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Metals and Metalloids in Water
and Sediment of the Suquia River Basin:
Spatial and Temporal Changes

Magdalena Victoria Monferran

Abstract Metals, metalloids and nonmetals concentrations along the Suquia River
basin have been monitored in sediment and surface water, during the wet and dry
season, at different points and by different authors since 1997 until 2014. The
potential ecological risk (PER) in surface sediments along some studied stations is
presented on the basis of measured data.

In general, metal/loids concentrations were highest in sediments and lower in
water, being sediments the major sink for metal/loids pollution in this river. The
concentrations of metal/loids from the Suquia River pristine areas (upper catch-
ment) were, as expected, the lowest measured. It was also demonstrated how the
environmental impact of Cérdoba City (e.g. WWTP discharge) becomes evident in
the Suquia River basin, which is not only marked by the presence of metals at a
sampling station located few kilometres downstream the WWTP but also by the
influence of agricultural and small industrial activities downstream from
Cérdoba City.

According to ecological risk indexes of metal/loids in the pseudo-total fraction
of sediments, the best scenario was found in La Calera (LC), upstream from
Coérdoba City. Results indicate that this site presented low to moderate ecological
risk. On the other hand, the worse situation is observed in Corazén de Maria (CM),
ca. 16 km downstream the WWTP, where the ecological risk ranges from moderate
to severe.

The use of Generalised Procrustes analysis (GPA) shows that the different
ecological compartments studied (water and sediment) are closely related and
that the interaction between them determines the characteristics of each site.
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1 Introduction

In recent decades, studies have been conducted to evaluate the pollutants that are
discharged into different water sources. Many of these contaminants are not detected
in the water column, and, in order to know their fate and effect on the environment,
numerous studies have been carried out worldwide in the last decade to assess concen-
trations of contaminants not only in waterbodies but also in sediments, suspended
material, etc. Sediment has been considered a sink of contaminants, and a record of
anthropogenic pollution, since the input of diverse contaminants in the water column is
many times stored in the sediment (settling) or transported (adsorbed—absorbed) asso-
ciated with particulate matter [1]. However, available metals in the sediment could be
also reintroduced into the water or be uptaken by plants and benthic organisms [2].

Metals are among the main pollutants, since they are easily transported and
accumulated in the environment. They are considered serious pollutants due to their
persistence in the environment, bioaccumulation and high toxicity [3]. These com-
pounds may be biomagnified through the food chain, resulting in sublethal concen-
trations affecting the biota, or even reaching concentrations that are lethal to local
populations [4].

The study of metal/loids in river waters and sediments is a contribution to the
provision of information on the environmental character of these rivers and also to
the diagnosis of each of their catchment areas, facilitating the decision making,
especially at the government level. Toxic metal/loids are a major environmental
concern because of their toxicity to both humans and animals as in the case of fish
impact. Investigating the presence of toxic metal/loids in certain water reservoirs
can improve the knowledge about the routes of contaminants and their interaction
with other substances and organisms in the water.

The presence of toxic metal/loids in waters and sediments of rivers also causes a
serious health problem to the inhabitants of populations served by these rivers,
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which implies an increased spending on medical treatments, a reduction in the
productive capacity of residents and, of course, a negative economic impact.

The origin or presence of metal/loids in coastal sediments can be originated from
physical and chemical weathering of parent rocks, wastewater discharge and
atmospheric deposition [5]. Metal/loids discharged into aquatic systems are dis-
tributed between the aqueous phase and sediments during their transport. Due to
adsorption, hydrolysis and co-precipitation of soluble ions, a large quantity of these
metal/loids are deposited in the sediment, while only a small portion of free ions
stay dissolved in the water column. The accumulation and mobility of elements in
sediments is controlled by various factors, such as the nature of the sediment,
properties of adsorbed compounds, metal/loid characteristics, redox reactions and
biodegradation of sorptive substances under specific conditions [6—10]. Hence,
sediments are enumerated as a major source of metal/loids in the environment,
playing a key role in their transmission and deposition. Accumulated metal/loids in
sediments can be chemically altered by aquatic organisms and converted into
organic complexes, some of which may be more hazardous to animal and human
life, via the food chain.

When environmental conditions change (pH, cationic exchange capacity, nutri-
ent status, redox potential, etc.), some of the sediment-bound elements may be
remobilised and released back into the water, where they can have adverse effects
on living organisms [11]. In fact, the mobility of metal/loids in the environment
strongly depends on their chemical forms or types of binding of the elements
[12]. Numerous analytical techniques have been used to identify the key factors
that control distribution and speciation of metal/loids in coastal and estuarine
sediments in order to understand their mobility and potential ecological risks [13].

Sediments from various water environments reveal the differences in hydrody-
namic regime, redox potential, sorting process, mineral and chemical components.
These differences are reflected by geochemical properties of sediments [14]. River
sediments usually derive from ambient soils and road deposits [15]. These sedi-
ments undergo the effect of one-way water flow and exhibit a relatively high
proportion of coarse matter [16].

The sediment contamination by inorganic elements is traditionally evaluated in
terms of total concentrations or pseudo-totals of each element; however, it is shown
that the danger that toxic elements pose to living organisms is determined more by
their availability to living organisms than by their total concentration [17]. For the
extraction of the pseudo-total fraction of sediments, a mix of HCI and HNO3 at
different proportions is commonly used, being the extraction performed during long
times at high temperatures. Conversely, the available fraction is extracted using
various reagents and different extraction methods. Among the methods reported in
the literature, the use of diluted hydrochloric acid (0.5 M) is a low-cost and widely
used procedure to extract the available fraction [18]. In connection with this last
method, the use of 0.5 M HCI [19] satisfies the minimum requirements for the
extraction of metal/loids that are part of the exchangeable fraction, with minimum
disturbance of the silicate matrix [17, 18, 20]. Thus, metal/loids extracted by this
method can be interpreted as the mobilisable fraction of metal/loids in soil, mainly
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because diluted HCI releases the metal/loid carbonates associated with Fe and Mn
oxides [20]. Studies of metal/loids in the sediment of the Suquia River basin include
both total and bioavailable fractions; so, from now on, the discussion will explain to
which sediment fraction the metal/loid belongs.

