waters. Both B-DBPs and I-DBPs are more toxic and carcino-

genic than their chlorine analogs, in order of greatest health risk:

chlorinated < brominated < iodinated [40].

Although iodo-THMs and iodo-HAAs are among the most toxic unregulated

DBPs, iodate (IO3
�) is generally not problematic and is readily reduced to iodide

(I�) after consumption [41]. In processes that use strong oxidizing disinfectants,

e.g., ozone or chlorine, I� is readily oxidized to IO3
� (as shown below), which

results in very low amounts of organic I-DBPs remaining in solution.

I� ! IO�=HIO ! IO2
� ! IO3

�

For example, 90% of naturally occurring I� was converted to IO3
� during

ozonation [42]. This stems from the higher activity of hypoiodous acid (HIO)

with strong oxidizing disinfectants in comparison to reactivity with NOM. Thus,

the oxidation reactions can be optimized as a sink to form IO3
� rather than organic

I-DBPs when I� reacts with NOM [43].

The smaller oxidative potential of chloramines yields ineffective oxidation of

HIO to IO3
�, which can increase formation of I-DBPs during chloramination

[42]. Iodide can be oxidized prior to ammonia additions during chloramination

using prechlorination or preozonation; however, this approach could increase the

formation of B-DBPs and chlorinated DBPs [40, 42].
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2.3.2 Halogenated Furanones

Halogenated furanones, including MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2

(5H)-furanone) and its brominated analogues (BMX), are highly mutagenic DBPs.

Weinberg et al. [26] found that MX and BMX analogues are generally found at

concentrations of 60 ng/L or less, but they have also been found at concentrations as

high as 80 ng/L [44]. These species can account for more than 50% of the mutage-

nicity in bioassays of chlorinated drinking waters [45, 46]. The formation pathway

for MX may be similar to that for THMs and HAAs as occurrence of MX analogues

is positively correlated with occurrence of chloroform, andMX analogues have been

found in effluent from chlorine and chlorine dioxide disinfection processes which

also contained THMs and HAAs [47]. Chloramine disinfection processes yield

comparatively smaller concentrations of MX and BMX analogues [47].

2.3.3 Nitrogenous Disinfection Byproducts

Nitrogenous DBPs (N-DBPs) are a subset of the classical carbonaceous DBPs

(C-DBPs) [27]. They may result when sufficient levels of nitrogen are present for

DBP incorporation, e.g., using source waters impaired by algal blooms, during

chloramination, in the presence of certain polymers, or at water reuse facilities.

Nitrosamines are one of the most widely studied N-DBPs. They are a family of

emerging DBPs often found at ng/L concentrations but associated with serious

health risks as they have been reported to be carcinogenic, mutagenic, and/or

teratogenic [48, 49]. N-Nitrosodimethylamine (NDMA) is the most common nitro-

samine and is a probable human carcinogen, with 0.7 ng/L NDMA correlating to a

lifetime cancer risk of 10�6 [50].

The NDMA formation potential varies as a function of source water and

treatment process. It is primarily produced during chloramination of water [51],

which directly adds nitrogen during disinfection. Low molar yields of NDMA may

be generated by reacting precursors with either chloramines or ozone, but most

precursors are more reactive with just one of the disinfectants (i.e., chlorine- or

ozone-reactive NDMA precursors) [52]. Some studies have shown that

preozonation increases NDMA formation potential in water [53], but others have

found decreased NDMA formation potential [54].

In general, NDMA precursors comprise secondary, tertiary, or quaternary

amines, with sources including PPCPs, pesticides, water or wastewater treatment

chemicals, and industrial chemicals [52]. As wastewater effluent may contain more

of these N-rich compounds in comparison to many drinking water sources, NDMA

is of particular concern in wastewater effluent and water reuse scenarios. Naturally

occurring bromide can also contribute to NDMA formation by catalyzing reactions

with precursors [55]. Padhye et al. [56] found that NDMA formation tripled in the

presence of 100 μM bromide.
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In addition to NOM, polymers may serve as NDMA precursors. As shown in

Fig. 5, cationic amine-based polymers, such as polyamine and poly-DADMAC,

used to enhance coagulation and dewatering can contain dimethylamine (DMA)

and other small amine moieties which serve as significant NDMA precursors

[48, 51, 57]. When dosed at optimal levels, minimal polymer residual remains in

solution following physicochemical treatment. Accordingly, it is unlikely that

sufficient concentrations of polymer will be present to react with chloramines to

form NDMA. Rather, the primary concern lies in degradation of the polymers and

release of NDMA precursors. Polyamine is generally more susceptible to degrada-

tion and DMA release than poly-DADMAC and therefore is more closely linked to

DBP formation [57]. Alternative polymers produced from natural products may

perform as well as poly-DADMAC while limiting nitrosamine formation

potential [58].

2.4 Non-halogenated Organic Disinfection Byproducts

When condensed aromatic compounds are oxidized, low molecular weight,

non-halogenated organic DBPs may result. These products may include aldehydes,

carboxylic acids, and keto acids, all of which can enhance biodegradability and can

even be toxic. The most commonly observed organic byproducts are aldehydes

such as formaldehyde and acetaldehyde [59]. Other common organic byproducts

include formate, acetate, and oxalate [17].

