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Abstract Water demand for urban, industrial, and agricultural purposes is a major

concern in developed and third world countries. A careful evaluation for an

appropriate and sustainable use of water resources is a priority. Geochemical

processes can lead to measurable variations of the aquatic environment, which

can be studied through the analysis of the dissolved solutes. Even if this review is

not meant to be exhaustive, it is intended to give a view on the importance of

environmental isotopes in the context of groundwater quality assessments. This is

done by briefly recalling some basic notions for each described system, followed by

relevant applications and reports about some significant case studies. This review

includes well-established isotopic systematics, such as those of O and H in water, C

in dissolved inorganic carbon (DIC), S and O in sulfates, and N and O in nitrates

and those of boron and Sr, which in the last lustrums have found large application in

the field of water geochemistry. This chapter ends with some examples related to

nontraditional isotopes, i.e., Fe, Cr, and Cu, in order to highlight the potential of the

environmental isotopes to trace sources, fate, and behavior of different solutes and

metals in surface water and groundwater.
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1 Introduction

Deterioration of water quality has received considerable attention over the last few

decades in response to the increasingly severe contamination of surface water and

shallow groundwater by anthropogenic contaminants [1, 2]. Groundwater is an

important alternative source of water supply for those cities located in arid to

semiarid climates. New awareness of the potential danger to water supplies posed

by the use of agricultural chemicals and urban industrial development has also

focused attention on the nature of rainfall–runoff and recharge processes and the

mobility of various solutes in shallow systems [3]. A proper assessment of ground-

water quality requires the quantification of the total recharge and the composition of

the various sources involved. These quantitative assessments enable to identify the

origin and the fate of chemical compounds and also develop management practices

to preserve water quality and devise remediation plans for sites that are already

polluted.

Natural waters are complex chemical solutions. They always contain a number

of dissolved species, suspended materials, and organic substances. Stable, radio-

genic, and radioactive isotopes of elements or compounds present in the aqueous

medium are outstanding sources of information on the processes occurring in the

hydrosphere [4]. The most widely used isotopes in hydrogeochemistry are the

stable isotopes of oxygen, hydrogen, carbon, sulfur, and nitrogen and the cosmo-

genic radioisotopes such as tritium and carbon-14. Other investigations on the

stable and radioactive isotopes of helium, strontium, and others are also frequently

applied. However, in the recent years, nontraditional stable isotopes of metals (e.g.,

Li, Mg, Fe, Cu, Zn) have been successfully studied in different geological mate-

rials, as more precise and powerful instrumentations and improved analytical

capabilities have been introduced. Similarly, investigations on mass-independent

isotope geochemistry, the use of clumped isotope geochemistry, and measurements

of position-specific isotope effects in organic compounds will be providing new

insights in the comprehension of the geochemical processes that affect the exoge-

nous and endogenous cycles of the elements, opening new frontiers in the field of

isotope geochemistry.

Environmental isotope studies of natural waters are concerned with the princi-

ples governing the distribution of the stable and radioactive isotopes in the hydro-

sphere. Such studies are aimed to estimate the factors that determine these

principles and to interpret hydrodynamical and hydrogeochemical processes

involved on the basis of the isotope composition of the various elements in solution.

Currently, environmental isotopes routinely contribute to such investigations,

complementing geochemistry and hydrogeology. For instance, the stable isotopic

composition of water is modified by meteoric process, and so the recharge waters in

a particular environment will acquire a characteristic isotopic signature. This

signature then serves as a natural tracer. Isotope tracers have been extremely useful

in providing new insights into hydrologic processes because they integrate small-
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scale variability to give an effective indication of the processes occurring at

catchment-scale.

The environmental isotopes represent one of the most useful tools in geochem-

istry to investigate groundwater quality, geochemical evolution, recharge pro-

cesses, rock–water interaction, and the origin of salinity and contaminant processes.

The main purpose of this chapter is to provide an overview of recent advances in

the use of naturally occurring stable isotopes including radiogenic isotopes (e.g.,

Sr), which are important hydrological tracers for recognizing natural and anthro-

pogenic processes in aquifer systems.

It is a matter of fact that the isotopic systematics of specific ratios or single

isotopic abundances are well known, whereas other isotopes are considered not too

exhaustively discussed as no many data are still available. Eventually, new isotopic

pairs have recently been applied to the context of environmental geochemistry and

can be considered as new frontiers in this important discipline.

The structure of this chapter reflects the composite framework described above.