2 Metals, Metalloids and Nonmetals

“Heavy metal” is a somewhat imprecise term commonly used to refer to certain
metals and some of their related compounds, to which certain environmental
pollution, toxicity and ecotoxicity effects are attributed.

According to the International Union of Pure and Applied Chemistry (IUPAC),
the term “heavy metal” may be a “meaningless term”, because there is no
standardised definition for a heavy metal. In fact, some light metals or metalloids
are toxic, while some high-density metals are not. For a given metal/loid, the
toxicity varies widely depending on its allotrope or oxidation state. For instance,
hexavalent chromium is deadly; while trivalent chromium is nutritionally signifi-
cant in many organisms, including humans. Today, a new classification is being
used:

¢ Metals are generally shiny, malleable and hard. Metals are also good conductors
of electricity. Examples of metals are gold, silver, iron, uranium and zinc.

» Nonmetals do not conduct heat or electricity very well. Nonmetals are typically
brittle and are not easily moulded into shapes. Examples of nonmetal elements
are selenium and phosphorous.

» Metalloids share characteristics of both metals and nonmetals and are also called
semimetals. Metalloids are typically semiconductors, meaning that they both
insulate and conduct electricity. This semiconducting property makes metalloids
very useful as a computer chip material. Examples of metalloid elements are
arsenic and boron.

So, metals, metalloids and nonmetals are naturally present in the soil, at con-
centration levels called background levels or simply “background”, whose origin is
not external. Background levels come from the original parent rocks. Often found
as cations, they strongly interact with the soil matrix, which sometimes means that
even at high concentrations they can be found in harmless concentrations or as
chemically inert forms. However, these elements can move and change their shape
due to chemical changes in response to different environmental conditions [21].

For the exposed general characteristics, it is necessary to identify the source of
these elements in benthic sediments of waterbodies. There are different sources of
metals, metalloids and nonmetals in the environment. These sources can be either
of natural or anthropogenic origin [5, 22].

The weathering of rocks and soils, directly exposed to the action of water, is the
major contribution from natural sources. On the other hand, human activities such
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as agriculture, industry and urban waste are of great importance to the contribution
of these inorganic compounds in the sediment of natural water courses [5].

2.1 Anthropogenic Sources of Inorganic Compounds

Metals, metalloids and Se are released into the environment by many human
activities. They are also used in a large variety of industrial products, which in
the long term have to be deposited as waste. They are released into the environment
at the beginning of the production chain, whenever ores are mined, or during the use
of products containing them, and also at the end of the production chain (trash, etc.).
Here, we present an overview on anthropogenic sources and uses of these inorganic
compounds, through which they can be introduced into the environment. The
natural sources are dominated by parent rocks and metallic minerals, while the
main anthropogenic sources are agricultural activities, where fertilisers, animal
manures and pesticides containing metal/loids are widely used. Also, metallurgical
activities, including mining, smelting, metal finishing among others, in addition to
energy production and transportation, microelectronic products and waste disposal,
contribute as anthropic sources of metal/loids. Furthermore, metals, metalloids and
nonmetals can be released into the environment in gaseous, particulate, aqueous or
solid form, emanating from both diffuse and point sources [5].

As: Used as additive to animal feed, wood preservative (copper chrome arsenate),
special glasses, ceramics, pesticides, insecticides, herbicides, fungicides, roden-
ticides, algaecides, sheep dip, electronic components (gallium arsenate semi-
conductors, integrated circuits, diodes, infrared detectors, laser technology),
nonferrous smelters, metallurgy, coal-fired and geothermal electrical generation,
textile and tanning, pigments and anti-fouling paints, light filters, fireworks,
veterinary medicine

Be: Used in alloys (with Cu), electrical insulators in power transistors, moderator of
neutron deflectors in nuclear reactors

Cd: Used in Ni/Cd batteries, pigments, anticorrosive metal coatings, plastic
stabilisers, alloys, coal combustion, neutron absorbers in nuclear reactors

Co: Used in metallurgy (superalloys), ceramics, glasses, paints

Cr: Manufacturing of iron alloys (special steels), plating, pigments, textiles and
leather tanning, passivation of corrosion of cooling circuits, wood treatment and
audio, video and data storage

Cu: Good conductor of heat and electricity, water pipes, roofing, kitchenware,
chemicals and pharmaceutical equipment, pigments, alloys

Fe: Cast iron, wrought iron, steel, alloys, construction, transportation, machine
manufacturing

Hg: Extracting of metals by amalgamation, mobile cathode in the chloride—alkali
cell for the production of NaC1l and Cl, from brine, electrical and measuring
apparatus, fungicides, catalysts, pharmaceuticals, dental fillings, scientific
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instruments, rectifiers, oscillators, electrodes, mercury vapour lamps, X-Ray
tubes, solders

Mn: Production of ferromanganese steels, electrolytic manganese dioxide for use in
batteries, alloys, catalysts, fungicides, antiknock agents, pigments, dryers, wood
preservatives, coating welding rods

Mo: Alloying element in steel, cast irons, nonferrous metals, catalysts, dyes,
lubricants, corrosion inhibitors, flame retardants, electroplating

Ni: Alloying element in the steel industry, electroplating, Ni/Cd batteries,
arc-welding, rods, pigments for paints and ceramics, surgical and dental pros-
thesis, moulds for ceramic and glass containers, computer components, catalysts

Pb: Antiknock agents, tetramethyllead, lead—acid batteries, pigments, glassware,
ceramics, plastic, in alloys, sheets, cable sheathings, solder, ordinance, pipes or
tubing

