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Abstract Microbial source tracking (MST) tools are used to identify sources of

faecal pollution to accurately assess public health risks and implement best man-

agement practices. Many different viruses are excreted by humans and animals and

are frequently detected in water contaminated with faeces or/and urine. Because of

the large degree of host specificity of each virus and the substantial stability of

many excreted viruses in the environment, some viral groups are considered to be

accurate MST indicators. The Laboratory of Virus Contaminants of Water and

Food at the University of Barcelona has proposed the use of viral indicators as well

as cost-effective methods for the concentration of viruses from water. The devel-

oped procedures have been used to determine the levels of faecal pollution in

environmental samples as well as for tracing the origin of faecal contamination.

Such tools were recently used by the Catalan Water Agency to identify nitrate

contamination sources in groundwater.

Human adenoviruses, human polyomavirus JC, porcine adenoviruses, bovine

polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses can be

quantified in samples using molecular methods (qPCR). The selected DNA viruses

specifically infect their hosts and are persistently excreted in faeces and/or urine

throughout the year in all geographical areas studied. The procedures that have been

developed to quantify these viruses have been applied to bathing, coastal, surface

and groundwater. In this study, the source of nitrate contamination in groundwater

was identified by analysing viral markers, thereby demonstrating the usefulness of
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the selected viruses for the identification of sources of contamination in water. This

methodology can be used to provide information to guide the proper application of

measures in place to protect water from pollution caused by nitrates from several

sources and thus to facilitate the accurate application of the 91/676/EEC Directive,

which is mainly focused on agricultural sources of water contamination.

Keywords Adenovirus, Faecal contamination, Microbial source tracking, Nitrate

contamination, Polyomavirus, Viral markers
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1 Faecal Contamination in Groundwater

Humans, as well as farmed animals, play an important role in the microbial

contamination of water, crops and food and introduce large quantities of pathogens

into the environment through their excretions.

Although most pathogens could be removed if sewage, manure and slurry were

appropriately treated, many are discharged into receiving waters or may be dis-

posed of in biosolids on land. Pollutants enter the water environment from two main

types of sources: point sources, which are single and identifiable sources of

contamination, and nonpoint sources, which are more diffuse sources of contami-

nation. Nonpoint sources of contamination may release pollutants intermittently

and may be attributable to infiltration from farmland treated with pesticides and

fertilisers. Examples of point sources are landfills, leaking gasoline storage tanks,

leaking septic tanks and accidental spills. Both point and nonpoint sources of

contamination may affect groundwater, and several waterborne disease outbreaks
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that are believed to have had viral aetiologies have been attributed to the consump-

tion of polluted groundwater [1, 2]. Viruses (23–80 nm) are much smaller than

bacteria (0.5–3 μm) and protozoa (4–15 μm) and thus move more easily through

soil pores. They are highly stable at low temperatures in the darkness and survive

for long periods in groundwater environments. However, relatively limited data on

the level of viral contamination in groundwater are available compared with other

environmental water matrices [3].

Detailed knowledge about sources of contamination is needed to develop effi-

cient and cost-effective waste management strategies to minimise faecal contami-

nation in watersheds and food, to evaluate the effectiveness of best management

practices and to conduct system and risk assessments as part of water- and food-

safety plans, as recommended by the World Health Organisation. Faecal sources of

contamination have high nitrogen content, and both pathogens and nitrates present

in groundwater polluted with faeces may pose a risk to human health when such

groundwater is used as a source of drinking water.

Nitrate is the most widespread groundwater quality problem in many countries,

and it is the most frequent cause of a groundwater body failing to meet good status

under the WFD in some EU countries (http://ec.europa.eu/environment/water/

water-nitrates/reports.html), including Catalonia [4]. The principal nitrogen inputs

into groundwater are derived from manure, fertilisers, sewage sludge and crop

residues from agricultural areas [5]. In the environment, several forms of nitrogen

(NO2, NH4, NH3) can potentially be transformed into nitrate (NO3). Various

activities may cause nitrate groundwater pollution in agricultural areas. The use

of synthetic nitrogen fertilisers as well as the use of organic fertilisers, such as

manure and slurries, is the main cause of this pollution. In some areas, high levels of

nitrates in groundwater used as a source of drinking water are a consequence of the

increase in livestock production that has occurred in recent years. Moreover, an

absence of slurry, manure tanks or storage facilities may also contribute to this

problem. The disposal of municipal or industrial effluents by spreading sludge on

fields may also be a diffuse source of nitrate pollution in groundwater.