This chapter firstly reviews well-established isotopic applications (oxygen and

hydrogen in H2O, carbon in dissolved inorganic carbon (DIC), nitrogen and oxygen

in nitrates, and sulfur and oxygen in sulfates, whose reference isotopes are reported

in Fig. 1). Then, some hints about recently applied isotopic ratios (87Sr/86Sr and
11B/10B) are described. The last part of the chapter deals with new isotopic ratios

(iron, chromium, and copper), whose studies are still to be defined as they deserve

to be more deeply investigated. For the sake of brevity, radiometric age dating of

water with 3H, 14C, 81Kr, and 36Cl has been omitted in this chapter, being rather

marginal to the context. The reader may refer to the following papers, which are

specifically addressed to the topics related to water dating: e.g., Morgenstern

et al. [5] and Stewart et al. [6] (tritium), Schiff et al. [7] and Mayorga et al. [8]

Fig. 1 Differences in the chemical properties of the isotopes H, C, N, O, and S
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(carbon), Lange and Hebert [9] and Visser et al. [10] (krypton), and Palau et al. [11]

and Khaska et al. [12] (chlorine).

2 Hydrogen and Oxygen Stable Isotopes

2.1 Background Principles

Both hydrogen and oxygen consist of a number of isotopes, whose variations in

natural waters are the basis for applying the isotope methodology in hydrology.

Hydrogen, whose major stable isotope is 1H, occurs in the hydrosphere at a mass

abundance of 99.985% and is accompanied by 0.015% of the heavy isotope, 2H or

deuterium. The chemical element oxygen has three stable isotopes, 16O, 17O, and
18O, with abundances of 99.76, 0.035, and 0.2%, respectively [4]. Stable environ-

mental isotopes are measured as the ratio of the two most abundant isotopes, for

instance, 2H/1H or 18O/16O (the rare isotope at numerator and the more abundant at

denominator), and are referred to international reference standards by using the

typical δ notation defined as follows:

δ ¼ Rsample

Rstandard

� 1 ð1Þ

where R is the abundance ratio of the isotopic species (i.e., 2H/1H or 18O/16O). Since

δ is usually a small number, the “delta” is given in ‰ (per mil, equivalent to 103).

The δ notation for 2H/1H and 18O/16O can be expressed as 2δ or δ2H and 18δ or δ18O,
respectively. The accepted standard for the isotopes in water is VSMOW (Vienna

Standard Mean Ocean Water), which is close to the original standard of SMOW

(hypothetical water catalogued by the former National Bureau of Standards), as

defined by Craig [13]. Abundance ratios for 2H/1HVSMOW and 18O/16OVSMOW are

155.75� 0.05� 10�6 [14–16] and 2,005.20� 0.45� 10�6 [17], respectively.

These abundances are the values reported for the reference standard VSMOW,

defining the value of δ¼0‰ on the VSMOW scale. For waters which have depleted

δ2H and δ18O values with respect to that of ocean water, a second water standard

was distributed by the International Atomic Energy Agency (IAEA): Standard

Light Antarctic Precipitation (SLAP). This value with respect to VSMOW was

evaluated on the basis of an interlaboratory comparison by IAEA, defined as

δ2H¼�428.0‰ VSMOW and δ18OSLAP¼�55.50‰ VSMOW [18].

The isotopes of hydrogen and oxygen, being components of water molecules, are

indicators of all the processes of natural water movement, which have occurred

during the history of existence of the Earth. According to Rozanski et al. [4] in the

hydrologic cycle, the variability ranges of 2H/1H and 18O/16O are between �450

and +100‰ and from �50 to +50‰, respectively. In general, the 2H/1H or 18O/16O

ratios mainly vary due to phase changes from vapor to liquid or ice and vice versa.
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The ratios of hydrogen and oxygen isotopes are linearly correlated, and the trend of

variations characterizes the Global Meteoric Water Line (GMWL) where

δ2H¼ 8δ18O + 10 [19]. Later on, Gat and Carmi [20] suggested for the Mediterra-

nean Meteoric Water Line (MMWL) the relationship δ2H¼ 8δ18O + 15 between

δ2H and δ18O. In the classical δ2H vs. δ18O binary diagram, the reference meteoric

lines, e.g., GMWL and MMWL, are commonly drawn with those of local and/or

regional interest (Fig. 2). For the most part, the positive intercept in this regression

originates from the difference in isotopic fractionation effects of water-vapor

equilibrium and of vapor diffusion in air (e.g., review of [24]). Deviations from a

line with slope of 8 and zero intercept indicate an excess (or depletion) of deuterium

defined by Dansgaard [25] as d-excess¼ δ2H� 8δ18O. It has mainly been corre-

lated with the environmental conditions existing in the source area of the water

vapor [20, 26]. The degree of excess (or depletion) is phenomenologically related to

geographic parameters such as latitude, altitude, and distance from the coast and to

the fraction precipitated from a vapor mass content (e.g., [27–31]) (Fig. 3).