Sb: Type-metal alloy (with lead to prevent corrosion), in electrical applications,
Britannia metal, pewter, Queen’s metal, in primers and tracer cells in munition
manufacture, semiconductors, flameproof pigments and glass, medicines for
parasitic diseases, as an expectorant, combustion of fossil fuels

Se: In the glass industry, semiconductors, thermoelements, photoelectric and photo
cells, and xerographic materials, inorganic pigments, rubber production, stain-
less steel, lubricants, dandruff treatment

Sn: Tin-plated steel, brasses, bronzes, pewter, dental amalgam, stabilisers, cata-
lysts, pesticides

Ti: For white pigments (TiO2), as UV-filtering agents (sun cream), nucleation
Agent for glass ceramics, as Ti alloy in aeronautics

TI: Used for alloys (with Pb, Ag or Au) with special properties, in the electronics
industry, for infrared optical systems, as a catalyst, deep temperature thermom-
eters, low melting glasses, semiconductors, supra conductors

V: Steel production, in alloys, catalyst

Zn: Zinc alloys (bronze, brass), anticorrosion coating, batteries, cans, PVC
stabilisers, precipitating Au from cyanide solution, in medicines and chemicals,
rubber industry, paints, soldering and welding fluxes

3 Metals, Metalloids and Se in Water and Sediment from
the Suquia River Basin: Studies Over the Years

The Suquia River basin has been monitored since 1991. The first study on metals
(Mn, Fe, Zn, Pb, Cu and Ni) in the available fraction of Suquia River sediments was
reported by Gaiero et al. [23].

In this study, river sediments were sampled in two seasons. Samples were
collected in June 1991 (autumn), after the rainy season, and in October 1991
(spring), after the dry winter period, coinciding with the initial phase of the rainy
season. Eight sampling stations (S1 to S6, and LI-L2) were established along the
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main course. Two of these stations (L1 and L2) were located in the mixing zone of
the Mar Chiquita Lake, where the Suquia Rivers discharges its water into the lake.
The active upper catchment was also sampled in eight additional stations: IC1-IC2,
Y1-Y2, SFI-SF2 and LM 1-LM2 (Fig. 1).

Stations IC1, Y1, LM1 and SF1 were representative of the conditions dominat-
ing in the upper catchments of the main tributaries.

These stations, located in the Punilla Valley, were mainly placed on modern
sedimentary terrain and were subjected to various degrees of environmental impact
(Table 1). The city of Cérdoba is Argentina’s second largest urban and industrial
centre. To show its impact on the river, stations S1 and S2 were located upstream
and downstream from the city. Stations S3, S4 and S5 were distributed along the
lower 100 km section, upstream from the river mouth in the Mar Chiquita Lake.
Small towns, with less than 6,000 inhabitants, justified the location of S3 and S4.
Stations S5, S6, L1 and L2 were influenced by extensive farming activities.

Table 1 lists Mn, Fe, Zn, Pb, Cu and Ni concentrations in sediment measured
during the wet and dry season at the different sampling sites from the Suquia River
basin.

During this first study, the uppermost area exhibited a low population impact;
thus, it was considered a nearly pristine basin in terms of potential man-made
sources of metals.

The concentrations of these metals in sediment at sites located in the upper basin
showed many similarities; this could be attributed to the similarity in the geochem-
ical conditions in these places (Table 1). The concentrations of some metals were
slightly affected by the different hydrological conditions (dry or wet/rainy seasons).

As expected, concentrations of some metals like Pb and Ni exhibited lower
values along the entire basin, probably due to the generation of hydrous oxides by
weathering reactions, while Fe and Mn exhibited a highly relative abundance in the
sediment fraction.

In the upper basin, areas considered as representative between the transition of
low and moderate population were stations LM1, LM2, IC2 and Y2.

The increase in the concentrations of some elements (e.g. Pb, Cu, Zn) in these
transition zones is clearly related to the increase in urban settlements with respect to
the pristine areas. In contrast, Fe and Mn showed no significant changes with values
recorded in the upper pristine basin.

Sampling stations SF1 and SF2 correspond to the San Francisco River (Fig. 1a).
This river drains through a valley (Punilla Valley), where urban activities release
different wastes, with little or no treatment, into the riverbed. In these sampling
sites, increased levels of Pb, Cu and Zn during the rainy season were observed, in
agreement with increased levels of organic matter and, to a lesser extent, precipi-
tated carbonates [23]. In the dry season, a drop in Pb, Cu and Zn concentrations was
observed [23]. On the other hand, concentrations of Fe and Mn in these sites were
among the lowest throughout the entire basin; a possible explanation for this might
be associated with reducing conditions in this area. Ni concentrations showed
minimal temporal and spatial changes.
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Fig. 1 Map of the Suquia River basin (Cérdoba—Argentina) with indication of the studied area
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During the wet season, an increase in the concentrations of metals downstream
from sampling sites SF1 and SF2 was observed, in addition to an increase in the
content of organic matter and carbonates.

The upper basin supplies the water stored at the San Roque reservoir (Fig. 1).
This dam is considered the limit between the upper and the medium drainage basin,
where the city of Cordoba is located. The river crosses the city, receiving industrial
and municipal effluents as well as urban runoff inputs.

The concentrations of most of the measured elements (with the sole exception of
Mn) were higher downstream from Cérdoba City, while a subsequent decrease in
the downstream direction was also observed (Table 1). Metal concentrations,
measured at the sampling point S2, were higher during the wet season compared
to the dry one, in opposition to values recorded in both the upstream and down-
stream sections. This increase was approximately 40% above base values during the
dry season, and it can be attributed to metals washed out from the city via urban
runoffs.

