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Abstract This article gives a rough overview on the occurrence and distribution of

selected benthic invertebrates along the Danube River. The description of the

benthic community within typological units of the Danube is based on the results

from the Joint Danube Surveys. Species richness and abundance illustrate the

structure and dominant groups of the benthic community. Furthermore the role of

environmental impacts like hydromorphological changes, pollution, navigation as

well as neozoa is shortly addressed and highlighted. In this context a conceptual

framework of the multi-stressor complex of large rivers is introduced and

discussed. Finally the biodiversity losses of selected species are reflected on a

European scale.
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1 Introduction

About the macroinvertebrate fauna of the Danube, who has the knowledge and the

overview? Due to the overwhelming diversity, most approaches, which aim to give

a comprehensive picture, were bound to fail due to the ever-changing nature of

large rivers and either naturally or anthropogenically induced faunal shifts along the

time axis.

The longitudinal, lateral and vertical dimensions of large rivers have been in the

focus of limnologists since the last 50 years only, and we are just at the beginning to

understand the principles of ecological processes and functions. Even during that

short period, large rivers have changed their character dramatically due to exposure

to multiple stresses induced by human uses. The first systematic documentations of

large rivers in the 1960s give us a glimpse of the organisms present at that time.

Profound baseline information and monitoring efforts started much later and were

confined to some national stretches of interest. All we got from earlier times –

revealing more pristine conditions – are some flashlight information from outstand-

ing naturalists, scientists and specialists on specific groups, scattered in regional

publications, which has to be evaluated according to the taxonomic resolution of the

time of publication.

The macroinvertebrate fauna of the Danube is highly diverse consisting of

numerous systematic groups including annelids, molluscs, crustaceans and insects

and comprises an incredibly high diversity. Some of these animals have a high

adaptive potential to changing environmental conditions; some have been

documented only once and are thought to be extinct since their discovery

250 years ago, and other Danubian elements may have never been recorded at all.

Their documentation is extremely dependent on the chosen methods and seasonal

aspects which is the reason why some of us still are curious and search for those

legendary and long-lost organisms of large rivers which may be still out somewhere

in the dark. Some have been rediscovered in tributaries, and some few have

recolonised the Danubian river bottom from unknown refugia indicating a recovery

of specific habitats and the overall ecological integrity.

One major basis for the evaluation of the biological inventory of the Danube is

provided by the two large expeditions within the Joint Danube Survey, JDS1 and

JDS2, as these include recent and methodologically reproducible results. Other

sources are local information and historic records which are included in a rather

subjective way. Summarising, this article tries to sketch a rough picture of the

author’s subjective knowledge on general distribution patterns, occurrence of
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typical species and faunal losses and major changes of ecological processes in the

past including examples from other large rivers of Central Europe.

2 Typological Aspects and Longitudinal Zonation Patterns

of the Fauna

Sources on information on macroinvertebrates can be categorised as follows: (1) -

species-specific data published by specialists scattered in time and space, starting

from the middle of the eighteenth century, (2) ecologically oriented academic or

applied studies from the 1950s up to now, (3) data focusing on biodiversity

conservation issues and (4) data from systematic documentation of benthic assem-

blages which was initiated by the beginning of water resources management

approaches and by especially saprobiological surveys (mainly the middle of the

twentieth century) leading to huge datasets focusing on abundance and dominance

of higher taxonomic units and species.

While (1) builds in general the basis for species-level information, (2) is improv-

ing our knowledge on the interactions of environmental variables on organisms

mainly based on case studies; (3) provides data on selected and somehow unbal-

anced species groups, mainly FFH species comprising of few Odonata and

Mollusca within the large and heterogeneous group of macroinvertebrates; and

(4) initiated a high number of various national and international monitoring efforts.

With the implementation of the Water Framework Directive (WFD) in 2000, a new

dimension in the conservation of freshwater ecosystems was achieved, as the

overall ecological status of surface water bodies has to be assigned within the EU

member states, based on bioindicative organism groups, including macroinver-

tebrates. Within this reference-based assessment system, a sound typology is a

prerequisite and various attempts have been performed to classify the Danube

River. Frequently top-down approaches based on different eco-geographic units

were applied [1, 2]. Moog et al. [3] included the macroinvertebrate fauna alongside

geomorphological factors like river slope, hydrology, geology and dominating

substrate type in their analyses and stressed the importance of the ecoregions

according to Illies ([4]; the Central Highlands, the Hungarian Lowlands, the Pontic

Province, the Carpathians and the Eastern Balkan) which resulted in ten distinct

Danube River sections. Nesemann [5, 6] discussed the distribution patterns of

molluscs and leeches and stressed palaeoclimatic factors to be responsible for the

phenomena of disjunct species distributions and faunal inhomogeneity along the

Danube course. The Upper Danube can be characterised by glacial and postglacial

relicts according to Nesemann who highlights recent historic events as additional

parameters shaping the fauna other than geomorphology.

