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Abstract Rapid population growth and mass migration from rural to urban centers

have contributed to a new era of water sacristy, and a significant drop in per capita

freshwater availability, resulting in the reuse of wastewater emerging as a viable

alternative. The reuse of wastewater after treatment using the soil aquifer treatment

(SAT) has recently gained popularity due to low operating/maintenance cost of the

method. However, the presence of organic micropollutants (OMPs) may present a

health risk if the SAT is not adequately designed to ensure required attenuation of the

OMPs. An important aspect of the design of the SAT system is the large degree of

natural variability in the OMP concentrations/loads in the wastewater and the uncer-

tainty associated with the current methods for calculation of the removal efficiency of
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the SAT for the OMPs. This study presents a novel model formore accurate prediction

of the removal efficiency of the SAT system for the OMPs and the fate of the OMPs

trapped within the vadose zone. A large data set is compiled covering a broad range of

aquifer conditions, and the SAT system parameters, including hydraulic loading rate

and dry/wet ratio. This study suggests that removal of OMPs in SAT systems is most

affected by biodegradation rate and soil saturated hydraulic conductivity, in addition

to dry to wet ratio. This conclusion is reached by the application of the developed

prediction model using data sets from the case study SAT systems in Egypt.

Keywords Extreme learning machine (ELM), Fivefold cross-validation,

Monte Carlo simulation (MCS), Organic micropollutants (OMPs), Soil aquifer

treatment (SAT)
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1 Introduction

SAT system is considered attractive unconventional water resources for Egypt,

which is suffering water sacristy. The usage of SAT can provide treatment for the

wastewater and recharge in groundwater aquifers. While guidelines are available

for the use of SAT system in Egypt for removal of nitrogen and organic matter, no

guidelines are available for the SAT removal potential of organic micropollutants.

This chapter discusses this issue and provides a prediction model for the OMP

removal in SAT systems and is based on the author’s work on soil aquifer treatment

system and analysis models [1–21].
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2 Soil Aquifer Treatment System

The increasing development of urbanization and population growth has been

caused by water resource pollution control and proper recharge of soil aquifer.

There is the possibility of organic micropollutants (OMPs) into the aquifer during

groundwater aquifer recharge. Organic micropollutants consist of toxic minerals

of endocrine disruptors, pharmaceutically active compounds, and personal care

product. The environmental and health risks are increased by entering of the

organic micropollutants into an aquifer soil. Therefore, the control and elimination

of organic micropollutants from soil aquifer treatment system are of paramount

importance to protect the aquifer from pollution. Because of the importance of

control and removal of organic micropollutants from water resources, many studies

have been conducted to remove these compounds. Drillia et al. [22] in an experi-

mental study removed six different pharmaceutical compounds from various soils

for municipal wastewater. Xu et al. [23] using the degradation and adsorption

removed the personal care products and pharmaceuticals in agricultural soils in

an experimental study. Maeng et al. [24] examined the OMP removal during bank

penetration and feeding and recovery of aquifers. Time and place of transfer were

provided to remove the active pharmaceutical ingredients. Yu et al. [25] studied

three different soil types to remove the five types of pharmaceuticals and personal

care products (PPCPs). Also, they studied the seasonal changes of organic micro-

pollutant compounds in sewage treatment plant (STP). Personal care products and

endocrine-disrupting were removed from the California wastewater.

Soil aquifer treatment (SAT) is a perfect option to artificial recharge of the

groundwater aquifer. On the other hand, there is likely the penetration of the

organic micropollutants (OMPs) into the soil aquifer during soil aquifer treatment

as well. Hence, OMP removal in SAT system is of considerable importance. In

Fig. 1, a schematic plan of soil aquifer treatment system at a sewage treatment

station has been shown.