Downstream from the city of Cdrdoba, in S2 monitoring station, a marked
reducing environment determines low concentrations of Mn and high concentra-
tions of Fe. Such reducing environment is likely to be caused by the discharge of the
wastewater treatment plant (WWTP), which causes a severe oxygen drop down-
stream, leading to such reducing conditions. Under these conditions, Fe, along with
other metals, probably precipitates as sulphide, given the presence of bioavailable
organic matter, sulphates and other oxidising compounds — such as Fe™ [24].

A reasonable explanation for the observed decrease of most heavy metals,
further downstream from S2, is the dilution by “native sediments”, relatively free
from heavy metals, introduced into the main stream by bank erosion from the
surrounding area. This river section does not present major point sources of metals,
although minor fluctuations can be attributed to the presence of small towns located
along the riverbank.

Finally, stations L1 and L2 represented the transition zone between the fresh-
water river mouth (L1, conductivity: 23,754 nS) and the Mar Chiquita saline lake
(L2, conductivity: 27,000 pS). Settling of small particles determined the increase
observed with most metal concentrations (Fig. 1).

As in some estuaries (e.g. [25]), the concentrations of Fe appeared to be higher in
the low-salinity river mouth than in the high-salinity sector. Probably, Fe (along
with A1l and Ti) remained associated with fine colloidal particles in offshore waters
[26]. An increase of organic matter and carbonates in bottom sediments (L2) from
the saline river mouth was also observed [23].

Some years later, Contardo-Jara et al. [27] also reported the amounts of the
available metal fraction, extracted from field-sampled sediments and surface water
during the spring of 2007. In this case, four sampling sites were monitored,
covering a pollution range from quasi-pristine to heavily polluted areas. The
monitoring station at Rio Yuspe corresponds to the Y2 station in Gaiero
et al. [23]. A second station, El Diquecito, located 30 km upstream from Cdrdoba
City, is slightly polluted as a consequence of less treated sewage and urban runoff
from smaller cities further upstream from the eutrophic San Roque reservoir [28],
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where the Suquia River is born (Fig. 1). A third monitoring station was Isla de los
Patos, located close to Cordoba City downtown, where the river is flanked on both
sides by frequently used highways. Further reasons for the pollution at Isla de los
Patos are in connection with urban drainage (runoff), where illegal garbage and
domestic sewage is sometimes introduced. The most polluted site reported by
Contardo-Jara et al. [27] was Corazén de Maria, located ca. 16 km downstream
the WWTP (Fig. 1). It is worth noting that only 0.7 out of 1.2 million inhabitants of
Cédrdoba City are connected to the municipal sewage, with the rest discharging
home-treated sewage (septic tanks) into cess pools, which then infiltrate the ground
and pollute the groundwater. This last site (Corazon de Maria) corresponds to the
S2 sampling site in the work of Gaiero et al. [23].

Contardo-Jara et al. [27] showed that metals tend to concentrate in the sediment,
where they reach concentrations of several magnitudes higher than in the overlay-
ing water.

Conversely, iron showed the highest concentration in sediments of the Yuspe
River (514 pg g~ '), which could be a consequence of the geological composition of
the surrounding soil (metamorphic granite with gneiss ducts). This result cannot be
compared with previous studies [23], since Fe was not reported during spring
monitoring in this previous work.

Iron content in surface water in Yuspe River (24.1 pg L") was in the same
magnitude as the most polluted site Corazén de Maria (33.5 pg L™"). At Isla de los
Patos, even higher amounts were detected (55.2 pg L"), while at El Diquecito
values were below detection limit. In some cases, metal content in sediments did
not show a clear increasing or decreasing trend throughout the studied basin section
(e.g. Co, K, Mn, Na). Others metals are strongly associated with human activities or
sewage, showing their highest levels at Corazon de Maria compared to the other
studied basin sections (Cr, 1.36 pug g~ '; Cu, 17.45 ug g '; Mg, 913 pg g '; Ni,
7,08 pg g~ Pb, 11.8 pg g~ '; and Zn, 160 pg g~ ")

Changes in copper concentration in basin sediments seem to be associated with
urban activities, changing by almost sixfold from Rio Yuspe (1.52 pg g~ ') to El
Diquecito (8.64 pg g~ ') and Isla de los Patos (8.64 pg g~ "), with a further increase
by more than tenfold at Corazén de Maria (17.45 pg g~ ') with respect to Yuspe
River. This trend was also reported by [23] some years before during the spring time
(Table 1).

Concentrations of Fe, Cu, Ni and Pb in sediment collected during spring time at
both Y1 and S2 stations in Gaiero et al. [23] were higher in all cases than
concentrations reported by Contardo-Jara et al. [27] in the same site, with the
exception of Mn and Zn in S2 (Corazén de Maria) station, where in both papers
they showed similar concentrations.

Nickel amounts in surface water of Yuspe River (17.8 pg L") are strikingly
high, being sixfold higher than in Corazén de Maria (2.6 pg L™'), which can be
explained by the geochemical background of the surrounding soils [27].

Two years later, Monferran et al. [29] reported concentrations of Ag, Cr, Cu,
Mn, Ni, Pb, Fe and Zn in the available fraction of sediments and surface water
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throughout five stations studied for the period 2008-2009 at the Suquia River basin,
during the dry and rainy season.

Sampling areas used by Monferran et al. [29] were selected, considering previ-
ous reports on pollution sources and water quality of the Suquia river basin [23, 27,
30, 31]. All of these reports point out to Cérdoba City as the main responsible area
for the pollution of the Suquia River. So far, a reference area located upstream from
the city (La Calera,LC; Fig. 1) was established. The four sampling areas located
downstream from Cérdoba City, Corazén de Maria (CM), Capilla de los Remedios
(CR), Rio Primero (R;) and Santa Rosa de Rio Primero (SR) are primarily affected
by the input of pollutants from the city sewage [30, 31]. Closer to the WWTP,
downstream from Coérdoba City, the basin could receive agricultural runoffs or
additional domestic wastes [23].