3 Disinfection Byproduct Precursors

DBP precursors include both organic matter (e.g., NOM) and inorganic compounds

(e.g., bromide and iodide). Increases in the ratio of bromide ion relative to chlorine

or organic matter can shift speciation of THMs and HAAs toward more bromine-

Fig. 5 N-Nitrosodimethylamine (NDMA) and common polymers acting as NDMA disinfection

byproduct (DBP) precursors, with the dimethylamine (DMA)-related moiety (primary component

serving as NDMA precursor) highlighted in each molecule
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substituted species, which are associated with more significant health risks com-

pared to chlorinated DBPs [60].

Natural organic matter is ubiquitous in drinking water sources and serves as the

primary organic DBP precursor. Its enigmatic character derives from a complex

mixture of numerous compounds ranging from aromatic phenolic compounds and

aliphatic carboxylic acids to nitrogenous compounds such as proteins, sugars,

amino acids, and large biopolymers, e.g., lignin [61]. Understanding the quantity

and character of NOM is essential for water treatment design to effectively mitigate

NOM-related problems such as DBP formation; greater coagulant dose require-

ments; increased bioavailability of organics in the water; and aesthetic concerns

such as color, taste, and odor [62]. Multiple approaches can be used to provide

indications of the quantity and quality of complex mixtures of NOM, including bulk

organic measurements and fractionation on the basis of fluorescence excitation/

emissions, size, or operational behavior (e.g., hydrophilic, acid, etc.).

3.1 Bulk Organic Measurements

Total organic carbon (TOC), dissolved organic carbon (DOC), ultraviolet absor-

bance at a wavelength of 254 nm (UV254), and specific ultraviolet absorbance

(SUVA) are bulk parameters often used as indicators of NOM quantity and general

character. These parameters are also commonly used as surrogates for estimating

DBP formation potential, although they do have limitations. They do not always

correlate to DBP concentrations in finished drinking water since other factors such

as disinfectant type and dose, as well as water pH, temperature, bromide concen-

trations, etc. all strongly influence DBP formation [16, 36]. However, bulk organic

parameters are still commonly used as they offer an easy, rapid, and inexpensive

approach to gauging NOM.

Natural waters used as drinking water sources typically contain low levels of

synthetic organic contaminants, so TOC is often considered synonymous with

NOM [61]. The DOC fraction is classified as the organic carbon that passes through

a 0.45 μm filter, whereas the fraction that is retained is the particulate organic matter

(POM, often accounting for <10% of TOC) [63, 64].

Spectrophotometric analysis in the wavelength range of 220–280 nm is also

commonly used as an indicator of the presence of organics. Molar absorptivities

vary widely due to the diversity of chromophores present in NOM; for example,

carboxylic acids and aromatic compounds are associated with a wavelength of

220 nm [65], with maximum absorption at 254 nm for most aromatic groups.

Accordingly, absorbance at 254 nm (UV254) is primarily used to indicate the

presence of the dense, aromatic, hydrophobic portion of NOM [66] and is also

used as a rough indicator of overall NOM content [61].

SUVA is another helpful correlation parameter for DBP formation potential [67]

as it is indicative of the relative aromaticity of the NOM. The SUVA value

normalizes UV254 relative to the DOC concentration.
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SUVA ¼ UV254

DOC
, L=mg mð Þ

High SUVA values (>4) indicate largely aromatic, hydrophobic, high molecular

weight compounds, whereas low SUVA values (<4) represent small molecular

weight, hydrophilic compounds [68].

These bulk organic parameters are useful in describing the quantity of NOM and

providing an indication of its character, which can provide an indication of water

quality through treatment stages as well as DBP formation potential (as bulk

organic matter parameters increase, DBP formation potential generally increases).

However, bulk parameters do not always correlate to DBPs, nor do they provide

information regarding specific NOM constituents such as amino acids, sugars, and

carbohydrates.

3.2 Natural Organic Matter Fractionation

To better characterize the array of diverse compounds present in NOM, fraction-

ation techniques based on parameters such as absorbance, size, hydrophobicity, etc.

may be employed.

3.2.1 Fluorescence Absorption and Emission-Based Fractionation

Analysis using a 3-D fluorescence excitation emission matrix (EEM) can be useful

for understanding NOM fractions [69]. In water, fluorophores are generally divided

into humic-like fluorophores and protein-like fluorophores [70, 71]. The NOM can

be fractionated prior to analysis in order to express characteristic peaks, locations of

which are illustrated in the EEM matrix in Fig. 6 [72–75]. Each fraction is

characterized by its own potential for DBP production. The humic-like peak

correlates strongly with TTHM formation potential, and the tryptophan-like peak

correlates well with NDMA formation potential [76]. EEM analysis may provide

better correlation to NDMA formation potential compared to UV254 and SUVA

indicators [76–78].

3.2.2 Size-Based Fractionation

Size exclusion chromatography (SEC) and high-performance liquid chromatography-

SEC (HPLC-SEC) can be used to characterize NOM samples on the basis of molec-

ular size. Although molecular size can provide an indication of DBP formation

potential, there is a great deal of variation in observed correlations between size of

precursor NOM and resulting DBP formation. While some studies have found the

hydrophobic NOM fraction with an apparent molecular weight (AMW) of 1–10 kDa
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to be the primary DBP precursor [81], hydrophilic and lower molecular weight

fractions may also generate significant DBPs [16, 82–84]. For example, the bulk

portion of NDMA precursors consists of small molecular weight compounds

(<3,000 Da) [85, 86]. Similarly, Zhao et al. [87] found that low molecular weight

dissolved organic matter serves as a significant THM precursor.