Lin et al. [26] eliminated the heavy metals for soil aquifer treatment in a

wastewater treatment plant. Also, Fox et al. [27] in an experimental study analyzed

the organic carbon content in the soil aquifer treatment for the five different types of

Fig. 1 Schematic plan of

soil aquifer treatment

system at a sewage

treatment plant
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soil. Amy and Drewes [28] investigated the removal/transformation mechanism of

organic matter from wastewater stream through the soil aquifer treatment for

wastewater treatment plant. Then, Sharma et al. [29] analyzed the removal of

organic materials in wastewater during soil aquifer treatment system. Their results

showed that the redox conditions, input flow rate, and residence time are sufficient

for the removal of organic waste. Xu et al. [23] studied the characteristics and

behavior of dissolved organic matter on the soil aquifer treatment. It was also

showed that during soil aquifer treatment, 70% of the organic material is removed.

Also, Caballero [30] studied the SAT system as a pretreatment process to remove

organic micropollutant compounds from the wastewater stream. Sharma et al. [29]

analyzed the effects of horizontal roughing filtration, coagulation, and sedimenta-

tion during pretreatment operations on the mechanism of soil aquifer treatment. It

was showed that sedimentation and coagulation lead to less head loss and reduce

the clogging effects. Abel et al. [31] examined the effects of temperature and redox

conditions on the reduction of organic matter of wastewater on the soil columns and

SAT systems. Abel et al. [31] studied the organic matter reduction, pharmaceutical

compounds, and nitrogen in the soil aquifer treatment process in a laboratory model.

Onesios-Barry et al. [32] conducted an experimental study of the SAT system in the

removal of pharmaceuticals and personal care products (PPCPs) for different con-

centrations in wastewater treatment plants. Suzuki et al. [33] studied the mechanism

of the organic matter removal and disinfection by-product formation potential in the

higher layer of the soil aquifer treatment system in an experimental study.

3 Simulations of SAT Organic Micropollutant Removal

3.1 Model Setup

To capture the change in characteristics of OMPs during infiltration in the vadose

zone, Sattar [13] chose a 2D vertical section in the soil beneath the SAT pond.

Study domain dimensions were taken (10 m � 30 m). The upper boundary was

selected to be a variable flux boundary of width 5 m, to simulate the intermittent

water infiltration from a spreading basin, and lies in the center of the domain width.

The lower boundary is chosen as free drainage to allow flow passage below the

study domain. The OMP attenuation was simulated throughout 90 days from the

day of application of wastewater in the ponds. This time was considered sufficient

for OMP plume to infiltrate through soil layers and gets attenuated.

3.2 Attenuation of OMPs in SAT System

Using the average values of the SAT system parameters presented in Sattar [11],

HYDRUS simulations were carried to model the fate of OMPs in SAT system under
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effects of sorption and biodegradation, both individually and combined. Figure 2

shows the variation of OMP concentration along the depth of vadose zone captured

along the vertical centerline of the study domain. It was clear that the biodegrada-

tion process was more efficient in reducing the contaminant concentration than the

sorption process although the plume sizes for both simulations were almost the

same after 90 days. Moreover, it was noted that the OMP concentration at the

topsoil layer was higher, in case of considering both sorption and biodegradation

than in case of considering biodegradation only. The reason for this was attributed

to the effect of sorption which distributes the contaminant mass between the sorbed

phase and the liquid phase soon after the contaminant injection which explains the

lower concentration after day 86. On the other side, biodegradation process is only

active for the contaminant mass existing in the liquid phase which means that the

mass that is sorbed onto the soil is not available for biodegradation. This leads to

higher biodegradation rates in the case of biodegradation only than the case of

combined sorption and biodegradation.

4 Extreme Learning Machine

Various studies have been conducted concerning to the use of artificial intelligence

in performance evaluation of SAT system. Recently, Sattar [11] predicted the

organic micropollutant removal during soil aquifer treatment system by gene

expression programming model.

One of the most popular technique in data mining field is feedforward neural

network (FFNN) which is trained by a gradient-descent algorithm such as back-
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Fig. 2 Variation of OMPs along depth
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propagation (BP). The disadvantages of FFNN-BP which lead to the low perfor-

mance of this technique are imprecise learning rate and slow rate of convergence

and presence of local minima. Therefore, Huang et al. [34] introduced a new

algorithm for FFNN training based on single hidden layer feedforward neural

networks (SLFNs), namely, extreme learning machine (ELM). The ELM required

adjusting only activation function type and a number of hidden layers, while there

are several user-defined parameters such as adjustment of hidden layer biases

during execution of the algorithm and input weights. ELM compared to other

learning algorithms such as BP in the learning process perform very fast and present

appropriate performance in extended processing generation function. In this study,

the removal mechanism of organic micropollutants (OMPs) in soil aquifer treat-

ment (SAT) using extreme learning machine (ELM) method is modeled.