Like in most European large rivers, the original aquatic fauna is under extreme

pressure. Damming, pollution, navigation, habitat fragmentation and the invasion

of neozoa are among the main stressors leading to an insensitive, cosmopolitan and
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less indicative benthic assemblage [7]. Many of section-type-specific species listed

in Sommerhäuser et al. [8] have not been found for decades and have hopefully

survived in discrete habitats; others are expanding their areas and are invading new

sections. These range oscillations in combination with a nowadays more or less

homogenised fauna along the entire Danubian stretch seriously hamper a biologi-

cally based typology as well as a sound ecological assessment system.

2.1 General Distribution Patterns

Dudich [9] compiled a first reliable and comprehensive species list of nearly all

systematic groups from the entire Danube based on a literature review. He anno-

tated national occurrences and even some ecological comments on the species.

During the introduction he stated his concerns about the validity of his compilation

regarding obsolete literature, the changing of environmental conditions of the

Danube along timescales, nomenclatorial ambiguities and obscure locality records.

Although the mentioned obstacles are obvious (and still do exist), he listed 1,623

species and gave the first overview summarising the contemporary knowledge from

scattered publications. Huge new data have been collated in the last 50 years, but

still the overall value of Dudich [9] lies in the documentation of distribution

patterns especially of Ponto-Caspian species and rheophilous species of the

Upper and Middle Danube, respectively, as massive migration and irreversible

faunal changes started soon after. He characterised marine groups being restricted

to the delta region or to the adjacent regions (especially Gastropoda and Bivalvia

and Amphipoda, Mysidacea, Cumacea, respectively) and realised some insect

orders like the Plecoptera and Ephemeroptera to have their main area in the

Upper and Middle Danube. Additionally the enormous densities of the Amphipoda

genus Celicorophium in Bulgaria have attracted attention (242,136 ind./m2

according to Russev [10]) and were discussed as essential food resources for fishes.

Twenty-eight years after Dudich [9], Moog et al. [11] published 1,142 inverte-

brate species from the Austrian stretch of the Danube summarising literature data

including records from the floodplains which contributed considerably to the

overall diversity. Their data indicate a clear north-western shift of invasive amphi-

pods compared to Dudich’s compilation. Regarding diversity 74% of the total

species inventory belonged to insects.

Although the distribution of benthic macroinvertebrates along the Danube River

has been investigated in earlier studies [12–14], the most coherent data were

provided by the Joint Danube Surveys 1 in 2001 [2] and 2 in 2007 [15], respec-

tively. Macroinvertebrate data were collected with comparable and standardised

methods along the Danube from Ulm to the Black Sea during a defined period

(August to September). General characteristics of the fauna are given in Fig. 1 (taxa

richness per group) and Fig. 2 (abundance per taxa group), respectively (data

referring to JDS2, typology after Literáthy et al. [2]).
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The most heterogeneous groups were Diptera (mainly Chironomidae, 174 taxa)

and Oligochaeta (53 taxa) followed by Ephemeroptera (42 taxa), Trichoptera

(35 taxa) and Mollusca (Bivalvia 26 taxa, Gastropoda 27 taxa, respectively).

Coleoptera (17 taxa), Amphipoda (13 taxa) and Hirudinea (11 taxa) were as well

noteworthy. This overall characteristic in diversity does not change along the three

reaches of the Danube, although the number of insects, other than chironomids,

decreases considerably downstream.

Regarding abundance (ind./m2), Amphipoda were the dominant group in all

Danube reaches and constitute up to 75%, while Isopoda (mainly Iaera istri) play
an essential role in the upper reach and decrease downstream. Oligochaeta and

Mollusca were found in increasing numbers in the lower reach.

In terms of biomass Mollusca were the most important organisms of the Danube

and investigated tributaries. Due to their size Bivalvia make up more than 80% of

the whole biomass, followed by Gastropoda (10–35%). Looking at the different

reaches of the Danube, the increasing dominance of Mollusca from the upper to the

lower reach becomes evident (Fig. 3). Although Crustacea are the most abundant

group, they play only a minor role regarding biomass.

Fig. 1 Number of taxa per taxa group along the different reaches of the Danube

Fig. 2 Abundance of taxa per taxa group along the different reaches of the Danube
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Fig. 3 Abundances and biomasses of Mollusca in comparison to the taxa rest (Airlift/Multicorer/

MHS)

Fig. 4 Total numbers of EPT taxa recorded during JDS2 along the Danube

Fig. 5 Total numbers of Mollusca and Crustacea taxa recorded during JDS2 along the Danube
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Within insects EPT taxa (Ephemeroptera, Plecoptera and Trichoptera) are rarely

found – with the exception of the upper reach. Among Trichoptera the net spinning,

filtering genus Hydropsyche covers in considerable densities the whole stretch.

Figures 4, 5 and 6 give schematically the development of diversity within EPT taxa,

Crustacea, Mollusca and Chironomidae along the river course based on the results

of JDS2.

Within aquatic insects exclusively, Chironomidae play a major role both in

diversity and abundance.