The mean values, determined in both water and sediment by Monferran
et al. [29], are given in Table 2. Clearly, sediments show the negative impact of
the city, with increased amounts of Pb, Cu, Cr and, particularly, Zn. Considering
previous reports [23, 27, 31], it is likely to think that these metals arise from the city
WWTP, though this point cannot be definitively concluded because the sewage exit
was not analysed during these works. On the other hand, Ni remained roughly
constant in sediments throughout the studied area; this trend was also reported by
[23] some years before (Table 1). It is worth to mention that the amount of Fe is
drastically reduced in sediments downstream from Cdrdoba City but proportionally
increased in the water. Thus, in agreement with reports by [23], it is demonstrated
that the tendency remained unchanged over the time (>10 years).

Additionally, higher values of dissolved Cr, Cu, Mn, Ni and Pb are observed
during the wet (rainy) season, probably due to the increased amount of these metals
coming from the urban runoffs at the beginning of the rainy season.

The uppermost area (La Calera) exhibits low population impact, and it is
considered quasi-pristine in terms of potential man-made source of toxic metal/
loids. Thus, current results show that the riverbed sediment is projecting a clear
image of the impact produced by diverse activities, but it is mainly affected by the
city sewage.

In some cases, as previously reported by others authors, the levels of soluble
metals show the impact of the WWTP discharge, followed by a drop downstream
from this point (i.e. Cr and Mn at Corazén de Maria — CM — and further down-
stream, Table 2). However, other metals like Cu showed the highest values at R
during the wet season (Table 2), which is less influenced by the sewage discharge.
In this case, high concentrations of soluble Cu could be the consequence of
agricultural runoffs (CuSOy is used as a common fungicide in this area) or any
other point source pollution.

Considering the studied metals in stream sediments by Monferran et al. [29], it
can be seen that concentrations of Cu, Zn and Pb were lowest at the reference site
(LC). The environmental impact caused by Cérdoba City (e.g. WWTP) became
evident in the Suquia River system because of some toxic metals (Zn, Cu and Pb) at
CM, with moderate or less drop further downstream (Table 2). Thus, the impact of
sewage point source pollution is reflected downstream in river sediments, though
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values in water tend to decrease (Table 2). This trend was also observed in previous
years [23, 27].

Many pollutants measured during the work of Monferran et al. [29] are well
above levels considered as hazardous for aquatic life, exceeding the levels of the
Argentinean Environmental Water Quality Guidelines [32]. For instance, values
observed for Cr at LC, CM, CR and SR during the wet season (Table 2) clearly
exceed the threshold-regulated value of 2.5 pg L™". A similar situation is observed
with Pb, which exceeds the threshold value (1.6 pg L") throughout the entire basin
during the wet season and at CM during the dry season. In the sediment, some
metals exceed the risk levels defined by the Management of Aquatic Sediment
Quality ([33]; Argentinean regulations do not stipulate guideline values for sedi-
ments). Concentrations of Cu (17.5, 20.1 and 22.1 pg g_1 DW at CM, CR and R,,
respectively; Table 2) were in excess up to 1.4-fold (threshold value, 16 pg g~ !
DW), while loadings of Ni (ca. 17 pg g~' DW at CM, CR and R;; Table 2) also
exceeded levels for the protection of the aquatic biota established in Canada
(16 pg g~ ' DW).

These results complement the previous measurements of metal levels in avail-
able fraction in sediments of the Suquia River basin [23, 27]. Thus, current Cu, Ni
and Pb concentrations in sediments are similar to those previously reported by
Gaiero et al. [23] at similar monitoring places. Current concentrations of Zn present
lower values upstream from Cérdoba City but higher values downstream. It is worth
to mention that Fe in sediments presents much higher values during this work in
comparison to previous reports by Gaiero et al. [23].

Later on, Monferran et al. [34, 35] reported concentrations of metals, metalloids
and Se (Li, B, Be, Al, V, Cr, Mn, FMo, Ag, Cd, Ce, Hg, Tl, e, Co, Ni, Cu, Zn, As,
Se, Rb, Sr, Pb, Bi, U, Pd, Sn, Sb, Pt and Au) in the pseudo-total fraction of
sediments and water throughout five studied stations at the Suquia River basin:
La Calera (LC) was established as the reference area located upstream from the city
and four sampling areas downstream from Cérdoba City, Corazén de Maria (CM),
Rio Primero (R;), Santa Rosa de Rio Primero (SR) and La Para (LP) (Fig. 1).

Higher values of dissolved Al, V, Mn, Co, Ba and Ce were observed during the
wet season; this could be attributed to runoffs of the basin area during rainfall
(Table 1); higher values of dissolved elements were observed in the dry season in
comparison to the wet season. In some cases, the levels of soluble metal/loids
showed the impact of the WWTP discharge, followed by a drop downstream from
this point source (i.e. Cr, Mn, Hg, Ni, Cu, Zn, Pb and Sn at CM and further
downstream) (Table 3). These results agree with those reported by Contardo-Jara
et al. [27] and Monferran et al. [29].