Figure 7 shows several example datasets from disinfected surface waters illus-

trating the relative contribution of different NOM size fractions to C-DBP, N-DBP,

and I-DBP formation potential. As exemplified here, there is no clear trend between

NOM molecular weight fractions and DBP formation; therefore, size fractionation

by itself is a less important predictor for DBP formation compared to chemical

composition of the NOM and water quality parameters [88, 89].

Thus, while using UV detectors for HPLC-SEC provides helpful information for

evaluating the potential for removal of high molecular weight organic matter via

coagulation or other processes, their use for understanding DBP formation potential

may still be limited. Alternatively, coupling UV detectors in tandem with DOC

analyzers or fluorospectrometers can be used to provide more informative datasets

by detecting aromatic and nonaromatic datasets as a function of molecular weight,

both of which parameters are important for predicting DBP formation potential

[90, 91]. Compound classes and their respective apparent molecular weights are

shown in Table 2.

3.2.3 Resin Fractionation

To better understand complex organic matter, resin fractionation methods can be

used to classify NOM in accordance with behavior during different water treatment

processes. The predominant properties of organic matter can be characterized as

hydrophobic, hydrophilic, acidic, basic, and neutral (although distinctions are not

always clear, e.g., a great deal of dissolved organic matter is recognized as both
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Fig. 7 Disinfection byproduct formation relative to natural organic matter (NOM) molecular

weight (MW) size fraction for C-DBPs, N-DBPs, and I-DBPs in chlorinated and chloraminated

water from the (a) Huangpu River, China, and (b) the Yangtze River, China. Data from [89]
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amphiphilic and amphoteric) [61]. Each of these fractions, or subsets thereof, can

be isolated using sequential resin-based separation.

The hydrophobic portion of NOM is composed of densely aromatic structures,

conjugated double bonds, and high molecular weight compounds. The hydrophobic

fraction is also characterized by a high specific surface charge, making it more

amenable to removal via coagulation [93]. The hydrophobic fraction can account

for more than half of the DOC in water [64, 93, 94], although there is great variation

in fractionation among different source waters. This can be problematic for drink-

ing water treatment since the hydrophobic portions of NOM serve as significant

precursors for DBPs and produce greater amounts of unidentified total organic

halogen products (TOX) [95–97].

The hydrophilic fraction of NOM contains low molecular weight polar com-

pounds such as carboxylic acids, as well as nitrogenous compounds including sugars,

peptides, and amino acids [61]. The hydrophilic NOM fraction is also a significant

precursor for DBPs and generally formsmore NDMA than the hydrophobic fractions

[98]. The hydrophilic fraction has been observed to be more reactive with bromine

and iodine than the hydrophobicNOM fraction [95], as illustrated in Fig. 8a, b, which

shows DBP formation potential from different NOM fractions in several waters.

As shown in Fig. 8, although the presence of different fractions can provide an

indication of DBP formation potential, actual DBP production can vary widely with

source water and operational parameters in the disinfection process.

3.3 Structure and Reactivity of Natural Organic Matter
(NOM) Fractions

The physicochemical properties (Kow, pKa, and molecular weight) of individual

NOM species do not correlate well to DBP formation potential [101]. However,

halogen substitution efficiency is an effective indicator of DBP formation potential.

As shown in Fig. 9, compounds exhibiting high halogen substitution efficiency, and

which produce substantial THMs and HAAs, include ferulic acid, L-tryptophan, and

resorcinol [101]. These compounds are considered activated aromatics because the

Table 2 Size characterization using a combination of high-performance liquid chromatography-

size exclusion chromatography (HPLC-SEC) with (ultraviolet) UV and online dissolved organic

carbon (DOC) detectors to characterize natural organic matter (NOM) by apparent molecular

weight (AMW)

Compound class Apparent molecular weight (AMW)

Polysaccharide- and protein-like substances High (>10,000 g/mol)

Highly aromatic and fulvic substances Medium (1,000–5,000 g/mol)

Aliphatic-like substances Low (<680 g/mol)

Adapted from [92]
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Fig. 8 Disinfection byproduct (DBP) formation potential associated with natural organic matter

(NOM) fractions in variable source waters. C-DBPs, N-DBPs, and I-DBPs formed during chlori-

nation or chloramination of water from (a) the Huangpu River, China, and (b) the Yangtze River,

China [89]. (c) Shows chloroform [99], total trihalomethane (TTHM), and haloacetic acid (HAA)

formation following chlorination [100]
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constituents on the ring are electron donors. Although not an activated aromatic

species, L-aspartic acid also has many electron donating functional groups, has a

high substitution efficiency, and serves as a significant precursor for HAA species.

3.4 Synthetic Organic Disinfection Byproduct Precursors

In addition to NOM, synthetic organic compounds can serve as precursor material

for DBP formation. For example, the active compounds in sunscreens can be

transformed to halogenated DBPs when swimming pools are disinfected with

chlorine [102]. Understanding of DBPs produced by oxidation of the activated

aromatic rings in synthetic compounds is a relatively new undertaking in compar-

ison to their NOM-derived relatives. However, research is progressing, often

stemming from studies of oxidative degradation of compounds such as pesticides

(e.g., S-triazine herbicides and isoproturon), pharmaceuticals (e.g., carbamazepine

and acetaminophen), antibacterial agents (e.g., triclosan and carbadox), textile dyes

(e.g., azo), bisphenol A, alkylphenol ethoxylate surfactants, etc. [25].