3 Wetland Faunas

During the last decades floodplains of large rivers came in the focus of applied and

basic limnological science (e.g. Amoros and Roux [16], Junk et al. [17], Schiemer

[18], Ward et al. [19] and Findlay et al. [20]). Floodplains are an essential part of the

aquatic ecosystem depending entirely in their spatial and temporal dimension on the

pulses obtained from the river; due to regulations and damming, these hot spots of

biodiversity [21] are among the most threatened ecosystems worldwide [18, 22–

27]. Up to 90% of all floodplains in Europe and Northern America are heavily

impacted [21]; exemplarily for land-use developments in Central Europe, flood-

plain areas have been reduced by 85% in Austria [28]. Within the Danube catch-

ment floodplains have been reduced by 80% from the early nineteenth century up to

now [29]. Conservation and restauration of persisting floodplains are therefore of

highest priority within modern effective and sustainable aquatic ecosystem man-

agement [30–40].

Floodplains are generally seen as biodiversity hot spots as they form an ecotone

from aquatic to terrestrial habitats and provide linkages between biological pro-

cesses at various temporal and spatial scales [16, 17, 22, 41, 42]. Hydrological

conditions and connectivity have been increasingly considered to be key drivers in

creating structural and habitat diversity (Fig. 7).

Based on the distribution of habitat types within the hypothetical framework of

floodplains [43, 44], Waringer et al. [45] classified 256 benthic invertebrate species

Fig. 6 Abundances and total taxa numbers of Chironomidae recorded during JDS2 along the

Danube
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(Odonata, Trichoptera and Mollusca) occurring along the Austrian Danube

according to their habitat-type preferences [43, 44]. Based on this data, Fig. 8

gives the percentage of species with specific habitat-type affinities which clearly

indicates the dominance of floodplain species within the species pool of Mollusca,

Odonata and Trichoptera along the Austrian Danube. Figure 9 left shows the

potential species richness along the connectivity gradient within floodplains,

peaking both at the Eupotamon and the Paläopotamon. This fits well with the

conceptual biodiversity pattern along floodplains [46, 47], stressing the importance

Fig. 7 Scheme of a hypothetical floodplain with habitat types according to Amoros et al. [43, 44]

Fig. 8 Percentage of floodplain habitat type per taxa group (Mollusca, Odonata and Trichoptera);

classifications according to Waringer et al. [45]

Fig. 9 Left: Theoretical diversity patterns of Mollusca, Trichoptera and Odonata along the

connectivity gradient based on classifications taken from Waringer et al. [45]. Right: Species
numbers of Mollusca, Trichoptera and Odonata (163 species) along the connectivity gradient

documented at the floodplains near Vienna during 2001 and 2009
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of wetlands in general. Studies on the floodplains in the vicinity of Vienna

(Klosterneuburg, Lobau, Stopfenreuth, Altenw€orth, Mühlwasser; investigation

period 2000–2011) have confirmed these findings by high species numbers of

typical floodplain organisms (in total 87 Trichoptera, 43 Odonata and 33 Mollusca

species) representative for other macroinvertebrate groups (Fig. 9, right).

Under the holistic perception that floodplains are one essential part of large

rivers, existing assessment systems are lacking this speciality, and new assessment

approaches are currently under development to enlarge and complement

WFD-compliant methods to evaluate the ecological status of large rivers and

their floodplains based on macroinvertebrates [48, 49].

4 Environmental Impacts on Macroinvertebrates

and Species Losses

Aquatic habitats of large rivers in Central Europe have been tremendously altered

by diverse human impacts within the last centuries [50]. After river regulations for

flood protection and navigation in the second half of nineteenth century and

pollution due to industrialisation and human settlements, the building of hydro-

power plants and damming led to completely different stream characteristics

regarding hydromorphological features like habitat dynamics, substrate and flow

velocities. Decoupling the main river corridor from its floodplains and associated

processes (like regular floods) changed nutrient cycles and influenced the charac-

teristics of the faunal assemblages severely. Moreover large rivers are subject to

invasions of nonindigenous species within the last decades which are supposed to

have additional severe negative effects on the remaining native elements.

4.1 Hydromorphological Impacts

4.1.1 Channelisation

Large rivers and the connected floodplains are sensitive and complex ecosystems

which are mainly determined by hydrological processes. Lateral connectivity and

interactions between river and floodplain are most essential processes for ecosys-

tem functioning [16–18, 20, 41, 42, 51–53]. During the centuries in man’s desire of
land reclamation and security, the alterations initiated regarding large rivers tangle

processes on catchment, reach as well as local scales. The most severe ecological

impacts of river straightening led to scouring processes, thus decoupling the river

from its floodplains, and a tremendous reduction of aquatic area in general, espe-

cially of lentic, riparian zones.

Demek et al. give a precise summary of the well-documented development at the

Danube [54]. The first systematic large-scale channelisation schemes at the Upper
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Danube River and the Upper Rhine River were initiated as early as the end of the

Napoleonic Wars (1805–1815) [55]. Hohensinner [56] and Hohensinner et al. [57–

59] describe in detail the development of channelisation at the Austrian Danube

since the early eighteenth century. In Fig. 10 (right) hydromorphological changes

from 1715 up to now are illustrated. On the left-hand side the turnover of functional

groups and the loss of biodiversity are schematically depicted.

4.1.2 Damming

In general damming leads to increasing sedimentation of fine particles due to the

reduction of current velocity in longitudinal, lateral and vertical (clogging of the

interstitial) dimensions [61, 62]. Faunal changes are well documented and have

different extent from headrace to the weir [62–68]. In general a dramatic change of

functional groups from rheophilous to stagnophilous organisms and from scraper/

filter feeders to detritivorous, respectively, can be observed. Due to enhanced

autotrophic production in dammed areas, the nutrient cycle is altered and filter-

feeding assemblages increase below dams (e.g. Statzner [69] and Mauch [70]).