Other sources of nitrate pollution in groundwater include the following: inter-

actions between groundwater and surface water, nitrogen-rich effluents, poorly

constructed wells that allow water to be exchanged between polluted and

nonpolluted aquifer layers, old and badly designed landfills, septic tanks and

leaking sewerage systems (http://www.who.int/water_sanitation_health/dwq/

chemicals/en/nitrateschap1.pdf).

The intensification of livestock production results in an increase in the amount of

animal waste that must be managed. Catalonia, with a population of nearly 7.5

million people, has an important meat industry, with 6.8 million pigs, 0.5 million

cattle and 0.6 million sheep [6]. A total of 19 out of 53 (36%) groundwater bodies in

Catalonia have been classified as being of poor chemical quality as a result of high

nitrate levels. Most of the affected groundwater bodies are located in agricultural

areas, although not all stresses on groundwater result from agricultural activities. In

some cases, urban wastewater leakage may also contribute to this problem. How-

ever, to date, agricultural sources and manure applications on fields, in particular,

have been the main causes of pressure on groundwater. Together with nitrogen
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compounds, faecal microorganisms are released into the environment in manure in

holding ponds or storage areas or are applied to pastures to fertilise crops. Most

livestock manure is disposed of on the ground, depending on the crop type, and

annual quantities of nitrogen that are applied per hectare are specifically restricted

in vulnerable areas [7, 8]. However, microorganisms and especially viruses can

still, in some cases, infiltrate groundwater. The survival, fate and transport proper-

ties of viruses in the environment vary based on the type of virus, viral inactivation

kinetics at high temperatures, UV exposure, filtration or adsorption in porous media

or sediments and deposition and resuspension of sediments [9, 10].Survival is likely

shorter in surface water than in groundwater because of UV exposure, higher

temperatures (depending on the time of year and the location) and the opportunity

for more interactions with other organisms that can inactivate viruses [11] in

superficial water. Tracing and identifying the sources (human and/or animal) of

faecal contamination in water are therefore essential, both to improve waste

management and to assess risks to human health.

2 Development of Microbial Source Tracking (MST)

Techniques

Faecal pollution is a primary health concern in the environment, in water and in

food; for this reason, bacterial faecal indicators have been analysed widely to assess

the microbiological quality of water, and such assessments are required by water

safety regulations. The use of index microorganisms, whose presence points to the

possible occurrence of a similar pathogenic organism, and indicator microorgan-

isms, whose presence represents a failure affecting the final product, to assess the

microbiological quality of water or food is well-established and has been practised

for almost a century.

Classic microbiological indicators, such as faecal coliform bacteria, Escherichia
coli and enterococci, are most commonly analysed to evaluate the level of faecal

contamination. However, whether these bacteria are suitable indicators of the

occurrence and concentration of pathogens such as viruses and protozoan cysts

has been questioned for the following reasons: (1) indicator bacteria are more

sensitive to inactivation by treatment processes and sunlight than are viral or

protozoan pathogens; (2) indicator bacteria may not originate exclusively in faecal

sources; (3) indicator bacteria may have an ability to multiply in some environ-

ments of interest; (4) it may not be possible to identify the source of faecal

contamination; and (5) the presence of indicator bacteria may be poorly correlated

with the presence of other pathogens. Thus, various authors have concluded that

these indicators could fail to predict the risk of contamination with waterborne

pathogens, including viruses [12–16]. Therefore, the team at the Laboratory of

Virus Contaminants of Water and Food at the University of Barcelona has proposed

that quantitative tests of specific viruses be used as complementary indicators of

faecal contamination in water.
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Methods for detecting and identifying the source of faecal pollution in the

environment are known as microbial source tracking (MST) tools [17, 18]. These

methods mainly focus on detecting a microorganism that is intrinsically related to

faeces and that thus indicates the presence of contamination and hence of potentially

excreted pathogens, such as bacteria, viruses and parasites. MST can assist health and

environmental agencies with the identification of sources of faecal contamination.

MST tools can also be employed to help make decisions related to the management of

drinking water sources, shellfish-growing waters and recreational waters.

A large body of work has been developed in the MST field over the past several

years. The first reviews listing the available methods for identifying indicators of

faecal pollution in water were published in 2002 [19, 20]. Three years later, the US

Environmental Protection Agency published the first guide document [21], and

since then, several authors have published newer methods and have compared their

applicability with existing methods [18, 22–26]. MST tools can be classified into

several broad categories: genotypic versus phenotypic analyses of either cultivated

target organisms or indicators or cultivation-independent approaches in which

samples from the environment are analysed directly.