4.1 Architecture of ELM

Huang et al. [34] presented a new algorithm in terms of extreme learning machine

learning to train the single-layer feedforward neural network (SLFFNN) as it does

not require iterative tuning and has the ability to achieve global minima. The use of

ELM in training the SLFFNN leads to a significant reduction in training time

compared to the algorithms based on gradient-descent. Also, the use of active

ELM as training algorithm does not require additional parameters such as stopping

criterion and learning rate. Experimental observations by Huang et al. [34] showed

that the ELM has an excellent ability in universal approximation and useful

generalization. In an SLFFNN with random hidden nodes, at first, the input data

set and real actual output of the model [(X), (Y)] are determined. Subsequently, the

number of hidden nodes [K] and the type of activation function [g(∙)] are deter-

mined. Then, its weight and bias values are presented in random order [(W ), (b)].
Then, the hidden layers’ matrix [H] is determined, and then the weight of output as

analytic is calculated [β]. Input variables can be defined as the following matrix:

X ¼
X11 � � � X1j

⋮ � � � ⋮
Xn1 � � � Xnj

24 35
n�j

ð1Þ

where n and j are the numbers of samples and variables, respectively. Also, the

actual output is defined as follows:

Y ¼ Y1 � � � Yn½ �T ð2Þ
In the following, a positive integer value for hidden nodes (K ) and a differen-

tiable function for g(∙) should be defined. Thus, an input weight matrixW is created

randomly to make the connection between the input and hidden nodes:
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W ¼
W11 � � � W1k

⋮ � � � ⋮
Wj1 � � � Wjk

24 35
j�k

ð3Þ

Hidden layer matrix H by multiplying the input matrix X in the weight matrix

W is calculated as follows:

H ¼ XW ð4Þ
Hidden layer active matrix H with the function g(∙) leads to the hidden layer

output matrix:

H ¼ g Hð Þ ð5Þ
Output matrix of the hidden layer, Hout, and an input vector Ŷ by output layer

weight β are connected. ELM network output is calculated as follows:

Ŷ ¼ Houtβ ð6Þ
and

Hout
bβ � Y

��� ��� ¼ min
β

Houtβ � Yk k ð7Þ

The minimum norm to solve the least squares is calculated as follows:

β ¼ Hþ
outY ð8Þ

where Hþ
out calculated as follows is the Moore-Penrose generalized inverse of Hout:

Hþ
out ¼ HTH

� ��1
HT ð9Þ

4.2 Performance Evaluation Criteria

In this study, to investigate the accuracy of numerical models, statistical indices

root-mean-square error (RMSE), mean absolute percentage error (MARE), corre-

lation coefficient (R), BIAS, scatter index (SI), and ρ are used as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
Xn0
i¼1

T Predictedð Þi � T Observedð Þi
� �2vuut ð10Þ
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MARE ¼ 1

n0
Xn0
i¼1

T Predictedð Þi � T Observedð Þi
�� ��

T Observedð Þi

 !
ð11Þ

BIAS ¼ 1

n0
Xn0
i¼1

T Predictedð Þi � T Observedð Þi
� �

ð12Þ

R ¼
Pn0
i¼1

T Observedð Þi � �T Observedð Þ
� �

T Predictedð Þi � �T Predictedð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn0
i¼1

T Observedð Þi � T Observedð Þ
� �2Pn0

i¼1

T Predictedð Þi � �T Predictedð Þ
� �2s ð13Þ

SI ¼ RMSE
�T Observedð Þ

ð14Þ

ρ ¼ SI

1þ R
ð15Þ

where T(Observed)i is the observed values, T(Predicted)i the predicted values by the

numerical model, �T Observedð Þi the mean of observed values, and n0 the number of

observed data.