2.2 Groundwater Origin, Recharge, and Mixing Processes

One of the most typical applications in isotope hydrology is the identification of

recharge areas of underground aquifers by comparing the isotopic signatures of

precipitation and with those of groundwaters collected from springs and/or wells.

Spatial variability of the δ2H or δ18O values in precipitation reflects the combi-

nation of source-region labeling, rainout, and recycling effects that affect air masses

Fig. 2 Binary diagram of the isotopic ratios of hydrogen vs. oxygen. Mediterranean Meteoric

Water Line (MMWL) [20], World Meteoric Water Line (WMWL) [21], and Central Italy

Meteoric Water Line (CIMWL) [22]. From Sappa et al. [23], modified
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bringing vapor to different geographic regions. The isotopic compositions of

precipitation have been mapped at several scales: global distribution (e.g., [32]),

regional scale (e.g., [22]), and detailed scales (e.g., [33]). Minissale and Vaselli [34]

and references therein proposed an alternative method based on indirect measure-

ments using karst springs as natural pluviometers in Italy. They recalculated the

average elevations of their recharge areas by shifting the original altitude values of

spring waters along the 0.2 δ‰m�1 line, proposed by Longinelli and Selmo [22], as

representative of the mean isotopic altitude gradient (Δδ18O) for the Italian mete-

oric precipitations.

The determination of the origin of groundwater as well as the manner and the rate

of recharge and discharge is of major importance for its management especially in

waterless areas [35, 36]. The development of tracer techniques using stable isotopes

enables approaches to groundwater movement in many regions [37–45]. The case

Fig. 3 Distribution of δ18O values correlated with latitude (a) and distance from the cost (b)
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study of the Souss Basin, which is one of the most important basins in Southern High

Atlas Mountains (Morocco), describes the typical problem of water in arid areas.

According to Bouragba et al. [46], hydrogen and oxygen isotopic signatures reveal a

rapid infiltration before evaporation of meteoric waters. The depletion in ground-

water stable isotopes shows a recharge under different conditions. During wet

periods, the precipitation altitude was indeed higher than that observed in different

meteorological conditions [46].

The δ18O and δ2H values from shallow groundwater systems reflect those of the

local average precipitation although they can be modified at some extent by

selective recharge and fractionation processes, which may alter the pristine δ18O
and δ2H values before the water reaches the saturated zone. The recent study by Liu

and Yamanaka [47] has dealt with the quantitative contribution of different sources

feeding the groundwater recharge applying an isotopic (δ18O and δD) and

hydrochemical approach to facilitate an integrated management of ground and

surface water resources. This investigation was carried out in the area of Ashikaga

(central Japan) that hosts the largest plain of Japan, which is traversed by the

Watarase River. Sampling included meteoric waters, which were collected monthly

for one year, 12 groundwaters from domestic wells, and 4 river samples. The

isotopic signatures allowed to distinguish the different origins of the waters. The

isotopic composition of pluvial water varied temporally in response to several

factors (temperature effect and amount effect), with remarkably differences

between the warm (April to September) and the cool (October to March) periods.

It is considered that precipitation in the warm period is a more effective recharge

source than that in the cool period. The 1-year observation of the isotopic signature

of precipitation was not however assumed as representative of the local precipita-

tion. On the contrary, river water and groundwater samples clearly showed weak

variation, and their δ values were significantly distinct with respect to those of

precipitation, suggesting considerably long residence times (at least >1 year). In

addition, the close relationship observed between the mean δ values of river water

and the mean elevation of the catchment reflected the altitude effect. In more detail,

the low δ values of the river water corresponded to high elevation of its recharge

zone. The isotopic composition of the groundwater samples ranked them between

pluvial and river waters. This was also indicating (i) evaporation from shallow

wells, (ii) contribution of the aquifer to the river recharge, and (iii) mixing pro-

cesses of waters with different origins, e.g., direct infiltration, river seepage, and

mountain block recharge.