It can be seen that levels of As in the water increase as the river flows towards the
Mar Chiquita lake (1.8 to 14.6 pg g~ ' from west to east). The Chaco—Pampas plain
in Argentina is considered the largest region in the world (one million km?) affected
by the presence of arsenic in groundwater. Within this region, the eastern part of the
Province of Cordoba is one of the most affected areas. Levels of As reported by
different authors in surface waters from this area are generally lower than those
reported in groundwater. In rivers and lakes, the average concentration of As



M.V. Monferran

128

[#€] “T® 10 ueLIOJUOIN woiy paydepe e (SO0 > 4 ‘DOJ) suonels JuLIoJIuOW
JUQIQJJIP J& Son[eA JUIJJIP A[JuedyTugIs 91edIpul () *(ruir uonesynuenb mofeq) OOT> ‘(GTWI] UOT}OANIP MO[2q) JOT> 'S F Sueaw Je passaidxo are sonfe A

*

S0F68 IFST aoT>| LIOFS8L T'0OF¢T I'oOFvYy aor> ¥ F 601 PM
x* COFVEC IFL1 aoT>| 900FCLY x 1'0FTT x* 1'0F €9 aor1> x SCFICE A1q | uourpeg
% 8'0F T0C CTFL9| %C00'0F 8000 | TOOFEST 90FCTT| T00FLIO 90FTII YF Ve PM
*
I'TF8CT| « IF90I aoT> 100FS€T x*90FCC SO0FICO I'oF 16 % CF¥CC L1gq Iore M\
uz IS d qd N PN O U
001> TF69C| TO0FST LTOF I¥°0 T'0OF8L| ¥100F 6500, LOOF¥E0 8GF08L| CO'0F¥I0°0 M
*
001> | #SYFVCL| «T0F 1Y LIOFTSO| + T'0OFSTL| $IO0OFELO0O| TI'0OFILO| 89FISOT| 0'0F8I00 A1q | uourpeg
aoT> PFIS| 90FC¢E aoT> x* '0OFLY| +800FL6'T aoT> F09 aoT> PM
& *
aoT>| O0IFL80T| =1 0FSS * LOF9CT| T100FT90 aoT> «* I'0F8E| 9TFYerT ao1> Aiq Iore M\
SH o n) 'S D PD sy v 3y | uoseag XLIRIA

SJUSWILQ PasA[euy

I1oA10591 9nboy UES oY) Jo (M-1Stem A1p | 3 3r) sjuotipas pue (T Ir) Iojem UI paINSEIW [eIOW JO SUOHBNUDIUO) ¢ IqE],



Metals and Metalloids in Water and Sediment of the Suquia River Basin. . . 129

reported in the literature is generally less than 0.8 pg L™'. However, downstream
from Cérdoba City, the Suquia River flows through an area with intensive agricul-
ture and stockbreeding, where there is a frequent extraction of groundwater for
irrigation purposes and the provision of drinking water to cattle. Thus, As contained
in this groundwater can reach the river in this area, increasing levels of this
metalloid in surface waters [36].

Finally, Harguinteguy et al. [37] also reported levels of some metals (Co, Cu, Fe,
Mn, Ni, Pb and Zn) in surface water and sediment samples of the Suquia River. In
this case, sampling was carried out in July 2006 and February 2009, during the dry
and wet seasons. To evaluate the spatial variation, they selected seven sampling
sites:

Site 1 (31°21’60” S, 64°30'52” W, 766 m), established as the reference, was located
on Los Chorrillos brook before the San Roque reservoir (Fig. 1).

Site 2 (31°20'36” S, 64°21'18” W, 539 m) was located 18 km upstream from
Coérdoba City, before La Calera town.

Site 3 (31°17'54” S, 64°19’53” W; 594 m) was located 15 km upstream from
Coérdoba City, before the Saldan brook.

Site 4 (31°19'16” S, 64°18'58” W, 516 m) was located on the Salddn brook, before
the mouth of the Suquia river.

Site 5 (31°20'46" S, 64°16'58” W; 463 m) was located 12 km upstream from
Coérdoba City, after Villa Rivera Indarte, upstream from Cérdoba downtown.
Site 6 (31°24'19” S, 64°05'29” W, 397 m) was located 1 km downstream

the WWTP.

Site 7 (31°25'48" S, 64°01'22" W, 360 m) was located 9 km downstream from
Coérdoba City, after the discharge of a channel containing industrial effluents
(automotive, metallurgical and metal-mechanical industries) in the southeast of
Cordoba City.

Metal concentrations in surface waters found by Harguinteguy et al. [37] in 2006
and 2009 revealed significant differences between the sampling sites. In general,
metal concentrations were higher downstream from Cérdoba City (Sites 6 and 7) in
both sampling campaigns, which was probably related to the contribution of
pollutants from effluent discharges from anthropogenic sources (WWTP and the
industrial channel). The mean concentrations of all metals in river water, except for
Cu and Pb, were well above the levels considered hazardous for aquatic life,
exceeding the levels established by the Argentinean Environmental Water Quality
Guidelines [32].

It should be mentioned that metals in sediment in this work resulted in concen-
tration values much higher than those observed in previous studies conducted in the
same river and in the same sampling stations [23, 27, 29]. This could be due to
methodological differences as Harguinteguy et al. [37] measured the pseudo-total
fraction in sediment, while previous works reported the labile fraction [23, 27,
29]. The evaluation of pseudo-total concentrations involves a more exhaustive
extraction than the one performed to determine the bioavailable or labile fraction.
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However, results by Harguinteguy et al. [37] can be compared to those reported by
Monferran et al. [34, 35].

Reports by Harguinteguy et al. [37] and Monferran et al. [34, 35] show the
negative impact of Cdérdoba City, particularly through the WWTP and industrial
channel discharges. Thus, downstream from the city, increased amounts of Pb, Cu,
Cr, Zn, Cd, Ni, Hg, Bi, Sn and Pt were observed. On the other hand, Be, Co, V, Rb,
Tl and Pd remained roughly constant in sediments throughout the studied area.