5 ELM Prediction of SAT Organic Micropollutant

Removal

Table 1 shows the parameters controlling the operation of a SAT system and the

removal of OMPs, while Table 2 illustrates the ranking of parameters according to

their contribution on the removal of OMPs in a SAT system [35]. It is observed that

three parameters had the highest ranking: first-order biodegradation rate, saturated

hydraulic conductivity, and dry to wet ratio. These high influential parameters have

been chosen as predictors for developing prediction models in Sattar [11] and in this

study. Using the 50,000 data sets simulated by Sattar [11], 25,000 (50%) were used

to develop the models, 12,500 (25%) were used to test the models, and 12,500

(25%) were used to validate the developed models.

To develop an OMP attenuation prediction model, the OMP plume mass,

normalized mass ratio, and zero concentration depth are addressed. The mass stored

in the contaminant plume can be calculated as:

Plume Mass ¼ V �
XN
i¼1

Ci ∙ θi ð16Þ

where N¼ the total number of 2D FEmesh nodes in the study domain, i¼ the index

of the node number, Ci ¼ contaminant concentration at node i, θi ¼ unsaturated

moisture content at node i, and V ¼ soil volume of each node.
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To assess the SAT system OMP removal efficiency, the normalized plume mass

has to be calculated, where a system with high removal efficiency would yield

smaller fractions of the normalized mass. The normalized plume mass can be

calculated as the ratio between the plume mass to the cumulative total injected

mass, with time.

Table 2 Ranking parameters controlling the fate and transport of OMPs in SAT system according

to their contribution in system output uncertainty [11]

Parameters classes Parameter

%

importance

0% concentration depth (depth under SAT pond

where OMPs are completely attenuated)

First-order biodegradation

rate, μ1 (day
�1)

48.80

Saturated hydraulic con-

ductivity, Ks (cm/day)

36.50

Dry to wet ratio, DWR 6.90

HLR/Ks 4.30

Plume mass (OMP mass stored in contaminant

plume)

First-order biodegradation

rate, μ1 (day
�1)

66.39

Initial concentration Cin

(μg/l)
13.33

Saturated hydraulic con-

ductivity, Ks (cm/day)

12.05

Dry to wet ratio, DWR 5.25

Plume normalized mass ratio (ratio of plume mass

and cumulative total injected mass)

First-order biodegradation

rate, μ1 (day
�1)

94.57

Dry to wet ratio, DWR 5.25

Table 1 Parameters controlling the fate and transport of OMPs in SAT system [11]

Parameter classes Parameter Min. Max. Avg.

Soil hydraulic Residual water content, θr (cm
3/cm3) 0.024 0.066 0.045

Saturated water content, θs (cm
3/cm3) 0.364 0.448 0.406

Saturated hydraulic conductivity, Ks (cm/day) 20 800 410

Van Genuchten parameter, α (1/cm) 0.0059 0.0514 0.0287

Van Genuchten parameter, n 1.34 3.54 2.44

OMP transport

and fate

Freundlich coefficient, Kf ((μg kg�1/μg l�1) η) 0.1 500 250.1

Freundlich exponent, n 0.40 1.6 1

First-order biodegradation rate, μ1 (day
�1) 0.01 0.85 0.43

Soil bulk density, ρb (gm/cm3) 1.35 1.85 1.6

Longitudinal dispersivity, αL (cm) 30 300 165

Ratio long./trans. dispersivity, αT/αL 0.05 0.1667 0.1084

Molecular diffusion, Dd (cm
2/day) 0.9 1.7 1.3

Operation HLR/Ks 0.05 0.12 0.085

HLR (cm/day) 1 95 48

Initial concentration, Cin (μg/l) 0.01 100 50.0

Dry to wet ratio, DWR 1 7 4
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To estimate the parameters of plume mass, normalized mass ratio and concen-

tration depth of 0% of the five parameters are presented in Table 3, as ELM model

inputs are used. Therefore, a total of 15 different models of ELM are introduced. It

should be noted that the Monte Carlo simulation (MCS) to determine the uncer-

tainty of plume mass, normalized mass ratio, and concentration depth of 0% with

1,000 realizations to generate random inputs of ELM models are used. Sattar [11]

stated that the plume mass for organic micropollutants in the soil, 90 days after the

SAT operation, is calculated as follows:

Plumemass ¼ 6:14K1:1
s C0μ

�1
1 DWR1=2 ð17Þ

Here, Ks is saturated hydraulic conductivity, C0 the amount of concentration, μ1
the rate of first-order biodegradation, and DWR the intermittent application of

wastewater in the soil aquifer treatment system. Also, to calculate the normalized

mass ratio, the following equation was used:

Mass ratio ¼ 0:00550μ
�1
1 DWR1=5 ð18Þ

The minimum depth under a SAT system required to remove more than 98%

contamination to the depth of 0% concentration is defined as follows:

Yzero ¼ 0:17eDWR0:5K�1
s μ�1=2

1 HLR1=2DWR�3=8K1=4
s ð19Þ

where HLR is the hydraulic loading rate.

5.1 Plume Mass

Plume mass parameter is calculated by Eq. (16). The results of ELMmodels 1–5 for

this parameter with GEP model provided by Sattar [11] were compared. In Table 4,

different statistical indices for ELM models 1–5 and Sattar [11] model in the

prediction of plume mass parameter are arranged. Also, scattering plots of the

models for plume mass are depicted in Fig. 3. The highest correlation coefficient

value for ELM 2 and ELM 5 models is calculated. The lowest of R value for ELM

4 equal to 0.964 is computed. The SI and ρ values for ELM 4 have been predicted,

0.811 and 0.413, respectively. ELM 5 among all ELM models has the highest

correlation coefficient value and the least amount of errors. For this model, the

Table 3 The quantities

needed for modeling the OMP

removal by ELM model

Parameter Maximum Minimum Average

Ks (cm/day) 800 20 410

μ1 (day
�1) 0.85 0.01 0.43

HLR (cm/day) 95 1 48

C0 (μg/l) 100 0.01 50.0

DWR 7 1 4
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BIAS value is predicted which is � 113,364. However, the MARE and the

correlation coefficient values for the Sattar [11] model have been calculated,

38.274 and 0.933, respectively.

5.2 Mass Ratio

In the following, the results of ELM models 1–5 to predict the mass ratio parameter

are evaluated. In Table 5, statistical index values to predict the mass ratio by ELM

models [11] are shown. Also, scatter plots for the model presented in Fig. 4 are

visible. Based on the results of ELM, the highest RMSE value has been predicted

for ELM 1 (RMSE¼ 0.019). For this model, the R statistical index is calculated to

equal to 0.974, while ELM 3 has the highest amount of correlation (R¼ 0.977) and

the lowest MARE value(MARE¼ 1.661). For ELM 3, BIAS and ρ parameter are

calculated, 0.0036 and 0.239, respectively. In contrast, GEP model introduced by

Sattar [11] has less correlation (R¼ 0.823). Hence, RMSE and MARE values for

the model [11] have been calculated, 0.521 and 341.867, respectively. Therefore,

ELM models to predict the mass ratio parameter have an acceptable accuracy.

5.3 Zero Concentration Depth

Also, the accuracy of ELM models 1–5 in the modeling of Yzero parameter is

examined (see Fig. 5). In Table 6, statistical indices calculated for ELM models

and GEP model proposed by Sattar [11] are shown. ELM 1 between the ELM

models has the least accuracy. For this model, RMSE and ρ values are calculated,

1.479 and 0.145, respectively. However, the value of correlation coefficient for

ELM 1 is estimated, 0.959. Also, ELM 5 predicts the Yzero parameter more

accurately compared to other ELM models. The parameters MARE, BIAS, and ρ
values for this model are predicted, 0.237, 0.00106, and 0.141, respectively.

However, the accuracy of the model [11] to predict Yzero parameter is less than

ELM models. In other words, the correlation coefficient value for the model is

Table 4 Statistical indices of ELM models 1–5 and [11] to predict the plume mass parameter

Plume mass

RMSE MARE R BIAS SI ρ

[11] 731,788.8 38.274 0.933 6,603.806 1.073 0.555

ELM 1 527,939.2 6.164 0.968 132,269.1 0.774 0.393

ELM 2 514,951.5 5.625 0.970 116,093.1 0.755 0.383

ELM 3 527,269.9 5.634 0.968 118,727.1 0.773 0.393

ELM 4 553,288 5.272 0.964 �120,723 0.811 0.413

ELM 5 508,715.7 5.473 0.970 �113,364 0.746 0.379
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0.944 [11]. Therefore, based on the analysis of simulation results, ELM model

estimates parameters plume mass, mass ratio, and Yzero with reasonable accuracy.