4 Disinfection Byproduct Formation in Relation

to Advanced Oxidation Processes

Advanced oxidation processes primarily impact DBP formation in two different

ways: directly through in situ DBP formation and indirectly by influencing the DBP

formation potential of the organics in the water matrix. In the first case, DBPs may

be generated during the operation of AOPs themselves, particularly when using

AOPs with direct inputs of chemical oxidants, e.g., ozone or hydrogen peroxide.

Ferulic acid L-tryptophan Resorcinol

L-aspartic acid

Fig. 9 Compounds exhibiting high halogen substitution efficiency and which produce substantial

trihalomethanes (THMs) and/or haloacetic acids (HAAs)
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Additionally, organic oxidation byproducts may result during AOPs as complex

organics are progressively degraded. In addition to direct formation during AOP

treatments, AOPs may influence subsequent DBP formation potential as the DBP

precursor organic material undergoes dramatic transformations during AOPs,

which can serve to either decrease or increase DBP formation during subsequent

disinfection processes.

4.1 Disinfection Byproduct Formation in Advanced
Oxidation Processes

Hydroxyl radicals can attack organic molecules by radical addition, hydrogen

abstraction, electron transfer, and radical combination. Select kinetic rate constants

for reactions of HO• with organic matter, with and without radical scavengers (i.e.,

dissolved organic matter [DOM]), are shown in Table 3. The rate constants are

generally greater for benzene-based compounds (44–120� 108/M s) in comparison

to carboxylic acid-based compounds (1–120 � 108/M s; at 190/M s, cysteine

appears to be an outlier, perhaps based on its thiol properties). However, there are

no distinct correlations between structure, molecular weight, and reactivity [103].

Westerhoff et al. [105] analyzed the reactivity of ozone and HO• with hydro-

phobic organic acids isolated from a variety of source waters. Although NOM

characteristics varied among samples, there were strong correlations between

SUVA values and the rate constants for O3 and HO• interactions, as shown in

Fig. 10. The data demonstrate ozone’s strong preference for densely conjugated

aromatic NOM, whereas HO• reactions with NOM were rapid and nonselective.

The general progression of oxidation using AOPs follows the pathway:

organic pollutant ! aldehydes ! carboxylic acids

! carbon dioxide and mineral acids

Accordingly, although AOPs can effectively mitigate organic precursors to limit

downstream formation of DBPs, they can also directly generate their own suite of

DBPs in the event of incomplete oxidation, wherein the products do not completely

mineralize due to insufficient chemical and/or energy inputs. DBPs produced

during AOP treatments may include BrO3
�, NDMA, and small molecular weight

organic compounds, e.g., acetaldehyde and formaldehyde [59, 106].
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4.1.1 Bromate and Organic Brominated Disinfection Byproducts

Bromate (BrO3
�) formation stems from ozonation, wherein O3 directly oxidizes Br

�

to BrO3
�:

Br� ! BrO�=HBrO ! BrO2
� ! BrO3

�

Consequently, O3-based AOPs such as O3/UV and O3/H2O2 can directly generate

BrO3
�, the extent of which depends on water quality and process operation. During

O3-based AOPs, the synergistic effect of O3 and HO• may oxidize Br� to BrO3
� as

HO• can participate in intermediate steps by producing radical species (e.g., Br•,

BrO•) [107]. Relative to O3-only processes, O3/UV may produce similar amounts of

BrO3
� [108]. However, O3/H2O2 can produce less BrO3

� than O3/UV, and O3-only

processes since H2O2 can reduce BrO� to Br�; hence optimized H2O2 doses can

mitigate BrO3
� formation [109, 110]. Although HO• is involved in BrO3

� formation

during ozonation processes, non-O3-based AOPs such as UV/H2O2 and TiO2

photocatalysis (UV/TiO2), which rely on the production of HO• radicals, have not

been shown to form significant amounts of BrO3
� [109].

The production of organic B-DBPs can be much less prominent than BrO3
�

during ozonation and AOPs due to competing kinetics between HBrO and HO•.

Table 3 Hydroxyl radical (HO•) kinetic rate constants with various organic compounds, with and

without dissolved organic matter (DOM)

Compound

Chemical

formula

Compound

class

kHO•
(�108/

M s)

kHO•, DOM
(�108/

Mcarbon s)

Benzaldehyde C7H6O Benzene-based 44 6

Hydroquinone C6H6O2 Benzene-based 52 9

Catechol C6H6O2 Benzene-based 110 18

Phthalic acid C8H6O4 Benzene-

based, carbox-

ylic acid

59 7

Salicylic acid C7H6O3 Benzene-

based, carbox-

ylic acid

120 17

Oxalic acid C2H2O4 Carboxylic

acid

1 0.2

Citric acid C6H8O7 Carboxylic

acid

3 1

Tartaric acid C4H6O6 Carboxylic

acid

14 4

Cysteine C3H7NO2S Carboxylic

acid, thiol

190 63

Mean value for hydrophobic organic

acids isolated from a variety of

sources

Organic acids 3.6

Data from [103–105]
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Hypobromous acid reacts more readily with O3 and HO• compared to the precursor

NOM necessary to form B-DBP haloorganics [111].