It is worth to mention that Harguinteguy et al. [37] reported that levels of Fe in
sediments were higher in 2009 than in 2006 (5,842 and 7,892 ug g~ ', respectively),
with the maximum concentrations of this metal being registered in 2009 in areas
where large amounts of organic matter were deposited (site 6 and 7, corresponding
to the site CM in Monferran et al. [34, 35] work). In this regard, Charzeddine
et al. [38] noted that the external supply of Fe in the rainy season was able to form
colloidal dispersions of amorphous iron hydroxide, Fe(OH); and goethite, a-FeO
(OH), which were retained by the organic matter in sediments. Similarly, Wedepohl
[39] indicated that this element is found in large proportions in the upper crust, and
consequently, its concentrations in aquatic environments tend to increase consid-
erably due to the drag action exerted by rainfall, surface runoff and/or leaching.
This increase in iron concentration in sediments during the wet season, compared to
the dry season, is not as marked in Monferran et al.’s [34, 35] work, probably
because of methodological differences, as Monferran et al. [34, 35] monitored dry
and wet season within the same year (2012), while Harguinteguy et al. [37] reported
results from the dry season of 2006 and the rainy season of 2009. So far, consid-
eration of the hydrological issues and the analytical method used is necessary to
compare results by different authors, taken in different years, under different
weather conditions. A normalisation of data should be attempted considering the
total load of metals and metalloids transported by the river. Unfortunately, the lack
of hydrological stations coincident with monitoring sites precludes such data
normalisation.

3.1 Metals and Metalloids Concentrations in Water
and Sediment of the San Roque Reservoir

Seventeen elements (Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt
and Hg) were sampled from water and sediment on the San Roque reservoir (Fig. 1)
during both wet and dry seasons throughout 2012 [35]. In this case, the available
fraction of sediments was analysed.

The mean values, determined in both water and sediment, are given in Table 3.
In general, the highest concentrations for measured metal/loids in water were
detected during the dry season (P < 0.05) (Table 3). This could be the result of
low water volumes supplied by tributaries during the dry season, resulting in a
concentration of studied elements in the reservoir because of the lower water
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amount. Conversely, higher flows observed during the wet season could dilute
elements in the reservoir (Table 3). These results are in agreement with the
previously detected trend, measuring several physical and chemical parameters in
the lake [31]. Some of the measured elements exceed the limit considered danger-
ous to aquatic wildlife, established by the Argentinean Environmental Water
Quality Guidelines [32]. For instance, values observed for Al, Cu, Cr, Fe, Ni and
Zn, during the dry season (Table 3), clearly exceed the threshold regulated
(100, 2.87, 2.5, 1.37*, 4.2, 4.54 pg Lfl, respectively, with the exception of Fe,
where values are expressed as mg L™"). A similar situation is observed with Cu and
Zn during the wet season, exceeding the threshold value (2.87 and 4.54 pg L™,
respectively).

Water pollution has also affected the upper layer of sediment (0—15 cm). The
highest concentrations for most measured metals in reservoir sediments were
detected during the dry season (P < 0.05) (Table 3). Sediment samples presented
different textures along the studied period, varying from low to high silt sludge. It is
noticeable that the deposition of suspended material, due to the slow water flow
(larger residence time) during the dry season, determined a high metal concentra-
tion in sediments, in contrast with more sandy sediments typical of the rainy season
(Table 1). These results complement the few previous measurements of metal/loids
in sediments of the San Roque reservoir. Thus, current Cr, Cu, Ni and Fe concen-
trations in sediments are lower than those previously reported by Monferran
et al. [29], in sediments of the Suquia River, close to the San Roque dam
(La Calera) (Fig. 1) during both wet and dry seasons (Table 2). Although Zn
concentration presents higher values in the San Roque reservoir than those previ-
ously found in La Calera, both concentrations do not exceed the risk levels defined
by the Canadian Guidelines for the Protection and Management of Aquatic Sedi-
ment Quality ([33], Argentinean regulations do not stipulate guideline values for
sediments).

4 Ecological Risk Assessment

Potential ecological risk was calculated using Hakanson [8] methodology in which
the sensitivity of the aquatic system depends on its productivity. The potential
ecological risk index (R;) was introduced to assess the degree of heavy metal
pollution in sediments, according to the toxicity of metal and metalloids pollution
and the response of the environment:

Ri=)E (1)
E' = TyCyt 2)
Cif = Cio/Cin (3)

where R; is calculated as the sum of all risk factors for metals studied in sediment,
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E} is the monomial potential ecological risk factor, T, is the toxic-response factor
for a given substance, which accounts for the toxic and sensitivity requirements. Ci¢
is the contamination factor, Cj, is the concentration of metals in sediment and Cj, is
a reference value for metals (Table 3).

The risk factor Ry proposed by Hakanson [8] was based on eight parameters
(PCB, Hg, Cd, As, Pb, Cu, Cr and Zn) measured in total or pseudo-total fraction of
sediments. To calculate the ecological risk assessment, the data presented in Table 4
[34, 35] was used, since this study contains much elements measured in pseudo-
total fraction, excluding PCB that was not measured during this work. Using Eq. (1)
and the parameters listed in Table 4, the potential ecological risk indexes E} and R
for each sampling site were calculated. Tj; is the toxicity coefficient, which repre-
sents the toxic-response factor for a given metal/loid. The value of T;, for Hg, Cd,
As, Cu, Pb, Cr and Zn was 40, 30, 10, 5, 5, 2 and 1, respectively [40]. Cj is the
contamination factor, Cj, is the concentration of metal in the sediment of the Suquia
River and Cjy, is the background value of the heavy metal in coastal sediments [41].

Based on Egs. (1)-(3), ecological risk indexes of metal/loids in the five moni-
toring stations, considering dry and wet seasons, were calculated and are listed in
Table 4. The results indicated that there was a relatively low degree of ecological
risk associated with toxic metal/loids in LC, Ry, SR and LP during the wet season.
Conversely, moderate ecological risk was found in LC, R;, SR and LP in the dry
season and in CM in the wet season. It is worth noting that severe ecological risk
was determined for CM during the dry season. The potential ecological risk index
of a single-element E} showed that Hg exhibited the most severe risk for potential
pollution risk out of seven studied metal/loids in the sediments of the Suquia River
basin, mainly due to the highest toxicity coefficient of Hg.