Some of the MST methods proposed in the literature lack environmental stabil-

ity, host specificity and/or global prevalence. Moreover, some MST methods are

laborious; they require large and suitable databases for each context and good

statistical tools to allow meaningful interpretation of the results [18]. These limi-

tations can be overcome using molecular methods to detect and quantify host-

specific viral faecal indicators in water and food. Molecular techniques, specifically

nucleic-acid amplification-based assays, provide sensitive, rapid and quantitative

analytical tools for studying pathogens, newly emergent strains and indicators that

are examined for microbial source tracking. Such methods are used to evaluate the

microbiological quality of water [27], the efficiency of virus removal in drinking

water and wastewater treatment plants [28–30].

3 Viruses Used for Tracing the Sources of Contamination

in Water

Considering the limitations of current standard bacterial faecal indicators, selected

viral groups have been proposed as alternative or complementary indicators to

improve control of the microbiological quality of water and to reduce microbiological

risk. Viruses are more stable than common bacterial indicators in the environment

and are usually highly host-specific; because they are host-specific, their detection

helps to trace the origin of faecal contamination. The viruses most commonly used

for MST to detect faecal pollution are bacteriophages and DNA viruses (Table 1).

These viruses are recognised as important waterborne pathogens that are present

in faeces, and new viruses that produce both symptomatic and asymptomatic

infections are currently being described by metagenomic techniques [60]. Many

orally transmitted viruses produce subclinical infections, and symptoms due to
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these viruses are only observed in a small proportion of the population. However,

some viruses may give rise to life-threatening conditions, such as acute hepatitis in

adults, as well as severe gastroenteritis in small children and the elderly. Some of

the most important faecal viral pathogens are noroviruses, enteroviruses, adenovi-

ruses, rotaviruses and the hepatitis A and E viruses. Human and animal viruses,

such as adenoviruses [41, 42, 52], polyomaviruses [44, 55, 61] and parvoviruses

[59], are frequently asymptomatic in immunocompetent hosts and often cause

persistent infections. Moreover, they are highly host-specific, highly stable in the

environment and resistant to disinfection [42, 62, 63]. Thus, the identification and

quantification of specific viruses using molecular assays can be used for MST

[42, 44].

3.1 Adenovirus

The Adenoviridae family has a double-stranded DNA genome of approximately

35,000 base pairs (bp) surrounded by a 90–100 nm, non-enveloped, icosahedral

capsid with fibrelike projections from each vertex. Adenovirus infection may be

caused by consumption of contaminated water or food or by inhalation of aerosols

from contaminated waters, such as those used for recreational purposes. HAdV

comprises 7 species with 57 types, which are responsible for enteric and respiratory

illnesses and eye infections [64–66]. Among animal adenoviruses, porcine adeno-

virus (PAdV) may cause gastroenteritis symptoms such as diarrhoea, anorexia or

Table 1 Summary of the proposed viral MST tools for the detection of human and animal faecal

contamination

Host Viral MST tools Genome References

Human Bacteriophage RNA F-specific (FRNAPH) RNA [31–37]

Bacteriophage of B. fragilis spp. dsDNA [38–40]

Adenovirus (HAdV) dsDNA [41–44]

Polyomavirus (JCPyV, BKPyV) dsDNAc [44, 45]

Enterovirus (HEV) ssRNA [46, 47]

Tobamovirus (PMMoV) ssRNA [48]

Cattle Bacteriophage RNA F-specific RNA [33, 34, 36]

Adenovirus (BAdV) dsDNA [49, 50]

Polyomavirus (BPyV) dsDNAc [50–52]

Enterovirus (BEV-2) ssRNA [46, 53, 54]

Swine Adenovirus (PAdV) dsDNA [49, 55]

Circovirus (PCV2) ssDNAc [56]

Teschovirus (PTV) [53, 57]

Sheep Polyomavirus (OPyV) dsDNAc [58]

Avian Parvovirus (Ch/TyPV) dsDNA [59]

dsDNA double-strand DNA, ssDNA single-strand DNA, dsDNA/ssDNAc double- or single-strand
circular DNA
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dehydration in piglets, while sows can suffer multifactorial respiratory diseases and

even abortion [67].

• Excretion pattern: HAdV particles may be excreted in faeces for months or even

years [49, 68]. Fifty per cent of the population has asymptomatic AdV infections

at some time, and gastroenteritis occurs in 60% of children under 4 years of age

[69]. HAdV40 and 41 serotypes of HAdV can be excreted at high concentrations

in faeces (1011 viral particles per gram) and transmitted via the faecal-oral route.