4.1.2 N-Nitrosodimethylamine (NDMA)

The use of AOP treatments can have variable results in terms of NDMA formation,

as a function of influent water quality parameters. This is demonstrated in Fig. 11,

where Zhao et al. [112] analyzed seven different source waters and found that

UV/H2O2 yielded the highest amount of NDMA for some waters but lower NDMA

for other waters. Interestingly, there was no correlation with bulk organic pre-

cursors (DOC, UV254, SUVA), although the two waters yielding the most nitrosa-

mines using UV/H2O2 had high UV254 values. In contrast, the water with the

highest TOC and UV254 yielded small amounts of NDMA relative to others [112].

4.1.3 Non-halogenated Organic Disinfection Byproducts

AOPs can produce non-halogenated organic DBPs, primarily due to oxidation of

condensed aromatic compounds, which produces low molecular weight organics.

These byproducts can enhance biodegradability and can even be toxic. Wert et al.

[113] compared organic byproduct formation during O3 treatment to O3/H2O2 AOP

treatment and showed that O3/H2O2 produced more organic byproducts than ozon-

ation alone. This indicated greater organic degradation using the AOP, leading to

incomplete oxidation. Incomplete oxidation can be problematic in distribution sys-

tems as it increases assimilable organic carbon (AOC), which can enhance down-

stream biological growth. Moreover, incomplete oxidation can actually increase

DBP formation potential, as described in the following section.
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Fig. 10 Reactivity of natural waters with ozone (k in units of �103 per second) and hydroxyl

radicals (k in units of �10�8 L/mol C s). Data from [105]
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4.2 The Impact of Advanced Oxidation Processes
on Disinfection Byproduct (DBP) Formation Potential:
Influence of Oxidation on Precursor Organic Matter
and Subsequent DBP Formation

Although AOPs have the ability to mineralize NOM and recalcitrant synthetic

organic compounds, variations in chemical and energy inputs as well as process

configuration can lead to incomplete oxidation. Incomplete oxidation products can

include small organics such as carboxylates, ketones, and aldehydes. These com-

pounds are formed when HO• oxidizes the hydrophobic, densely conjugated por-

tions of NOM, thus opening ring structures and decreasing aromaticity. This is

illustrated for the photo(electro)catalytic degradation pathways of phenol shown in

Fig. 12. As the ring structures open, the NOM becomes more hydrophilic, and the

exposed ring structure can exhibit greater halogen substitution efficiency, thereby

serving as an active site for halogenated DBP formation [114].

In many drinking water systems, an oxidizing disinfectant such as free or

combined chlorine is added prior to releasing the water to the distribution system

to provide residual disinfectant to inactivate pathogens, maintain water quality, and

protect against biological regrowth. The use of this type of secondary disinfection

Fig. 11 Comparison of N-nitrosodimethylamine (NDMA) formation during disinfection of var-

iable quality untreated source water. The disinfection strategies tested include conventional

approaches as well as advanced treatments such as the UV/H2O2 advanced oxidation process

(AOP). Data from [112]
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after AOP treatments wherein incomplete oxidation occurs can potentially exacer-

bate DBP production, depending on the type and dose of residual disinfectant.

Incomplete oxidation leads to conversion of the humic fraction toward the fulvic

fraction, which can increase THM and HAA formation potential as the structural

properties of NOM change to resemble significant precursors, such as resorcinol.

Structural changes in NOM due to reactions with HO• can particularly affect the

formation of B-DBPs and I-DBPs because, in comparison to chlorine, bromine and

iodine are more reactive with hydrophilic fractions of NOM produced by HO• [95].

AOP-derived chemical changes in NOM can also significantly impact NDMA

formation as the hydrophilic NOM fraction produced during incomplete oxidation

generally forms more NDMA than the hydrophobic fraction [98]. Additionally,

AOPs can degrade residual polymer, which can potentially exacerbate the release of

NDMA precursors, thereby greatly increasing NDMA formation when downstream

chloramines are used as the residual disinfectant [56].

The extent to which DBP formation potential increases or decreases following

AOP treatment is a function of numerous parameters and can thus vary widely

across systems as well as within systems. The variation in AOPs’ impact on DBP

formation potential for selected studies is shown in Table 4.

Fig. 12 Photo(electro)catalytic degradation pathways of phenol mineralization using BiVO4 as

the catalyst with visible light irradiation. Based on [115]
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As oxidation progresses toward NOM mineralization using greater energy

and/or chemical AOP inputs, DBP formation potential decreases, as illustrated in

Fig. 13, for TiO2 photocatalysis AOP treatment followed by free chlorine addition.

Complete mineralization, and the resultant reduction in DBP formation poten-

tial, is energy and/or chemically intensive, perhaps making combinations of AOP

treatment together with processes such as filtration more feasible for implementa-

tion in multi-barrier drinking water treatment trains. For example, dual barriers

using AOPs followed by biological activated carbon (BAC) filtration can be used to

more effectively mitigate DBP concerns using more feasible energy inputs. Toor

and Mohseni [120] showed that using UV/H2O2 AOP followed by BAC signifi-

cantly reduced DBP formation potential, whereas using the AOP as a stand-alone

treatment required extremely high initial H2O2 concentrations and UV fluences to

effectively reduce DBP formation (>23 mg/L H2O2 and >1,000 mJ/cm2; for

perspective, <200 mJ/cm2 is typical for drinking water treatment).

5 Mitigation of Disinfection Byproducts

To mitigate DBPs, the recommended course of action is to prevent DBP formation

in the first place. Several strategies are employed for this purpose, including

employing alternative disinfectants and removing precursor material prior to dis-

infection. An additional option is to remove/destroy DBPs after they have formed.