5 Multivariate Statistical Analysis

Looking for evidence on the correspondence between the two studied matrixes
(water and sediment), we decided to apply the Generalised Procrustes analysis
(GPA). Specifically, GPA constructs the consensus configuration of a group of
datasets by applying transforms in an attempt to superimpose them. Therefore, GPA
theory and algorithms can be applied to match abiotic parameters (metals and
metalloids in this case), measured in different matrixes, namely, water and sedi-
ment in this case. Additionally, GPA produces a configuration corresponding to
different studied sites that reflect the consensus among the two matrixes (metal/
loids in water and sediment from different sites). The result is a consensus align-
ment that uses all the variables from both datasets.

Variables used are those from Tables 5 and 6, since these datasets contain the
highest number of measured elements. So far, all the variables showed in Tables 5
and 6 were used as descriptors for grouping water and sediments. In Fig. 2a, b, the
consensus configuration projected onto the plane defined by its first and second
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Table 6 Standards of the potential ecological risk according to E} and Ry

Scope of potential General level of
ecological risk index Ecological risk level of | Scope of potential | potential ecological
(E;) single-factor pollution toxicity index (Ry) | risk

E' <40 Low R; < 150 Low-grade

40 < E‘r < 80 Moderate 150 <R; < 300 Moderate

80 < E! < 160 Higher 300 <Ry < 600 Severe

160 < Ei < 320 High 600 <R; Serious

320 < E! Serious

Note: E! was classified by Hikanson [8]. E! is the monomial potential ecological risk factor. Ry is
calculated as the sum of all risk factors for heavy metals in sediment, which represents the
sensitivity of the biological community to the toxic substance and illustrates the potential ecolog-
ical risk caused by the overall contamination

Table 7 Potential ecological risk indices of metal/loids in sediments from five monitoring sites of
Suquia River

£
Monitoring station Season |As |Cu Cd Cr |Pb |Zn |Hg R;
La Calera (LC) Wet 0.0 | 3.0 00 |07 [20 |03 0.0 6
Dry 0.0 | 2.2 00 (09 |18 |05 [233.6 |239
Corazén de Maria (CM) Wet 00 | 63 |444 |09 |96 |16 |1024 | 165
Dry 0.0 |12.3 00 |12 |78 |32 |300.8 |325
Rio Primero (R;) Wet 00 | 50 [354 |09 |68 |1.0 84.8 | 134

Dry 00 | 7.3 00 |1.0 |7.8 |[1.6 |227.2 |245
Santa Rosa de Rio Primero | Wet 00 | 45 (270 |09 |34 |08 88.0 |125
(SR) Dry 0.0 | 3.3 00 |07 |26 [0.7 |1952 |203
La Para (LP) Wet 00 | 2.7 [27.0 (0.6 |34 |05 92.8 | 127
Dry 0.0 | 2.8 00 |06 |26 [0.6 |201.6 |208

principal axis is shown, explaining 68.4% of variability between samples during the
wet season and 73.7% during the dry season.

We can observe that the five monitoring sites considered are well separated in
terms of levels of metals and metalloids measured in both water and sediment. This
last result gives further indication of the connection between both studied matrixes.

Through this multivariate statistical technique (GPA), we can presume that the
different ecological compartments (water and sediment) studied along the Suquia
River basin are closely related and that the interaction between them determines the
characteristics of each site. These results allow us to highlight the importance of
integrating studies from different compartments to determine the quality of water
resources by means of a pollution gradient as the one observed along the Suquia
River basin from upper to lower sections.
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Fig.2 Consensus space from Generalised Procrustes analysis: plot in the plane formed by the first
two dimensions: (a) wet season and (b) dry season

6 Conclusions

According to studies conducted by different authors over 17 years, it can be
concluded that, although not all mentioned reports sampled at the same monitoring
sites, or at the same time, when analysing them all together, a wide overview of
metal/loids concentrations in water and sediment along the Rio Suquia basin is
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observed, showing differences between the dry and wet season throughout the
studied years. A brief summary of all these studies allow the following conclusions:

The concentrations of metal/loids in stream available sediments from the pristine
areas were similar in both sampling seasons.

Some metal/loids values (e.g. Pb and Ni) in the upper catchment were, as
expected, the lowest, considering the entire drainage basin. Conversely, Cu and
Zn exhibited moderate concentrations, especially in LM1 and LM2 (Table 1) sites
when compared to levels for the protection of the aquatic biota established in
Canada (16 pg g~ ' DW).

The environmental impact of Cérdoba City (mainly from the WWTP) became
evident in the Suquia River system with the increase of toxic metal/loids at the
sampling stations located downstream the WWTP, with a greater impact closer to
the sewage exit.

A reduced number of point sources of pollutants further downstream the WWTP
and the industrial effluents determine a decreasing metal/loids concentration trend
downstream from these points. Other processes, such as dilution by relatively
metal-free sediment supplied by bank erosion, may also support the observed
decreasing concentration trend.

The increase in As concentration observed between Cordoba City and the river
mouth at the Mar Chiquita lake could be explained by nonpoint sources, arising
from runoffs from surrounding fields dedicated to both agriculture and stock
breeding, which use groundwater for irrigation and provision of water to cattle.

The concentrations of some elements in river waters are also characterised by a
seasonal dependence. Namely, higher concentrations are observed during the
wet/rainy season for some elements, probably due to increased urban runoffs at
the beginning of the rainy season, while other elements present higher values during
the dry season, probably as a consequence of a lower amount of water, causing a
concentration effect when an almost constant charge is released into the water.

Ecological risk indexes of metals in sediments indicate that sediments located
few kilometres downstream from the WWTP have moderate to severe ecological
risk. Therefore, the downstream area close to the WWTP can be considered as the
most polluted site.

Using multivariate statistical analysis (GPA), it can be demonstrated that the
different ecological compartments studied (water and sediment) are closely related
and that the interaction between them determines the quality of the aquatic envi-
ronment at each studied site.
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