Other adenoviruses, such as HAdV-1, HAdV-2, HAdV-5, HAdV-7, HAdV-12

and HAdV-31, are related to respiratory diseases and have also been detected in

contaminated water and shellfish [70, 71]. PAdV infections can also be asymp-

tomatic and are detected in nearly 70% of swine faeces, with most isolates being

closely related to serotype 3 [49].

• Prevalence: Human and porcine adenovirus (HAdV) have been detected in

contaminated water samples throughout the year in all geographical areas

studied [29, 44, 49, 55, 72]. HAdV has been found in nearly 100% of urban

wastewater samples tested, including those from cities in Africa, the USA,

Central and South America and Europe. Adenoviruses are also frequently

detected in shellfish, including samples that met current safety standards based

on levels of faecal bacteria [73].

• Stability: Adenovirus is inactivated only after 2 h at 85�C [74]. With moist heat,

the time and temperature of inactivation are slightly reduced; exposure to 65�C
for 30 min is then sufficient to inactivate adenovirus particles [75]. Chlorine

treatment, which is very commonly used to disinfect and purify water, oxidises

viral protein shells and nucleic acids [76]. Nevertheless, infectious HAdV can

still be detected after chlorine treatment for 30 min (2.5 mg/L), although its

concentration drops by approximately 2.7 log10 [77, 78].

3.2 Polyomavirus

Polyomaviruses are small, icosahedral viruses that have circular, double-stranded

DNA genomes approximately 5,000 bp in length and that infect several species of

vertebrates. The first human polyomaviruses, JC and BK (JCPyV and BKPyV),

were identified in clinical samples from immunocompromised patients

[79, 80]. The pathogenicity of JCPyV is commonly associated with progressive

multifocal leukoencephalopathy (PML) in immunocompromised states, and infec-

tions with this virus have attracted new attention because of JCPyV reactivation and

pathogenesis in some patients with autoimmune diseases who are being treated with

immunomodulators [81, 82]. Among the known animal polyomaviruses, bovine

polyomaviruses (BPyV) does not cause significant pathogenicity in cattle, and no

disease has as yet been ascribed to this agent.

• Excretion pattern: Both human and animal PyVs are excreted in urine by healthy

individuals [52, 83, 84]. JCPyVs have been detected in 40–80% of the popula-

tion, and BPyV has been detected in 30% of the bovine urine samples analysed
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[52, 61]. Polyomaviruses are transmitted by an unknown mechanism, although it

is speculated that respiratory, cutaneous and faecal-oral routes could be involved

in their transmission.

• Prevalence: Human JCPyV is distributed worldwide, and specific antibodies

have been detected in over 80% of humans [85]. JCPyV and BKPyV were first

described in environmental samples in 2000 [44]. JCPyV is frequently detected

in river water, seawater, reclaimed water [72], drinking water [86] and shellfish

grown in waters affected by sewage [61]. These viruses are present in nearly

100% of all sewage samples from different geographical areas [72]. BPyV has

been identified as the cause of a widely disseminated infection in bovines, and it

is a frequent contaminant of commercial bovine serum. BPyV has been detected

in river water samples near slaughterhouses, farms and grazing areas [72].

• Stability: Polyomaviruses, such as SV40, are only significantly affected by

exposure to a temperature of 95�C for 1 h [74]. Numbers of JC polyomavirus

Mad4 viral particles were reduced by 1.5 to 1.1 log10 GC, as measured by qPCR

after 30 min of contact (2.5 mg/L), although no infectivity assays were

conducted for this virus in these studies [77].

3.3 Parvovirus

The Parvoviridae family comprises small animal viruses with 5 kb linear, single-

stranded DNA genomes with two large open reading frames. This family of viruses

is divided in two subfamilies: the Parvoviridae, which mainly infect vertebrates,

and the Densoviridae, which infect arthropod hosts.

• Excretion pattern: Human parvoviruses have been detected in stool samples, but

their transmission pathways remain unclear [87, 88].

• Stability: These viruses have shown high resistance to temperature and low pH

[89, 90] and have been found in commercial meat samples [91]. Bovine parvo-

virus was not significantly affected by exposure to 95�C for 2 h [74].

• Prevalence: When sewage water, as a representative matrix that can be used to

test large populations, was monitored, a high prevalence (81%) of parvovirus

was observed [92]. Avian parvoviruses are excreted in poultry faeces and have

been reported in studies from different countries [59].

4 Methods for the Use of Viral Markers for MST

in Groundwater

Viruses are present in the environment in low concentrations and are distributed

unevenly. To detect viruses in the environment, it is essential to collect a significant

volume of sample and to concentrate the viral particles before employing a detec-

tion assay. Detection of viruses in minimally or moderately polluted waters requires

8 S. Bofill-Mas et al.



that viruses from at least several litres of water be concentrated into a much smaller

volume (Fig. 1).