5.1 Alternative Disinfectants

Free chlorine remains the most commonly used disinfectant, but concerns over

DBP production have led to implementation of alternative disinfectants, including

other chemical oxidants such as chloramines, chlorine dioxide, and ozone, as well

as non-oxidant-based strategies. It is also possible to move the point of chlorination

further downstream in the treatment process to allow reductions in NOM precursor

material prior to disinfection [124].

As described in Sect. 2.1, each of the oxidizing disinfectants is characterized by

varying degrees of effectiveness against different microbial pathogens and also has

potential to produce DBPs, although they may impact the magnitude of DBP

formation or the type of DBP produced. For example, monochloramine reduces

production of THMs and HAAs; however, it can increase formation of iodo-acids,

which are considered one of the most toxic DBPs [40]. Likewise, chlorine dioxide

introduces concerns for chlorite and chlorate production, while ozonation can

increase bromate formation.

Heat (e.g., boiling or pasteurization) and electromagnetic radiation (e.g., gamma

and UV radiation) offer non-oxidant-based disinfection strategies. For water disin-

fection, the only one of these approaches in routine practice is UV radiation [17]. A
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Table 4 Impact of advanced oxidation processes (AOPs) on disinfection byproduct (DBP)

formation potential reported in select studies

AOP Source water

Process

description

Trend in DBP formation

potential (FP) following

AOP treatment Reference

O3 River Ruhr, Germany 1.5 mg O3/mg

DOC

# TTHMFP and AOXFPa [116]

O3 Indoor swimming pool 6 mg/L O3 # TTHMFP, AOXFP,

TOC, AOX

[117]

O3/

H2O2

Indoor swimming pool 6 mg/L O3,

1.5 mg/L H2O2

" TTHMFP [117]

# AOXFP, TOC, AOX

O3/

UV

Indoor swimming pool 6 mg/L O3,

2.93 W

low-pressure UV

lamp

" TTHMFP [117]

# AOXFP, TOC, AOX

O3/

UV

Seymour reservoir,

Canada

0.62�0.019 mg

O3/mL, UV

fluence ¼ 1.61 J/

cm2

# TTHMFP and HAA5FP [118]

UV/

H2O2

Ohio river sample from

water treatment plant

5–10 mg/L H2O2,

medium- and

high-pressure UV

lamps

" TTHM yield following

post-chlorination

[119]

UV/

H2O2

River Ruhr, Germany 15W low-pressure

UV lamp, 8 mg/L

H2O2 initially

" TTHMFP prior to

1,050 min of irradiation

[116]

# TTHMFP after

1,050 min of irradiation

and 5.6 mg/L H2O2

consumed

UV/

H2O2

Vancouver reservoir 5–15 mg/L H2O2,

low-pressure high-

output UV lamp

# TTHMFP for fluences

>1,500 mJ/cm2
[114]

UV/

H2O2

Raw surface water 0–23 mg/L H2O2,

low-pressure UV

fluence ¼
0–3,500 mJ/cm2

# DBP formation potential

for >1,000 mJ/cm2 and

initial H2O2 concentrations

>23 mg/L

[120]

UV Indoor swimming pool 2.93 W

low-pressure UV

lamp

" TTHMFP [117]

# AOXFP, TOC, AOX

UV/

TiO2

Arizona surface water 7 mW/cm2

low-pressure UV,

400 mg/L TiO2

" TTHMFP using 5–20

kWh/m3
[121]

# TTHMFP for energy

inputs >20 kWh/m3

UV/

TiO2

Myponga reservoir,

Australia

Blacklight blue

fluorescent UV

lamp, 0.1 g/L TiO2

# TTHMFP [122]

" HAA5FP before 30 min

of irradiation

# HAA5FP after 30 min

of irradiation

(continued)

Impact on Disinfection Byproducts Using Advanced Oxidation Processes for. . . 373



major advantage of UV disinfection is that at the fluences typically used in drinking

water treatment (<200 mJ/cm2), there is no evidence of DBP formation, nor are

DBP levels exacerbated using post-UV disinfection [9]. However, UV provides no

residual disinfection, so an oxidant such as chlorine or chloramines is typically

applied prior to release of the water in the drinking water distribution system to

protect against pathogen regrowth.

While AOPs can provide some degree of disinfection, they are unlikely to be

used explicitly for this purpose. Moreover, increased reactivity of the NOM due to

the production of small organic compounds during AOP-based incomplete oxida-

tion can exacerbate DBP formation and also lead to challenges in the distribution

system. Enhanced biodegradability of the small organics in the effluent can lead to

increased corrosion, nitrification, taste and odor compound formation, and

enhanced microbial growth that can impair the microbial safety of the drinking

water [62, 114, 125].

To simultaneously mitigate concerns related to a wide spectrum of microbial

pathogens, DBPs, and contaminants of emerging concern, water treatment plants

may use dual barriers including an alternative disinfectant such as ozone or

chloramination alongside advanced treatment (e.g., AOP-BAC) [126].

5.2 Removal of Precursor Natural Organic Matter Prior
to Disinfection

Given the trade-offs associated with the use of alternative disinfectants, the most

common strategy to mitigate DBPs is to avoid formation by removing precursor

NOM prior to disinfection [127].

Physicochemical unit operations including enhanced coagulation or softening,

granular activated carbon adsorption, and membrane processes are considered best

available techniques for physical removal of NOM from water [83, 128]. These

processes are often sufficient to control DBP formation, but alternatives such as

ozonation or AOP treatments have also been investigated [16, 84, 121, 129].