Besides these local impacts damming influences the discharge regime and sediment

transport considerably and changes the overall character of riverine systems

(e.g. Habersack et al. [71]). The homogenised discharge dynamics and summation

effects of dam chains lead to a loss of type-specific organisms which are replaced by

pioneers and more opportunistic and insensitive faunal elements [72, 73] as

documented by Usseglio-Polatera and Bournaud [74] and Fruget [75] at the

Rhone River.

Fig. 10 Terrestrialisation processes due to River regulation and faunal reaction (left, Ward

et al. [60]; right, Graf et al. [49], Danube River at Vienna)
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Fragmentation of habitats, especially like the succession of dams at the Upper

Danube, may suppress genetic exchange of populations [76] and represent a major

threat for biodiversity in general [77].

4.2 Pollution

An excellent description of various pollution pathways in Vienna during the Middle

Ages is given by Kohl [78] which may be generally applied on most European cities

and connected large rivers of that time. Liebmann and Reichenbach-Klinke [79] list

pollution sources along the entire course of the Danube and provide a historical

outline of organic pollution (e.g. the first biological water quality map of the

Austrian Danube). As one example of large rivers, Tobias [80] gives an overview

of the development of the oxygen and ammonium content from 1970 to 1994 at the

river Main with highest pollution loads between 1972 and 1980 and a recovery

afterwards which clearly correlates with the revival of the mayfly Ephoron virgo.
Since that time water quality has substantially been enhanced during the last

decades mainly because of raised environmental awareness based on continuous

saprobiological surveys and subsequent improved purification processes.

Organic pollution has generally lost its primary role as stressor in aquatic

systems of Central Europe and has been replaced nowadays by hydromorphological

degradation. Anyhow, organic pollution had its negative effects in the past, and

detailed monitoring campaigns have impressively initiated a reduction of organic

pollution in the Danube (e.g. Jungwirth et al. [50], Fig. 33). In regard to water

chemistry, hazardous and endocrine substances which impact biological quality

elements are currently a main issue in water management. The effects of currently

applied substances in agriculture as well as in industrial processes together with

effluents of sewage treatment plants and their combined effects via the whole

catchment areas are poorly understood (e.g. Van Der Geest et al. [81]).

4.3 Navigation

Vessel-induced waves lead to high shear stress at the river banks [82] and Liebmann

and Reichenbach-Klinke already observed severe negative effects by navigation in

1967, especially caused by wave action. Juvenile fish were reported to be hurled at

the riparian zone, fish were disturbed during spawning in general, and oil was

polluting the substrate. Especially wave wash effects have impacts on juvenile fish

as reported by Hirzinger et al. [83], Kucera-Hirzinger et al. [84] and Schludermann

et al. [85]. Gabel et al. [86–88] investigated the reactions of selected macroinver-

tebrates and their interactions with fish under the influence of wave actions. Their

findings underlie the magnitude of ecological impacts and stress, e.g. the fact that
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the neozoon Dikerogammarus villosus is more flexible than its congeners among

the genus Gammarus thus suppressing it and other native species.

Negative effects on merolimnic organisms by mechanical damaging especially

during moulting processes at the shoreline can be expected but have not been

studied yet in detail; in fact the majority of insects still persisting nowadays in

the Danube moult nearly exclusively at the water surface.

Furthermore ships are generally suggested to enhance the spreading of neozoa as

vectors through ballast water and vessel hulls as suitable colonising substrate. The

role of navigation in the process of globalisation of the fauna – the so-called

McDonaldisation [89] – is hardly investigated comprehensively in all its aspects,

therefore poorly understood and remains still underestimated.

4.4 Neozoa

Nonindigenous species will be discussed in detail by Paunović et al. [90] giving

comprehensive and clear definitions. As neozoa are decisive and dominant ele-

ments within the benthic community of the Danube for decades, some aspects are

shortly addressed here additionally.

Neozoa are per definition species which colonised a given area after the year

1492. Reliable studies on macroinvertebrates started with Linnaeus back at the end

of the eighteenth century which makes the designation of certain species difficult

due to lack of detailed distributional information. Zoogeographical patterns are the

result of mainly climatic conditions and various either recent or historic shifts have

been documented. For example, Dreissena polymorpha is documented from

Tertiarian times in Central Europe, survived glaciation in southern areas and

returned during the eighteenth century [91]. Species ranges have been and will be

oscillating, but anthropogenically induced pressures like climate change and others

speed up these processes and enhanced the awareness of this specific environmental

problem [92].

The increasing massive occurrence of invasive alien species in connection with

the increasingly documented loss of indigenous faunas of large rivers is observed

on a European-wide scale (e.g. Moog et al. [93], Arbačiauskas et al. [94], Graf

et al. [95], Panov et al. [96] and Füreder and P€ockl [97]). Besides biodiversity issues
this phenomenon is intensively discussed in the context of ecological assessment

systems and the closely linked management actions (e.g. Sch€oll and Haybach [98,

99], Arbačiauskas et al. [94], Panov et al. [96], Olenin et al. [100], Cardoso and Free

[101] and Orendt et al. [102]).