There are several concentration methods available, and many of them include

two concentration steps in series, which will affect the recovery efficiency of the

whole process. The development of cost-effective methods for the concentration of

viruses from water and of cost-effective molecular assays, as well, facilitates the

use of viruses as indicators of faecal contamination and as MST tools. The first

methods used were based on the detection of viral indicators by PCR [41, 42, 44,

49]; more recently, quantitative PCR techniques have been developed that allow

not only the detection but also the quantification of these viruses in environmental

samples [29, 52, 58, 59] (Fig. 2).

It has been proposed that HAdVs and JCPyVs be quantified to trace human faecal

contamination. HAdVs are present in sewage samples from all geographical areas

Fig. 1 Flowchart of the method used to detect and quantify viruses in water samples by PCR-

based methods

Fig. 2 Human and animal MST methods constituting a toolbox for identifying sources of faecal

contamination
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that have been studied, while JCPyV is a less abundant but highly human-specific

virus [93]. For this reason, the analysis of both viruses to determine the extent of

human faecal pollution of environmental samples is a good approach that has a

specificity of 100%. Both viruses have been evaluated in various studies in different

water matrices, and their utility in MST has been demonstrated (Tables 2 and 3).

Porcine adenoviruses (PAdVs) and bovine polyomaviruses (BPyVs) have been

proposed as porcine and bovine faecal indicators [49, 51], and several studies have

Table 2 Review of MST studies using HAdV to trace human sources in the environment

Country References qPCR Main results

USA [94] [95] 16% (18/114), 1E+02-1E+04 GC/I

Japan [96] [95] 45% (29/64)

USA [95] [95] S: 80% (4/5) 4.3E+04 GC/I; SW: 100% (11/11), 8.1E+06GC/I

Spain [86] [43] R: 93% (13/14), 4E+02 GC/I; SW: 100% (10/10), 1.4E+07 GC/I

Spain [29] [43] 100% (6/6), 3.8E+07 GC/I

Spain [28] [43] R: 90% (102/114), 1E+01-1E+04 GC/I

New Zealand [97] [95, 98] R: 83% (5/6), 1.70E+01-1.19E+03 GC/I; SW: 100% (10/10),

1.87E+05GC/I

Germany [99] [98] 97.5% (40/41), 1.0E+04-1.7E+06 GC/I

France [100] [43] 100% (42/42), 1.0E+04G/I

Spain [101] [43] R: 100% (7/7), 3E+03 GC/I; SW: 100% (7/7), 3.2E+06 GC/I

Japan [102] [95] 61.1% (11/18), 3.6E+03-1.38E+05 GC/I

Germany [103] [98] 96.3% (193/190), 2.9E+03-7.3E-7.3E+05GC/I

Brazil [104] [43] SW 64.2% (54/84) 1E+07 GC/I

Brazil [105] [43] 100% (12/12); 5E+04-1.3E+07 GC/I

Spain [106] [43] 100% (7/7), 1E+01-1E+06 GC/I

Ghana [107] [98] GW: 0% (0/4), SW: 22% (2/9)

Chad [108] [43] GW: 0%, R:6% (1/16)

Germany [109] [98] R: 9.3% (108/111), 3E+03 GC/I; SW: 100% (12/12),

1.0E+07 GC/I

Greece [110] [43] 45.8% (22/48)

Europe [63] [43] R: 41% (381/928) S: 27% (132/482)

Brazil [111] [43] 100%, 1E+07 GC/I

Brazil [112] [43] 96% (46/48)

Spain [113] [43] 100% (44/44), 8.32E+03 GC/I

Brazil [112] [43] 69% (25/36) 1E+05 GC/I, 52.7% infective

Brazil (114) [43] 100% (24/24), 1E+05-lE+06 GC/I

New Zealand [115] [43] R:86% HAdV (30/35) and 63% HAdV F (22/35),

1E+02 GC/I; S: 60% (9/15), 2.8E+02 GC/I;

SW: (37/37)1E+05 GC/I

Uganda [116] [43] GW: 0%; R: 70% (29/41), 2.65E+04 GC/I

Australia [117] [98] 91% (21/23) after sewerage overflow

Australia [118] [98] 100% (30/30), 1E+05-1E+06 GC/I

China [119] [98] 100% (24/24), 2.28E+04 GC/I

USA [120] [98] 40% (26/65), 2.2E+04 GC/I

Spain, Brazil,

Hungary,

Greece,

Sweden

[72] [43] Spain 1.5E 03 GC/I (50/61), Greece 4.8E+02 GC/I (18/80),

Brazil 3.9E+05 GC/I (253/276), Hungary 1E+04GC/I (108/109),

Sweden 1.6E+02GC/I (12/108)

G groundwater, R river water, S seawater, SW raw sewage

10 S. Bofill-Mas et al.



shown that these viruses are widely disseminated in swine and bovine populations,

respectively, without producing clinically severe disease (Table 4) and are thus

useful MST tools.