Coagulation processes preferentially remove the humic and higher molecular

weight portions of NOM. Removal of 15–50% TOC is commonly achieved using

Table 4 (continued)

AOP Source water

Process

description

Trend in DBP formation

potential (FP) following

AOP treatment Reference

UV/

TiO2

Hillsborough river

water, Florida;

Sacramento-San

Joaquin Estuary,

California

450–1,200 W

high-pressure UV

lamps, 1.0 g/L

TiO2

# THMFP [123]

aAOX represents the organically bound halogens adsorbable on activated carbon
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enhanced coagulation (which relies on the use of higher coagulant doses and/or pH

adjustment to target NOM removal) or enhanced softening [17]. Since the hydro-

phobic portion of NOM, which generally consists of humic substances, is primarily

removed by coagulation, further treatment may be necessary to remove the hydro-

philic, fulvic portion of NOM, which can also contribute to DBP formation.

Adsorption of NOM is possible using activated carbon (granular [GAC] or

powdered [PAC]) or ion-exchange resins. However, the use of activated carbon

for NOM can be costly as a significant fraction of the NOM, comprised of large

molecular weight organics, is poorly adsorbed, meaning that large amounts of

activated carbon are used to remove relatively small amounts of NOM. With

more selective ion-exchange media, e.g., MIEX resin, much greater NOM removal

can be achieved more quickly [17].

In some cases, membrane filtration can effectively remove DBP precursors,

although results vary for different types of membranes. For example, ultrafiltration

with a molecular weight cutoff (MWCO) of 100,000 Da was not effective for

controlling DBP formation in pilot studies, whereas nanofiltration with a MWCO

of 400–800 Da was effective when little-to-no bromide was present

[130]. Microfiltration and ultrafiltration are not effective at removing NDMA pre-

cursors, but 57–98% of precursors were removed using nanofiltration and reverse
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Fig. 13 Total trihalomethane (THM) formation potential in various source waters resulting from

UV/TiO2 advanced oxidation process (AOP) treatment followed by free chlorine addition. The

data show that TTHM formation potentials increase in some source waters following incomplete

oxidation with relatively low-energy inputs (�5 kWh/m3). In all waters tested, high-energy inputs

approached more complete natural organic matter (NOM) mineralization, and TTHM formation

potential decreased. Adapted from [84, 121]
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osmosis [131]. Reverse osmosis has been effectively used for NOM removal,

rejecting >90% NOM and DBP precursors [132].

The use of O3 or AOP treatments in combination with BAC filtration can provide

an effective means for removing NOM to both reduce DBP formation potential and

decrease AOC in the distribution system. Using AOPs or ozonation can break

carbon-carbon double bonds in NOM, which transforms the NOM into more readily

biodegradable organic matter (higher AOC or biodegradable dissolved organic

carbon – BDOC), which is particularly amenable to biofiltration. By combining

ozonation with biologically active filtration, 35–40% DOC removal can be

achieved [17]. This sequential AOP-biological process treatment train concept is

depicted in Fig. 14.

5.3 Mitigation of Preformed Disinfection Byproducts Using
Advanced Oxidation Processes

Another strategy to mitigate DBPs is to remove them from water following DBP

generation during disinfection processes. While the use of phase-transfer processes

or redox chemistry may offer options to accomplish this, DBP removal is typically a

less effective and economical approach compared to avoiding DBP formation in the

first place via removal of precursors prior to disinfection processes, as described in

Sect. 5.2.

Phase-transfer processes such as activated carbon adsorption and air stripping

can be used to remove DBPs from water. However, these approaches may

introduce elevated operation and maintenance costs that limit feasibility of imple-

mentation. For example, GAC is characterized by low THM adsorption capacity,

meaning that large amounts of GAC would be required for adequate DBP removal

[134, 135]. Additionally, while volatile THMs will readily be removed by air

stripping, HAAs will remain [136].

The hydroxyl radicals produced during AOPs can degrade organic DBPs, as

illustrated by the kinetic rate constants of several different types of DBPs shown in

Table 5.

AOPs have been used to mitigate DBPs in swimming pool water, where O3/UV

and O3/H2O2 generally improved removal of TOC precursors and DBPs (quantified

as AOX) beyond levels achieved by O3 alone. For THM formation potential, O3

provided a slight advantage over the AOPs due to O3 oxidation selectivity in

comparison to the small reactive molecules produced via HO• reactions, which

are more easily transformed to THMs [117].

NDMA readily penetrates reverse osmosis membranes and is poorly adsorbed

and stripped, so UV-AOPs have been used to meet regulatory guidelines for potable

water reuse [137, 141]. Notably, NDMA is photodegradable using direct UV

irradiation (λ<260 nm), so additions of H2O2, O3, or TiO2 to provide advanced

oxidation would not be necessary if other recalcitrant compounds were not also
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being targeted, e.g., 1,4-dioxane [141]. Degradation of NDMA during UV treat-

ments can proceed via three pathways: hemolytic cleavage of N-NO bonds, het-

erolytic cleavage of N-NO bonds, and photooxidation [142]. During UV/H2O2 AOP

treatment, HO•-based degradation of NDMA occurs by hydrogen atom abstraction

from the methyl groups in NDMA [137, 143].

Using a UV dose of �1,000 mJ/cm2 together with 3 mg/L H2O2, 1 log removal

of NDMA can typically be achieved [141]. As noted previously, additions of H2O2

do not substantially improve NDMA degradation beyond UV alone. However,

direct photolysis of NDMA can produce DMA as a major byproduct, and as

DMA reacts with chloramines to produce NDMA, care must be taken to avoid

regeneration of NDMA [141].