To analyze the results of ELM, the parameter discrepancy ratio (DR) as the ratio

of modeled values to measured values is introduced (DR¼ T(Predicted)/T(Observed))
[11]. The proximity of discrepancy ratio to 1 represents the proximity of predicted

Fig. 3 Scatter plot for prediction of plume mass parameter (a) Sattar [11–13] (b) ELM 1 (c) ELM

2 (d) ELM 3 (e) ELM 4 (f) ELM 5
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values to measured results. In Table 7, the values DRmax, DRmin, and DRave are the

maximum, minimum, and mean discrepancy ratio. For plume mass parameter, the

lowest DRave for ELM 4 is calculated, while the average of discrepancy ratio for the

model has been computed, 39.175 [11]. For ELM 3, the mass ratio parameter has

the lowest DRave value (DRave¼ 2.508). The DRmax and DRmin values for this table

model have been estimated, 335.291 and 0.0004, respectively. As can be seen, the

DRave for the proposed GEP model [11] has been obtained, 342.861. The lowest

DRave value to ELM models in prediction of Yzero parameter for ELM 5 is obtained

(DRave¼ 1.060). The DRmax and DRmin values for the model ELM 5 have been

calculated, 65.876 and 0.022, respectively. For model DRmax, DRmin and DRave

values are obtained, 109.803, 0.545 and 1.250, respectively [11]. Based on the

analysis results of discrepancy ratio parameter, results predicted by the model’s
ELM compared with GEP model introduced by Sattar [11] are closer to the

measured values.

6 SAT Site Selection in Egypt

SAT systems would be an attractive unconventional water resource in Egypt, which

is true, especially in rural communities. Egyptian researchers are keeping this in

mind. Recently, RIGW [36] published recommended characteristics of groundwa-

ter aquifer for a successful and efficient SAT operation and removal of organic

matter. These included an infiltration rate of more than 0.25 m/day, minimum depth

to groundwater of 5 m, high values of porosity, and saturated zone transmissivity,

and most importantly, the aquifer should not be flowing into the Nile River.

Recently, El Arabi et al. [37] have provided guidelines for the selection of potential

SAT sites in Egypt. The primary target for these guidelines was to ensure adequate

removal of nitrogen and biochemical oxygen demand (BOD) from treated waste-

water. However, the OMP removal criterion has not been considered in these

guidelines despite the ecological and health risks imposed by their presence in

Egyptian soils and native groundwater. Figure 6 shows the potential locations for

construction of SAT systems in Egypt [38]. It was found that the best sites existed

on the Western fringes of the Nile delta, W1 to W6, as shown in Fig. 6. SAT

Table 5 Statistical indices of ELM models 1–5 and [11] to predict mass ratio parameter

Mass ratio

RMSE MARE R BIAS SI ρ

[11] 0.521 341.867 0.823 0.213 13.821 78.084

ELM 1 0.019 5.848 0.974 0.0040 0.494 0.250

ELM 2 0.018 1.979 0.976 0.0039 0.488 0.247

ELM 3 0.018 1.661 0.977 0.0036 0.472 0.239

ELM 4 0.018 1.714 0.976 0.0038 0.480 0.243

ELM 5 0.018 1.807 0.977 0.0037 0.471 0.238
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Fig. 4 Scatter plots for prediction of mass ratio parameter (a) Sattar [11–13] (b) ELM 1 (c) ELM

2 (d) ELM 3 (e) ELM 4 (f) ELM 5

320 A.M. Abdel Sattar et al.



Fig. 5 Scatter plot for prediction of Yzero parameter (a) Sattar [11–13] (b) ELM 1 (c) ELM 2 (d)

ELM 3 (e) ELM 4 (f) ELM 5
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systems in these areas would improve the quality of groundwater regarding reduc-

ing the salinity and would help treat more than 350 million m3/year of wastewater

produced from nearby treatment plants, I–V.