Salinization of water resources is one of the most widespread processes that

deteriorates water quality. Salinization is due to the inflow of saline dense water

during heavy withdrawals of freshwater from coastal aquifers and/or mobilization

of saline formation waters by overexploitation of inland aquifer systems. The

combined use of oxygen and hydrogen isotopes is presently able to identify

different salinization pathways. For instance, recently by a temporal monitoring

of superficial waters, Petrini et al. [48] have examined the issues related to salini-

zation and water quality in the drainage system of Ravenna coastal plain that

extends for about 1,500 km2 bordered to the east by the northern Adriatic Sea
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coastline (Italy). In this study, the combined use of oxygen and hydrogen demon-

strated to be a useful tool in the management of water resources, allowing the water

sources, recharge processes, and the risk of saltwater intrusion or pollution to be

investigated. In particular, the oxygen and hydrogen isotopic composition of

rainwater was used to construct a local meteoric water line defining a correlation

given by δ2H¼ (7.00� 0.17)� δ18O (5.80� 1.3). In addition, they showed that

waters from the coastal system range in composition from �8.53 to �0.69‰ and

from �60.10 to �5.44‰ for δ18O and δ2H, respectively, reflecting the variable

contribution of a marine component.

3 Carbon Stable Isotopes

3.1 Background Principles

The chemical element carbon has two stable isotopes, 12C and 13C, and their

abundances are of about 98.9 and 1.1%, respectively. Ratios of these isotopes are

reported in ‰ relative to the Vienna Pee Dee Belemnite (VPDB) standard. The
13C/12C ratio of the VPDB standard is 0.011796 [49] and is expressed as δ13C,
similarly to Eq. (1) for hydrogen and oxygen isotopes.

Carbon isotope analyses are useful when studying aquatic and hydrogeological

systems in contact with CO2. Examples of such applications include investigations

in carbon cycle and flux (e.g., [50–53]), chemical weathering (e.g., [54]), degassing

from thermal and cold springs (e.g., [55, 56]), volcanic–hydrothermal systems (e.g.,

[57, 58]), and, as a relatively new field, geochemical trapping in CO2 injection

(carbon capture and storage (CCS)) projects (e.g., [59–61]).

Measurements of concentration and δ13C values of DIC, which is referred to the

following equation [62]:

δ13CDIC ¼ δ13C�
CO2 aqð ÞþHCO3

�þCO3
2�� ð2Þ

are routinely used in studies of carbon geochemistry and biogeochemistry of natural

waters. Part of the carbon cycle is shown in Fig. 4. The primary reactions that

generate DIC are weathering of carbonate and silicate minerals produced from

(i) acid rain or other strong acids, (ii) carbonic acid formed by the dissolution of

biogenic soil CO2 as rainwater infiltrates, and (iii) dissolution of deep CO2 (typi-

cally in active tectonic areas). The DIC pool can be influenced by contributions

from groundwater, tributary streams, biogenic uptake and release of CO2, and CO2

invasion from or evasion to the atmosphere. These processes influence both DIC

concentrations and δ13CDIC values. Changes in the carbon isotopic ratios result

from isotope fractionation processes accompanying the transformation of carbon or

from mixing of carbon from different sources. The δ13CDIC values in catchment

waters are generally in the range of �5 to �25‰ [63]. δ13C values together with
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major ion chemistry and/or other isotope tracers (e.g., δ34S, 87Sr/86Sr) can be used

to evaluate proportions of DIC [64] and to estimate sources, sinks, and fluxes of

carbon (e.g., [65, 66]).

3.2 Applications to Environmental Geochemistry Studies

Numerous authors have analyzed and used carbon isotopes as indicators of biogeo-

chemical reactions taking places within catchment and river basins (e.g., [54, 67,

68]). Large rivers play an important role in controlling the δ13CDIC values by

biological recycling of carbon and equilibration with atmospheric CO2. These

studies have shown that upstream reaches and tributaries are cause for the primary

pool of DIC supplied to the main stem of large rivers controlling the carbon isotope

compositions further downstream (e.g., [69, 70]). Several attempts were made to

evaluate the effects of these processes. Atekwana and Krishnamurthy [67] studied

the seasonal concentrations and δ13C of DIC in the river–tributary system in

Kalamazoo, southwest Michigan (USA). They reported that the riverine DIC

concentrations decreased (from 48.9 to 45.9 and from 60.4 to 48.6 mg C/L for

river and tributaries, respectively), while δ13CDIC values increased (from �9.9 to