The Danube River is – besides a northern corridor via the Volga to the Baltic Sea

and a central pathway via the Dnieper to the Elbe and the Rhine – the main southern

migration route of aquatic Ponto-Caspian elements [103], and the majority of

neozoa in the Danube therefore clearly belong to Crustacea and Mollusca from

this region, while only few others like Atyaephyra desmaresti, Eriocheir sinensis
and Corbicula fluminea and Sinanodonta woodiana and Potamopyrgus
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antipodarum, respectively, are of other origins (the Mediterranean, East Asia and

New Zealand; [93]). Figure 11 gives the distribution of the genera Amphipoda with

densities along the Danube. Only the genus Gammarus is considered to be native in
the Upper and Middle Danube.

Direct negative influences of invasive alien species on the original fauna have

been hardly testified, but Sch€oll [104] found clear correlations between increasing

densities of the amphipod Dikerogammarus villosus and the population decrease of
the caddisfly genus Hydropsyche in the Rhine River. Moog et al. [105] describe

similar interactions between D. villosus and Gammarus fossarum and G. roeselii,
respectively, in the river Traun. According to P€ockl [106] the predator D. villosus
shows higher fertility than the resident G. fossarum and G. roeselii and is success-

fully competing with them. Bącela et al. [107] also stated significant changes

among the benthic associations after the new colonisation of D. villosus in Rhine,

Oder, Danube and Meuse. Nowak [108] investigated the effect of Dreissena
bugensis on other benthic invertebrates, but in general processes behind are still

poorly understood.

The seriousness of this problem may be illustrated exemplarily by the recently

documented structure of benthic assemblages of the Danube during the JDS2

expedition: Among the ten most frequent macroinvertebrate species sampled,

nine are assigned as neozoa [95], above all occurring in very high densities and

frequency (see Fig. 12).

In terms of abundance neozoa dominate clearly the benthic communities and

reach up to 50% of all documented taxa in the Upper and Middle Danube (Fig. 13).

Neozoa are characterised by Statzner et al. [109] as ecologically flexible, as

having high fertility rates, and as nonsensitive thereby being more robust which

enables them to colonise disturbed environments. In fact, large river ecosystems are

multiply stressed and among the most threatened ecosystems worldwide. Invasive

elements may just fill up empty niches after the loss of indigenous elements.

Analysing the enhanced invasions in Austria since the 1980s, Moog and Wieser

[110] and Korte and Sommerhäuser [111] mention the increasing water tempera-

tures as one essential trigger, which was also mentioned earlier by Rahel and

Olden [112].

Fig. 11 Distribution of Amphipoda genera with densities along the Danube based on JDS2 data
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From an ecological point, the most dominant neozoa have severe impacts on the

entire functioning of aquatic ecosystems as they (1) reach high densities

(e.g. 500,000 ind./m2 of Chelicocorophium curvispinum in the Morava [113]

dominate the benthic community and colonise niches of indigenous faunas),

(2) act partly as bioengineers changing the habitat characteristics entirely

(Chelicocorophium spp. alter the microhabitat structures by building tubes; Cor-
bicula spp. provide a specific habitat for other species, respectively, as the diameter

of adult shells resembles microlithal conditions; [114]) and (3) intervene signifi-

cantly in the nutrient cycle, e.g. Corbicula spp. This Asian clam – an active filter

feeder – shows mass occurrence and can reach a biomass of more than 7 kg/m2

([93]; Danube at Linz, Austria); Rey [115] stated even a biomass of 30.8 kg/m2 in

Lake Constance.

Fig. 12 Most dominant taxa (frequency >25%) and their average abundances (when present) in

the Danube during JDS2; neozoa marked red
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Fig. 13 Box-and-whisker plots of neozoa abundance and neozoa taxa numbers

300 W. Graf et al.



Nakano and Strayer [116] recently gave a worldwide overview on biology,

impacts and ecosystem engineering of biofouling animals. They stress the fact

that biofoulers are economically important and estimate a yearly global cost of

277 million US$ to be caused by them. Documentation of faunal changes

(e.g. Paunovic et al. [117, 118], Borza [119, 120], Borza and Boda [121] and

Borza et al. [122]) is therefore essential as it seems that shifts and range oscillations

have not ended yet (e.g. Fischer [123] and Fischer et al. [124]). Large datasets as

compiled by the Joint Danube Surveys are extremely useful and necessary in

monitoring of the ecosystem functioning and potential changes in ecosystem

services. Restoration of hydromorphological conditions hopefully will contribute

to achieve improvements in ecological integrity, but as stated by Füreder and P€ockl
[97], a substantial recovery is probably impossible.

5 Large River Species and Losses

Large rivers in Europe have undergone many anthropogenic modifications and have

lost a high share of their indigenous fauna, especially sensitive insects like

Ephemeroptera, Plecoptera and Trichoptera (EPT taxa). Other than in commer-

cially important species like fish, we have few indications of the occurrence of

macroinvertebrates on species level of large rivers during the centuries. Many of

these species once covered a large area in Europe (summarised exemplarily for

Plecoptera by Zwick [77]); nowadays nearly all of them are listed in Red Data

books of most countries as threatened or even extinct. Den Hartog et al. [125]

documented a disappearance of 85% of these species in the Lower Rhine, Mey

[126] describes a similar phenomenon regarding Trichoptera, and Fittkau and Reiss

[7] highlighted this fact in general.