More recently, the quantification of ovine polyomaviruses and chicken/turkey

polyomavirus has been suggested for tracing ovine and poultry faecal pollution,

respectively [58, 59]. Quantification of each of these viruses has been used to trace

the origins of nitrate pollution in groundwater in some areas of Catalonia, as

described in the next section.

Table 3 Review of MST studies using JCPyV to trace human sources of contamination in the

environment

Country References qPCR Main results

Spain [86] [45] R: 100% (9/9), 2.7E+04 GC/I

Spain [29] [45] SW: 100% (6/6), 6.11E+06 GC/I

Spain [28] [45] 75% (18/27), 7.4E+02-1.3E+03 GC/I

United States [121] [121] 100% (41/41), 3.07E+07 GC/I

Germany [99] [122] 97% (40/41), 2.4E+04 GC/I

United States [123] [121] 50% (40/40)

Australia [124] [121] R: 25% (5/20), 1E+03GC/I; SW: 100% (40/40),

1E+05GC/I

Spain [71] [45] SW: 85% (6/7), 1E+05 GC/I; R: 100% (7/7),

1E+03 GC/I

Brazil [125] [45] 96% (6/7), 1.2E+06 GC/I

Japan [102] [45] 11% (1/18), 7.91E+02-3.42E+03 GC/I

Germany [103] [122] 68% (129/188), 1.4E+04 GC/I

Germany [109] [122] R: (73/111) 1E+03 GC/I; SW: 100% (12/12)

1E+08 GC/I

United States [126] [121] S: 3% (1/32); SW: 100% (15/15)

Greece [110] [121] 68% (33/48)

United States [127] [121] 1% (2/35), 1E+04 GC/I

Brazil [112] [121] 21% (10/48)

United States [128] [121] 12% (90/752)

Spain [113] [45] 100% (6/6), 5.44E+05 GC/I

United States [129] [121] 20% (26/130), SE+02-3.55E+05 GC/I

United States [130] [121] 61% (15/25)

Spain and Brazil [131] [45] R: 100% (12/12), 9.38E+03 GC/I; SW: 100%

(12/12), 1.05E4 GC/I

New Zealand [115] [121] R: 51% (18/35), 1E+03GC/I; 5: 67% (7/15),

1E+03GC/I; SW: (36/37), 1.5E+06GC/I

Brazil [114] [45] 100% (24/24), 1E+05-1E+06 GC/I

Australia [117] [121] 52% (12/23)

Spain, Greece,

Brazil, Hungary,

Sweden

[72] [45] Spain 1.8E+03GC/I (41/61), Greece 5.6E+02

GC/I(15/80), Brazil 4.6E+03 GC/I (190/276),

Hungary 2.1E+04GC/I (76/109), Sweden

7.2E+01GC/I (10/108)

G groundwater, R river water, S seawater, SW raw sewage
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5 Case Study: Identification of the Sources of Nitrate

Contamination in Catalonian Groundwater

Virus-detection assays have been used to detect viruses in groundwater samples

from diverse areas in which nitrate levels exceeded >50 mg/L [137, 138] to trace

the origins of nitrate pollution, as a collaborative study with the Catalan Water

Agency and the Laboratory of Virus Contaminants of Water and Food from the

University of Barcelona.

To ensure the designation of vulnerable zones according to the Directive against

pollution caused by nitrates from agricultural sources [138], a total of 14 different

monitoring stations were evaluated (Table 5). This study aimed to determine

whether the pollution sources in these areas were manure, urban wastewater sludge

or chemical fertilisers applied for agricultural uses. From three to five samples were

taken per well for later analysis for the presence of different human and animal

viruses. Samples were assayed for the presence of human adenovirus (HAdV) and

human polyomavirus (JCPyV) to detect human pollution sources (from urban

wastewater sludge used in agriculture or from sewage leaks); samples were assayed

Table 4 Studies describing the detection of bovine and porcine faecal pollution using BPyVs and