�8.7 and from �11.4 to �9.7‰ for river and tributaries, respectively) in summer-

time due to photosynthesis. On the other hand, DIC concentrations incremented

(from 51.9 to 53.4 and from 52.2 to 66.8 mg C/L for river and tributaries,

respectively) and δ13CDIC values decreased (from �9.9 to �10.2 and from �9.3

to �12.8‰ for rivers and tributaries, respectively) during the late fall as photosyn-

thesis declined and in-stream decay and respiration increased. These authors

suggested that the difference in absolute values of concentrations and those of

Fig. 4 Conceptual model showing the main processes that control the sources of dissolved

inorganic carbon (DIC)
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δ13CDIC between the main river and its tributaries was derivable by shorter resi-

dence times of water in the tributaries when compared to those of the main course.

DIC concentrations and δ13CDIC values are also useful tracers of the DIC sources

and the evolutionary history of DIC in contaminated streams. Atekwana and

Fonyuy [71] and Ali and Atekwana [72] measured the δ13CDIC values to assess

the extent of H+ production from acid mine drainage (AMD) pollution of stream

waters on inorganic carbon processing and δ13CDIC over spatial and temporal

scales. Ali and Atekwana [72] investigated at the Federal Tailings Pile in the

St. Joe State Park in southeastern Missouri (USA) the acidification and neutraliza-

tion effects on the carbonate evolution in a shallow aquifer affected by a metal

sulfide-rich and carbonate-rich tailing pile. Their isotopic modeling suggested that

in the vadose zone, HCO3
� dehydration produced degassing of CO2(g) from pore

water and groundwater with δ13CDIC of �3.1 to �6.8‰.

Changes in the pH values resulting from AMD pollution and the chemical

evolution of AMD in streams affect the speciation of DIC. Most importantly, the

decrease in stream of pH due to AMD-produced H+ drove DIC speciation to

carbonic acid (H2CO3), which subsequently dissociated to CO2(aq). The degassing

of CO2 from streams should be accompanied by enrichment in δ13CDIC due to

preferential loss of 12C with respect to 13C [73]. Atekwana and Fonyuy [71]

demonstrated that δ13CDIC enriched by <3.0‰ when CO2 loss was proton

enhanced and isotopic fractionation was mostly controlled by diffusion. The

δ13CDIC value enriched by >3.0‰ when CO2 loss was neutralization induced

and CO2 loss was accompanied by partial exchange of carbon between DIC and

atmospheric CO2. Atekwana and Fonyuy [71] concluded that DIC loss and δ13CDIC

enrichment in AMD-contaminated streams were depending on (i) the amount and

rate of production of proton formed by metal hydrolysis, (ii) mechanism of CO2

loss, and (iii) buffering capacity of the streams.

Monitoring stable carbon isotopes and subsequent determination of isotope mass

balance is a method to evaluate the fate of CO2 and distribution of DIC in deep

aquifers. Recently, this approach was applied to several studies related to the

subsurface storage of CO2 (CCS), e.g., geochemical trapping in CO2 injection

projects (e.g., [59, 60]). Nisi et al. [61] investigated the isotopic carbon of dissolved

CO2 and DIC related to surface and spring waters and dissolved gases in the area of

Hontomı́n–Huermeces (Burgos, Spain) to verify whether CO2 leakages, induced by

the injection of CO2, might have been able to affect the quality of the waters in the

local shallow hydrological circuits. In fact, the isotopic and chemical equilibrium of

the C-bearing inorganic species can be used to trace CO2 leakage if the injected

CO2 would have an isotopic carbon ratio that differs with respect to that already

present [74]. Industrial CO2 to be injected in a pilot site is indeed usually derived by

refinery gas processing, and the δ13CCO2 values are rather negative, e.g., from �36

[61] to �28‰ VPDB as that used in the Ketzin pilot site [75]. Nisi et al. [61]

reported that the baseline of δ13CDIC of the Hontomı́n–Huermeces shallow aquifer

had a value �10‰ VPDB and that the δ13CCO2 values measured in the Hontomı́n–

Huermeces waters are clustering around �20‰ VPDB, i.e., more positive than

those of the injected CO2 at Ketzin and likely similar to that expected to be injected
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in the Spanish site. Nisi et al. [61] applied a theoretical model representing the DIC

and δ13CDIC evolution of infiltrating water through carbonate terrains where a CO2

source was active, according to two different ways: (i) addition of soil CO2 deriving

from oxidation of organic matter and root respiration (biogenic) and (ii) addition of

deeply derived CO2 and in equilibrium with calcite. This model predicted that the

injection of CO2 with a carbon isotopic value of �30‰ VPDB should decrease

δ13CDIC to more negative values than those measured. By simulating the addition of