The Danube River seems to be no exception. Among Trichoptera only the river-

type specific Hydropsyche contubernalis and H. bulgaromanorum were found

along all reaches accompanied by local populations of Setodes punctatus during

JDS2. Other and more frequently documented species of that group are known to be

more or less insensitive and typical for slow current velocity. Ephemeroptera were

mainly represented by few species of the genus Caenis and Heptagenia only which
occurred sporadically. Plecoptera could not be found downstream of the site

Oberloiben, while Raušer [127] reported a rich indigenous stonefly community

for the Danube and listed the following well-documented species according to

literature: Brachyptera trifasciata, B. braueri, Oemopteryx loewii, Taeniopteryx
araneoides, T. nebulosa, Perlodes dispar, Isogenus nubecula, Isoperla obscura,
Isoperla difformis, Marthamea vitripennis, Xanthoperla apicalis and Isoptena
serricornis.

The few historical information indicates that these species once indeed occurred

in very large numbers. Calderini [128] described the disturbance of local people by

masses of Brachyptera trifasciata in Italy, and Ausserer [129] mentioned this

species to be “specialmente in primavera molto comune in tutta la fauna”.
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Kühtreiber [130] remarked “all silts and sand banks are teeming with them”, giving

us possibly a hint on the substrate type preferred by this species. Bridges in Prague

were so crowded with the nowadays nearly vanished Brachyptera braueri that the
public called it the “Prague fly”. Isogenus nubecula was described in Brauer and

L€ow [131] as “very common” in the vicinity of Vienna. Mass emergence of the

species Oemopteryx loewii was reported as early as 1775 by Schäffer [132] from

Regensburg, of which nowadays only few females are left in museums. The last

reliable finding is reported by Russev [133] from the Bulgarian Danube in 1955.

Although cumulative effects of multiple stressor interactions are responsible for

this losses, the last records of conspicuous species are well coinciding with the

period of dam building at the Upper Danube.

Most of those potamal species had wide distributions in Europe once. Zwick [77]

cites records of Isogenus nubecula from England, France (Paris), the Netherlands,

the Danube at Ulm and Vienna, Dresden and Bulgaria, and similar large areas have

been covered once byMarthamea vitripennis [134] and Xanthoperla apicalis [135].
Today’s populations are isolated and persisted exclusively in small and severely

fragmented refuges as in the case of Isogenus nubecula in the river system Lafnitz/

Raba in Austria/Hungary and the Tisza in Hungary [136, 137]. Other examples

which demonstrate similar fates of large river species are given in, for example,

Fittkau and Reiss [7], Zwick [77, 134] and Fochetti and Tierno de Figueroa [138]. A

few of these species seem to have survived in discrete refuges and have been

rediscovered only recently. X. apicalis of which some vouchers from 1884 (Danube

at Vienna) exist in the Museum of Natural History in Vienna was recently collected

in the middle of the 16th district of Vienna [139]. This long-lost species is

apparently recolonising some large rivers in Central Europe (e.g. Braasch [140]).

Among Ephemeroptera Ephoron virgo is another example of a potamotypic

species with mass emergence which was so conspicuous that Schäffer [141]

reported it already in 1757. After some decades of disappearance, its revival was

reported yearly by local newspapers along the Upper Danube as its numerous

corpses can lead to operations of snowplough trucks to prevent accidents. Produc-

tion of these potamotypic mayflies was incredibly high, and Tobias [80] cites old

reports, whereas locals attracted specimens with fire and lamps and gathered them

at the shore. At the river Saône in France, 100 tons of corpses were yearly collected

and used as food for swines, fishes or birds and as fertilisers or even sold to

pharmaceutical industries (Lampert [142], in Tobias [80]).

Another Ephemeroptera, the large species Palingenia longicauda (4 cm in body

length), was formerly found from the Netherlands to Ukraine [143]. Nowadays

P. longicauda covers 2% of its former range [144] which led to listing it as one of

the few aquatic insects in Appendix II of the Convention on the Conservation of

European Wildlife and Natural Habitats (Bern Convention). It is doubted to have

colonised the Upper Danube [145] but was regularly recorded from the Bulgarian

stretch and some tributaries. Incredibly high densities reached between up to 3,350

specimens/m2 and biomasses up to 660 g/m2 [146], contributing essential to food

resources for, for example, fishes. According to Russev [143, 146] P. longicauda is
a habitat specialist which burrows tubes in clayey substrates, the argillal. Since
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1974 records from the Danube River are missing maybe caused by reduced habitat

availability among other stressors as stated by Russev [147] in 1992. Recently some

specimens were found by G. Chiriac at Braila in 2011 (personal communication)

which doubtlessly confirmed its return or persistence in refuges of the Lower

Danube stretch. Soldán et al. [148] report one population at the Danube Delta,

and another well-known and famous site is the River Tisza where spectacular mass

emergences can still be observed [149].