For the potential SAT sites in Egypt (as shown in Fig. 6), the average depth to

groundwater is contained in Table 8 [36, 39, 40]. Table 8 presents the results of

Sattar model study [11], and the model developed in this study for the zero

concentration depth, i.e., the depth at which the concentration of OMPs reaches

zero. The best locations for potential SAT system with the highest efficiency in

removal of OMPs are Wadi El Natrun, Sadat City, and Alexandria, respectively,

with an average removal efficiency of 90%. On the other hand, Rashed and Abu

Rawash had the shallowest groundwater table disabling vadose soil to completely

attenuate OMPs during wastewater infiltration, making these sites less favorable for

SAT system construction. With the availability of detailed hydrogeological inves-

tigations for the potential SAT site, the uncertainty in model predictions [41–45],

for OMP removal, can be significantly reduced, and the influence of SAT opera-

tional aspects can be studied.

Table 6 Statistical indices of ELM models 1–5 and [11] to predict the parameter Yzero

Yzero
RMSE MARE R BIAS SI ρ

[11] 1.748 0.325 0.944 0.16620 0.335 0.172

ELM 1 1.479 0.252 0.959 0.00115 0.283 0.145

ELM 2 1.457 0.243 0.961 0.00109 0.279 0.142

ELM 3 1.454 0.250 0.961 0.00053 0.278 0.142

ELM 4 1.477 0.245 0.959 0.00079 0.283 0.144

ELM 5 1.447 0.237 0.961 0.00106 0.277 0.141

Table 7 DRmax, DRmin, and DRave values for ELM models 1–5 and [11]

Plume mass Mass ratio Yzero

DRmax DRmin DRave DRmax DRmin DRave DRmax DRmin DRave

[11] 163,392.1 0.368 39.175 1,403,391 0.5618 342.861 109.803 0.545 1.250

ELM 1 2,108.627 0.0018 7.0281 483.6609 0.0037 2.765 104.356 0.032 1.073

ELM 2 4,098.162 0.003 6.490 1,045.368 0.0053 2.829 82.452 0.008 1.068

ELM 3 4,014.867 5.61E-05 6.495 335.291 0.0004 2.508 114.419 0.004 1.073

ELM 4 1,469.444 0.0005 6.133 537.4445 0.0017 2.575 63.755 0.003 1.062

ELM 5 2,311.012 0.006 6.335 822.4562 0.0010 2.652 65.876 0.022 1.060
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7 Conclusions and Recommendations

One of the most important methods to remove organic micropollutants (OMPs) at

water and wastewater treatment plants is using the soil aquifer treatment (SAT). In

this study, the mechanism of organic micropollutant removal using extreme learn-

ing machine (ELM) method was evaluated. Therefore, five different ELMs for each

Fig. 6 Potential locations for construction of SAT systems in Egypt [38]

Table 8 Potential SAT system locations in Egyptian Western delta fringes and corresponding

OMP removal

SAT location Depth to groundwater table (m) Removal of OMP (% from studied range)

Abu Rawash 4–7 20�60

Alexandria 3–14 10–90

Sadat City 15–25 95–100

Wadi EL Natrun 0–30 0–100

Rashed 1–5 5–50
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of the parameters’ plume mass, mass ratio, and depth of concentration of 0% (Yzero)
were defined. Also, the results of extreme learning machine with results of gene

expression programming model provided by [11] were compared. Analysis of

numerical model results indicated the acceptable accuracy of ELM models in

prediction of the pollutant removal efficiency during the SAT operation. Moreover,

the model prediction accuracy of the optimum ELM model is assessed using the

statistical performance parameters, including MARE, correlation coefficient, and

scatter index, which were found to be 5.473, 0.970, and 0.746, respectively. Also,

the discrepancy ratio for the parameter Yzero by the best ELM model was calculated

to be 1.060.