PAdVs as MST tools

Virus References qPCR Matrices analysed Main results

PAdV [55] [55] River, slaughterhouse

and urban sewage

100% positive samples in slaughter-

house sewage (1.56E+03 GC/L) and

100% in river (8.38 GC/L)

[133] [133] River 50% positive river-water samples

[56] [55] Manure 66% of the samples collected in the

SMTS positive and 78% of the samples

collected in the manure treatment sys-

tem positive

[135] [55] Manure PAdVs were more prevalent than other

viruses and may possibly be considered

indicators of manure contamination

[136] [55] Influents and effluents

from swine manure

biodigester

60% (24/40) samples positive

BPyV [134] [134] Sewage 100% positive for manure and waste-

water samples, 5.6% positive for faecal

samples

[52] [52] River, slaughterhouse

and urban sewage

91% positive samples in slaughter-

house sewage (2.95E+03 GC/L) and

50% in river (3.06E+02 GC/L)

[132] [52] Groundwater 1/4 well-water samples positive for

BPyV (7.74E+02GC/L)

OPyV [58] [58] River, slaughterhouse 75% (3/4) slaughterhouse samples

positive

20% (1/8) river water samples positive
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for the presence of porcine adenovirus (PAdV) to detect porcine sources of pollu-

tion (from the application of pig manure); and samples were assayed for the

presence of bovine polyomavirus (BPyV) to detect bovine sources of pollution

(from cow manure applications; Table 5).

Viruses were concentrated using the procedure described by Calgua and

coworkers [131], based on flocculation with skimmed milk. After viruses were

concentrated from 10 L water samples, viral nucleic acids were extracted. Then,

qPCR assays specific for human adenoviruses (HAdV), JC polyomavirus (JCPyV),

porcine adenoviruses (PAdV), bovine polyomaviruses (BPyV), ovine

polyomaviruses (OPyV) and chicken/turkey parvoviruses (Ch/TuPV) were used

to determine the relative quantities of each of these viruses in the samples and hence

to determine the source of faecal contamination. The source of faecal

Table 5 Human and animal viruses in groundwater from wells with nitrate contamination

Groundwater

monitoring station Type

Depth

(m) N

Human

pollution

Animal

pollution

NO3
�

mg/L

HAdV JCPyV PAdV BPyV

Genome copies/100 mL

Font través

(ClarianaCardener)

Spring 0 5 ND ND ND ND >110

Pou Casa Lloch (Olius) Well 5 5 ND ND 7.74E

+01

ND >100

Pou de Ca l’Arnau
(Solsona)

Well 9 5 ND ND ND ND >100

Pou Ardèvol (Pin�os) Well 40 5 ND ND ND 9.53E

+02

30–40

Mina del Sanou (Sta

Coloma Queralt)

Gallery 0 4 7.00E

+02

ND ND ND 24–46

PouBudell (Forès) Well 6 4 ND ND ND ND 70.9

PouNou (Conesa) Well 30 4 1.42E

+02

ND ND ND 5.1

Pou de les Escodines

(Forès)

Well 11 4 ND ND ND ND 150.1

Mina Aiguadolç (Sta

Coloma Queralt)

Gallery 0 4 ND ND ND ND 24–46

Font de la Freixa

(Argençola)

Spring 0 4 8.47E

+01

ND ND ND 45–54

Pou de Biure (Les Piles) Well 0 4 8.01E

+02

ND ND ND 76

Pou de les Piles (Les

Piles)

Well 65 4 1.59E

+02

ND ND ND 100–

140

PouGuialmons (Les

Piles)

Well 12 4 1.19E

+02

ND ND ND 117–

122

Pou de Sant Gallard

(Les Piles)

Well 40 4 ND ND ND ND 80–

100
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contamination determined in this way is then indicative of the source of nitrates in

the groundwater from which samples were taken [43, 45, 52, 55].

The results obtained by qPCR were further confirmed by nested PCR and

sequencing, as previously described [44, 49, 51]. The results obtained are

summarised in Table 5.

The results show that in one area (Olius), faecal/urine contamination of porcine

origin is clearly present (4/4 replicates tested positive), strongly suggesting that the

application of swine slurries could be a significant source of nitrate contamination

in the groundwater at that location. In the Pin�os area, for which low levels of nitrate

were measured, sporadic bovine contamination was detected (1/4 replicates tested

positive), and diffuse contamination or the application of bovine manure was

considered to be the potential source of the viruses that were detected. Finally

human faecal pollution was detected as the main source of contamination in 4 other

studied areas; further investigation is needed to identify the sources of contamina-

tion in these areas. This methodology has been tested in areas where nitrate

concentrations are above the statutory limit (i.e. >50 mg/L) and thus where the

use of groundwater as drinking water is compromised. A greater number of samples

would be required to determine whether a relationship exists between the concen-

tration of nitrates and the presence of the virus.