Both mentioned Ephemeroptera species are burrowers living in U-shaped tubes

and are therefore eco-engineering their environment. They filter out fine organic

particles; thus, their reduced occurrence influences the nutrient turnover of the

ecosystem. Stief et al. [150] found that microbial communities of burrows are

different to that of the sediment and conclude that the presence of E. virgo contrib-

utes significantly to the ecological connection between the water column and the

sediment and to the biogeochemical processing of organic matter in the riverbed.

This specific food niche now is occupied nearly entirely by the invasive filter

feeders Chelicocorophium (Crustacea) and Corbicula (Mollusca), besides the tri-

chopteran genus Hydropsyche. Additionally to their effects on the aquatic ecosys-

tem – e.g. Gheracopol et al. [151] stated that the diet of a starlet consisted 69% of

P. longicauda – their mass emergence transferred a huge biomass to the terrestrial,

nourishing a long list of organisms like spiders, birds, bats, etc. This stresses the

importance of macroinvertebrates as available resource for consumers in general

and in 1967 Russev [152] stated a yearly production of 19.235 tons of benthic

biomass in the Danube Delta.

Like the mentioned species above, some stenoecious trichopteran species of

large rivers as Platyphylax frauenfeldi belong to the most endangered aquatic

species on a European scale with only one known vital population at the River

Drava in Hungary [153, 154]. Another species, Parasetodes respersellus, has

undergone dramatic population losses since the 1960s in Central Europe. Recently

it was rediscovered in the Tisza River [155]. It once inhabited the Lower Danube in

Romania where it was found prior to 1962 for the last time [156]. These species

may nowadays act as umbrella species for an intact community and their occur-

rence may indicate vital processes and essential river-specific abiotic-biotic inter-

actions. However, in Trichoptera only one case of extinction has been documented

(Hydropsyche tobiasi, [154]) though human-induced considerable regressions or

even extinctions in several national states are regularly reported (e.g. Botosaneanu

[157]).

In fact many typical and nowadays extinct or endangered species of large rivers

show mass emergences and short but synchronic flight periods (Ephoron virgo,
Palingenia longicauda, Xanthoperla apicalis, Isoperla obscura). This phenomenon

seems to be essential for mating and reproduction success; as minimum population

size is not known, slight reductions of swarming stages may lead to severe bottle-

necks leading to abrupt species losses within the whole catchment.

As pointed out earlier, the benthic assemblages are nowadays clearly dominated

by nonindigenous, invasive or cosmopolitan elements which probably have strong

negative effects and misbalance the ecological functioning of the whole system.
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Figure 14 illustrates the above-mentioned processes documented in large rivers in

Central Europe conceptually.

Molluscs are another typical and prominent element of large rivers and still

colonise the Danube with many species. Two species, namely, Unio pictorum and

U. tumidus, are the most common large mussels of the Danube which form the

highest biomasses of benthic invertebrates in the main channel. The third species,

U. crassus, which can only be rarely found in the Danube has undergone a strong

decline throughout Europe in the recent decades; e.g. in Germany this species

receded by about 90% of its former distribution area [158]. Consequently

U. crassus is an endangered species which is mentioned in Annex II and IV of

the European Fauna-Flora-Habitat Directive (e.g. Csar and Gumpinger [159]).

Following Nesemann [5, 6] U. crassus occurs with several subspecies in the

Danube basin (tributaries and Mosoni-Duna); only one living specimen from the

main channel was recorded for the Austrian stretch [160]. Csányi et al. [161] report

on the first record of U. crassus in the Lower Romanian Danube between Calarasi

and Braila. Anodonta anatina is present in the Middle Danube, while the Asian

species Sinanodonta woodiana increases steadily in density from the Middle

Danube to the Delta but has invaded successfully backwaters all over the Danube

floodplains. The Asian clam Corbicula fluminea covers the whole river stretch in

high densities, while C. fluminalis is still rare and is present at few sites only. The

zebra mussel Dreissena polymorpha is abundant on the Upper and Middle Danube;

the newly invader D. bugensis has already spread to Vienna and above [123, 124].

Regarding snails, two Viviparus species (Viviparus acerosus and V. viviparus)
are still common along the banks. Within Neritidae, Theodoxus fluviatilis has the
widest distribution along the Danube; it is considered to be a neozoon. The Danube

Fig. 14 Conceptual development of the fauna of large rivers in Central Europe from 1800 to 2000.

Photos: left, indigenous species of the Danube, Brachyptera trifasciata, Xanthoperla apicalis,
Taeniopteryx araneoides (pinned specimen, Museum Budapest, Photo: D. Murányi); right, inva-
sive species, Corbicula fluminea, Dikerogammarus villosus, Chelicocorophium curvispinum (Graf

and Pletterbauer, unpublished)
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basin-specific T. danubialis is mainly restricted to the Lower Danube, while the

formerly widespread T. transversalis is living now in a very restricted section at the

Lower Danube (Fig. 15).