References

1. Sattar AM, Dickerson JR, Chaudhry MH (2009) Wavelet-Galerkin solution to the water

hammer equations. J Hydraul Eng 135(4):283–295

2. Foda A, Sattar A (2013) Morphological changes in river Nile at Bani-Sweif for probable flood

flow releases. In: Proceedings of the international conference on fluvial hydraulics, RIVER

FLOW 2014, Switzerland

3. Sattar AM (2013) Using gene expression programming to determine the impact of minerals on

erosion resistance of selected cohesive Egyptian soils. Experimental and computational

solutions of hydraulic problems, part of the series geoplanet: earth and planetary sciences.

Springer, Berlin, pp 375–387

4. Sattar AM (2014) Predicting morphological changes ds new Naga-Hammadi barrage for

extreme Nile flood flows: a Monte Carlo analysis. J Adv Res 5(1):97–107

5. Sattar AM (2014) Gene expression models for prediction of dam breach parameters.

J Hydroinf 16(3):550–571

6. Sattar AM (2014) Gene expression models for the prediction of longitudinal dispersion

coefficients in transitional and turbulent pipe flow. J Pipeline Syst Eng Pract ASCE 5

(1):04013011

7. El-Hakeem M, Sattar AM (2015) An entrainment model for non-uniform sediment. Earth Surf

Process Landf 4(9):1216–1226. https://doi.org/10.1002/esp.3715.

8. Sattar AM, Gharabaghi B (2015) Gene expression models for prediction of longitudinal

dispersion coefficient in streams. J Hydrol 524:587–596

9. Najafzadeh M, Sattar AM (2015) Neuro-fuzzy GMDH approach to predict longitudinal

dispersion in water networks. Water Resour Manag 29:2205–2219. https://doi.org/10.1007/

s11269-015-0936-8

10. Sattar AM, Gharabaghi B, McBean E (2016) Prediction of timing of watermain failure using

gene expression models. Water Resour Manag 30(5):1635–1651

11. Sattar AM (2016) Prediction of organic micropollutant removal in soil aquifer treatment

system using GEP. J Hydrol Eng ASCE 21(9):04016027. https://doi.org/10.1061/(ASCE)

HE.1943-5584.0001372

12. Sattar AM (2016) A probabilistic projection of the transient flow equations with random

system parameters and internal boundary conditions. J Hydraul Res 54(3):342–359. https://

doi.org/10.1080/00221686.2016.1140682

13. Sattar AM (2016) Closure to “gene expression models for the prediction of longitudinal

dispersion coefficients in transitional and turbulent pipe flow” by Ahmed M. A. Sattar.

J Pipeline Syst Eng Pract 7(4):07016002. https://doi.org/10.1061/(ASCE)PS.1949-1204.

0000254

324 A.M. Abdel Sattar et al.

https://doi.org/10.1002/esp.3715.
https://doi.org/10.1007/s11269-015-0936-8
https://doi.org/10.1007/s11269-015-0936-8
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001372
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001372
https://doi.org/10.1080/00221686.2016.1140682
https://doi.org/10.1080/00221686.2016.1140682
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000254
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000254


14. Thompson J, Sattar AM, Gharabaghi B, Richard W (2016) Event based total suspended

sediment particle size distribution model. J Hydrol 536:236–246. https://doi.org/10.1016/j.

jhydrol.2016.02.056

15. Sabouri F, Gharabaghi B, Sattar AM, Thompson AM (2016) Event-based stormwater man-

agement pond runoff temperature model. J Hydrol 540:306–316. https://doi.org/10.1016/j.

jhydrol.2016.06.017

16. Atieh M, Taylor G, Sattar AM, Gharabaghi B (2017) Prediction of flow duration curves for

ungauged basins. J Hydrol 545:383–394

17. Gharabaghi B, Sattar AM (2017) Empirical models for longitudinal dispersion coefficient in

natural streams. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.01.022

18. Sattar AM, Gharabaghi B, Sabouri F, Thompson AM (2017) Urban stormwater thermal gene

expression models for protection of sensitive receiving streams. Hydrol Process 31

(13):2330–2348. https://doi.org/10.1002/hyp.11170

19. El-HakeemM, Sattar AM (2017) Explicit solution for the specific flow depths in partially filled

pipes. J Pipeline Syst Eng Pract 8(4):06017004. https://doi.org/10.1061/(ASCE)PS.1949-

1204.0000283
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