This study determines the origins of contamination of nitrates in groundwater, so

that their sources (urban, animal or inorganic fertiliser use, in the case that viruses

were not detected) could be established. The conclusions of this study could have

implications for the future management of water in the region.

6 Conclusions and Future Trends

Groundwater is a vital source of water that provides, in Europe alone, drinking

water for 300 million inhabitants. In Catalonia, over 587 hm3/year of groundwater

is used, and this amount represents close to 20% of the total water used in the

region. Today, high nitrate levels in groundwater remain an important target for

pollution reduction worldwide, with implications for human and environmental

health [139]. Nitrate and pesticide pollution from agricultural sources are major,

well-known problems with groundwater quality, and increases in water demand and

population density will increase the probability of faecal contamination of ground-

water. Moreover, falling groundwater levels will further endanger the quality of

groundwater and its ability to clean itself. In addition to these problems,

overabstraction has already begun to induce saltwater intrusion along most

stretches of the Mediterranean coast, rendering the groundwater in those areas

useless for drinking and most other purposes. Appropriate management of water

resources and more specifically of groundwater resources requires the reliable

evaluation of water quality and the identification of sources of contamination.

These measures are needed to prevent further contamination, to implement reme-

diation measures and especially to provide information that can be used to institute

14 S. Bofill-Mas et al.



measures to protect waters from pollution caused by nitrates from agricultural

sources [138].

Currently, microbiological quality assessments of environmental waters largely

rely on detecting faecal indicator bacteria. Although this approach has clearly

reduced health risks in many countries, the faecal indicator approach may be

combined with monitoring of more environmentally stable viral indicators specific

to human and animal sources of contamination [27, 93]. The viral MST tools

developed in this study can be used to track faecal contamination of human, bovine,

ovine, porcine and avian origins using specific individual assays or, in the near

future, using multiplex assays. Multiplex diagnostic tools are already available, and

multiplex quantitative PCR assays for MST have been described previously in a

study that examined diverse human and animal viruses [133].

Human (HAdV, JCPyV), bovine (BPyV), porcine (PAdV) and ovine (OPyV)

viral markers have been shown to be useful for identifying the origin of faecal

contamination in river water and seawater in Brazil, Sweden, Spain, Hungary,

Greece and New Zealand [58, 72]. However, more information on the environmen-

tal stability and distribution of viruses in diverse geographical areas and water

matrices will be needed to validate some animal viral markers, including new viral

MST tools that may be developed in the future for other animals representing other

sources of contamination.

Routine quantitative PCR assays for viral indicators may also be improved and

standardised, in light of new methods that have been developed that allow the

absolute quantification of genome copies without requiring that independent cali-

bration curves be generated [140]. Other technical improvements that can be

expected include advances in microfluidics and nanobiotechnology, as a result of

which miniaturised systems for the detection of viral indicators could be developed

that are based on microchips. Several such approaches have been described

[141, 142]. New technologies, such as high-throughput mass sequencing, have

been used to analyse urban sewage from diverse geographical areas and have

produced a wealth of data about the viruses present in wastewater [60]. However,

further development of NGS techniques are still needed to provide more sensitive

and affordable assays that could potentially be used for routine analyses.

Cost-effective methods for using specific DNA viruses as markers of the source

of faecal (or nitrate) contamination in water have been developed and validated.

These methods may be standardised to acceptable levels of cost, feasibility, sensi-

tivity and repeatability, especially in the case of the DNA viruses selected in our

MST studies. The sampling strategies should also be considered carefully to obtain

samples that best represent the water in question. Ideal sampling strategies could

involve the use of hydrological and physicochemical sensors and time- and flow-

integrating automated sampling devices.
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References

1. Hunt RJ, Borchardt MA, Richards KD, Spencer SK (2010) Assessment of sewer source

contamination of drinking water wells using tracers and human enteric viruses. Environ Sci

Technol 44:7956–7963. doi:10.1021/es100698m

2. Borchardt MA, Spencer SK, Kieke BA, Lambertini E, Loge FJ (2012) Viruses in

nondisinfected drinking water from municipal wells and community incidence of acute

gastrointestinal illness. Environ Health Perspect 120:1272–1279. doi:10.1289/ehp.1104499

3. Abbaszadegan BYM, Lechevallier M, Gerba C (2003) Occurrence of viruses in ground

waters. Am Water Works Assoc J 95:107–120
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