6 Conclusion

Large rivers have been altered for centuries (e.g. Tockner et al. [162, 163]), and

Hering et al. [164] summarise the multiple interactions between various stressors of

aquatic ecosystems worldwide. The Danube is regrettably no exception, but drivers

and pressures fit well in a Pan-European scale. Rates of habitat modification of large

rivers are currently so high that virtually all natural habitats and protected areas are

destined to become ecological “islands” in surrounding “oceans” of altered habi-

tats. This process of fragmentation and isolation in landscapes under human

influence – main concepts in the island biogeography theory – is predicted to lead

directly and indirectly to accelerated species extinctions at both the local and the

global scales, thus reducing the world’s biodiversity at all levels [165, 166]. In the

context of the so-called McDonaldisation of the biosphere [89], the dispersal of

many species is inhibited, while others – mostly more flexible species in ecological

terms – become common and overtake the niches of indigenous species. Replace-

ment of vulnerable taxa by rapidly spreading taxa that thrive in human-altered

environments will ultimately produce a spatially more homogenised biosphere with

much lower diversity. Regarding aquatic ecosystems and in particular large rivers,

similar processes have already been observed by Fittkau and Reiss [7], Zwick [77,

134] and Fochetti and Tierno de Figueroa [138]. The multi-stressor complex

appealing on large rivers, especially in Central Europe, is conceptually given in

Fig. 16.

Potamal communities at the edge of their ecological capability might collapse

when temperature increases due to climate change that adds to the deadly anthro-

pogenic cocktail [167]. But with few exceptions there is no evidence of an actual

decrease in species richness of rather flexible riverine and wetland assemblages in

Fig. 15 Distribution of three species of the genus Theodoxus along the Danube recorded during

JDS2
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lowlands of Central Europe, simply because most of these communities have been

already dramatically shaped by anthropogenic pressures of various kinds; those

surviving organisms are tolerant cosmopolitans which cover a large area of

ecoregions.

On the other hand, there are signals of a recolonisation regarding some riverine

species which indicates improvements in the overall habitat quality and the eco-

logical status. Awareness of the vulnerability and sensitivity of the large river

ecosystem has risen and various restoration plans are put in praxis along the

Danube. Linear systems like rivers are depending on processes within the entire

catchment, and local efforts – despite their undoubted merits – can only marginally

soften large-scale impairments. International cooperation is therefore required to

monitor and improve the ecological status of the Danube and to conserve its fauna.
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55. Pasetti F (1862) Notizen über die Donauregulierung im €osterreichischen Kaiserstaate bis zu

Ende des Jahres 1861 mit Bezug auf die im k. k. Staatsministerium herausgegebenen
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-dargestellt am Beispiel der Donau. Essener Ökologische Schriften, Bd. 9:1–185. Westarp
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97. Füreder L, P€ockl M (2007) Ecological traits of aquatic NIS invading Austrian freshwaters. In:

Gjirardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats, pp

233–259

98. Sch€oll F, Haybach A (2000) Der Potamon-Typie-Index – ein indikatives Verfahren zur
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Stojanović B, Cakić P (2007) Distribution of Asian clams Corbicula fluminea (Müller,

1774) and C. fluminalis (Müller, 1774) in Serbia. Aquat Invasions 2:99–106

119. Borza P (2009) First record of the Ponto-Caspian amphipod Echinogammarus trichiatus.

Aquat Invasions 4(4):693–696

120. Borza P (2014) Life history of invasive Ponto-Caspian mysids (Crustacea: Mysida). A

comparative study. Limnological 44:9–17

121. Borza P, Boda P (2013) Range expansion of Ponto-Caspian Mysids (Mysida, Mysidae).

Crustaceana 86(11):1316–1327
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127. Raušer J (1960) Prispevek k limnickd zoogeografii Dunaje. Geograf 12:262–283

128. Calderini P (1869) Apparizione di un numero straordinario di Nemure Nebulosa (Insetti

Neurotteri) nei dintori di Varallo. Tip Colleoni (Varallo) 1–5

129. Ausserer C (1869) Neurotteri tirolesi colla diagnosi di tutti i generi Europei. Parte

I. Pseudoneurotteri. Annuario della Societa di Naturalisti in Modena. Modena 4:71–156
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148. Soldán T, Godunko RJ, Zahrádková S, Sroka P (2009) Palingenia longicauda (Olivier, 1791)

(Ephemeroptera, Palingeniidae): do refugia in the Danube basin still work? Communications

and Abstracts, SIEEC 21, University of South Bohemia, Cˇeské Bude˘jovice, Czech Repub-
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161. Csányi B, Szekeres J, Gy€orgy ÁI, Szal�oky Z (2012) Macrozoobenthon investigations along

the Lower Danube between Calarasi and Braila, Romania. Acta Biol Debr Oecol Hung

28:47–59

162. Tockner K, Pusch M, Borchardt D, Lorang MS (2010) Multiple stressors in coupled river–

floodplain ecosystems. Freshw Biol 55(Suppl 1):135–151

163. Tockner K, Pusch M, Gessner J, Wolter C (2011) Domesticated ecosystem and novel

communities: challenges for management of large rivers. Ecohydrol Hydrobiol 11:167–174

164. Hering D, Carvalho L, Argillier C, Beklioglu M, Borja A, Cardoso AC, Duel H, Ferreira T,

Globevnik L, Hanganu J, Hellsten S, Jeppesen E, Kodeš V, Solheim AL, Nõges T,
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