The electrical energy per order (EEO) of reduction is a metric used to evaluate

electrical efficiency of processes, e.g., UV-AOPs. For one log reduction of NDMA

usingUV/H2O2, the EEO is approximately 21–265 kWh/m3 using doses of 5–6mg/L

H2O2 (although this can vary greatly across different waters) [144]. The EEO for

destruction of THMs using TiO2 photocatalysis has been reported at 19–64 kWh/m3

in several surface waters [121]. For perspective, EEO values less than 0.265 kWh/m3

are considered favorable for water treatment [145], which demonstrates that AOPs

are not an efficient means of destroying preformed DBPs.

Fig. 14 Conceptual sequential advanced oxidation process (AOP)/biological process (e.g., BAC)

approach to treatment, taking advantage of the efficiency of each process for degrading organic

matter. The breakpoint between AOPs and biological processes is illustrated, where biological

treatment becomes more attractive in terms of rate and efficiency as incomplete oxidation

byproducts can be easily biodegraded. Modified after [133]
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6 Summary

Although the premise of disinfection is easily understood, interactions between

disinfectants and the target and nontarget constituents in complex drinking water

matrices are incredibly complex. Accordingly, there is not a one-size-fits-all

approach to minimizing the risks posed by microbial pathogens against those

posed by chemical contaminants, e.g., DBPs. While a given disinfection process

may significantly reduce one DBP, it may lead to substantial increases in another

DBP (e.g., chloramination may reduce THMs and HAAs but increase NDMA).

Likewise, shifts in precursor NOM composition during unit operations prior to

disinfection can have variable impacts on subsequent DBP formation during disin-

fection processes. Overall, removal of this precursor material prior to disinfection

offers the most effective strategy to mitigate DBPs.

The use of AOPs in drinking water treatment trains may impact DBPs via three

different pathways: (1) direct formation during AOP treatment, (2) indirect influ-

ences on DBP formation potential in downstream disinfection, and (3) destruction

of preformed DBPs. High AOP energy and/or chemical inputs are needed to destroy

preformed DBPs, making it much more efficient to avoid DBP production in the

first place.

Table 5 Hydroxyl radical (HO•) rate constants with various disinfection byproducts (DBPs)

DBP

Chemical

formula DBP class

kHO• (�108/

M s)

Chloroform CHCl3 Trihalomethane 0.11

Dichloromethane CH2Cl2 Halomethane 0.22

Bromoform CHBr3 Trihalomethane 1.5

Dibromomethane CH2Br2 Halomethane 0.99

Bromodichloromethane CHBrCl2 Trihalomethane 0.711

Chlorodibromomethane CHBr2Cl Trihalomethane 0.831

N-Nitrosodimethylamine (NDMA) C2H6N2O Nitrosamines 4.3

Chloronitromethane CH2ClNO2 Halonitromethane 1.94

Dichloronitromethane CHCl2NO2 Halonitromethane 5.12

Trichloronitromethane

(chloropicrin)

CCl3NO2 Halonitromethane 0.497

Bromonitromethane CH2BrNO2 Halonitromethane 0.836

Dibromonitromethane CHBr2NO2 Halonitromethane 4.75

Tribromonitromethane CBr3NO2 Halonitromethane 3.25

Bromochloronitromethane CHBrClNO2 Halonitromethane 4.2

Bromodichloronitromethane CBrCl2NO2 Halonitromethane 1.02

Dibromochloronitromethane CBr2ClNO2 Halonitromethane 1.80

Values from [137–140]
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The direct generation of DBPs during AOP treatments is generally less of a

concern in comparison to disinfection strategies based on additions of halogenated

oxidants such as chlorine since AOPs do not directly form halogenated DBPs.

However, direct inputs of chemical oxidants, e.g., O3 or H2O2, during AOPs can

generate DBPs such as BrO3
� or NDMA. Moreover, as complex organics are

progressively degraded, AOPs can also directly generate their own suite of DBPs

in the event of incomplete oxidation, which produces small molecular weight

organic compounds, e.g., acetaldehyde and formaldehyde. These non-halogenated

organic DBPs can be toxic or can lead to subsequent issues such as enhanced DBP

formation potential, higher biodegradability (AOC or BDOC) in the distribution

system, etc.

In addition to direct DBP formation, AOPs may also strongly influence subse-

quent DBP formation potential as DBP precursor organic material undergoes

dramatic transformations during AOPs. Although AOPs can effectively mitigate

organic precursors to limit downstream formation of DBPs given sufficient energy

and/or chemical inputs to yield complete mineralization, lower inputs lead to

incomplete oxidation, which can exacerbate DBP formation. Thus, AOPs may

either decrease or increase DBP yields during subsequent disinfection processes

depending on the water matrix and process operation.

To simultaneously mitigate concerns related to a wide spectrum of microbial

pathogens, DBPs, and contaminants of emerging concern, drinking water treatment

plants may use dual barriers including an alternative disinfectant such as ozone or

chloramination alongside advanced treatment (e.g., AOP-BAC). The impact of

these processes on DBP formation potential must be evaluated for each individual

source water using selected operational parameters as changes in DBP precursors

during treatment processes can have widely variable impacts on DBP formation,

and care must be taken to avoid increasing DBP formation via incomplete oxidation

during AOP treatments.
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