100 steps of 0.01 mol of CO2 (δ13CCO2¼�30‰ VPDB and δ13CDIC¼�10‰
VPDB) and considering the maximum (0.008 mol/kg), minimum (0.0033 mol/kg),

and mean (0.0052 mol/kg) DIC values of the Hontomı́n–Huermeces waters, the

resulting δ13CDIC and DIC values would indeed be �28.6‰ and 0.12 mol/kg,

�29.4‰ and 0.11 mol/kg, and �29.1‰ and 0.11 mol/kg, respectively.

4 Sulfur Stable Isotopes

4.1 Background Principles

Sulfur has four stable isotopes: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S

(0.02%) [76]. Like 18O, 2H, and 13C, sulfur isotopes are expressed with the delta

notation defined by Eq. (1). Stable isotope compositions are reported as δ34S, ratios
of 34S/32S in ‰ relative to the standard CDT (FeS phase of the Canyon Diablo

Troilite meteorite) for which the value 0.0450 was assigned. Figure 5 shows the

ranges of δ34S values found in nature for a number of different forms of sulfur.

Sulfur species can be sampled from water as sulfate (SO4
2�) or sulfide (H2S or

HS�) for measuring δ34S and, for sulfate, δ18O. Oxygen-18 in sulfate is referred to

the VSMOW reference standard. Bacterial reduction of SO4 is one of primary

sources to explain the sulfur isotopic variability observed in natural aquatic sys-

tems. Sulfate-reducing bacteria utilize dissolved sulfate as an electron acceptor

during the oxidation of organic matter, producing H2S gas that has a δ34S value of

�25‰, i.e., lower than that of the sulfate source [64]. On the other hand, not

significantly fractionation of sulfur isotopes is expected for the following processes,

such as (i) isotopic exchange between SO4
2� and HS� or H2S in low-temperature

environments, (ii) weathering of sulfate minerals and sulfide, and (iii) adsorption–

desorption interactions with organic matter [78, 79].

The main use of sulfur isotopes has been aimed to understand the formation of

polymetallic sulfide ore deposits, which can be originated in either sedimentary or

igneous environments. δ34S values exceeding +20‰ are found in association with

evaporitic rocks and limestone deposits [63]. Sulfur associated with diagenetic

environments generally reflects the composition of biogenic sulfide produced by

bacterial reduction of marine sulfate and generally shows negative δ34S values

(from �30 to +5‰, [80, 81]). On the other hand, sulfur associated with crystalline

rocks derived from the mantle is isotopically similar to that of the reference
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standard, whose δ34S values are from 0 to +5‰. Nevertheless, volcanic rocks are

occasionally characterized by δ34S values up to +20‰, suggesting recycling pro-

cesses of oceanic sulfate at subduction zones.

In environmental geochemistry studies, the evaluation of sulfate sources and

cycling has been coupled with the analysis of the oxygen isotopic composition of

sulfate. Sulfur and oxygen isotopic compositions of dissolved sulfate (δ34S-SO4 and
δ18O-SO4, respectively) have been used to clarify sources and transformation

processes of sulfur in aquatic systems associated with anthropogenic activities.

These isotopes can provide meaningful information about various potential sources

of sulfate in the watershed (e.g., dissolution of sulfate-bearing evaporitic minerals,

such as gypsum and anhydrite, mineralization of organic matter, oxidation of

sulfide minerals, infiltration from anthropogenic sources, atmospheric deposition)

(e.g., [82, 83]). In recent years, the use of stable sulfur isotopes has been expanded

to address diverse surface water and groundwater issues, e.g., cycling of sulfur in

agricultural watersheds, origin of salinity in costal aquifers, groundwater contam-

ination by landfill leachate plumes, and acid main drainage (e.g., [84–87]).

Fig. 5 Sulfur isotope distribution in nature. From Thode [77], modified
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4.2 Application Studies to Groundwater and Surface Waters

Groundwater salinization in coastal regions is frequently observed in confined

aquifers as well as in unconfined aquifers. In the case of unconfined aquifers

close to coastal regions, water salinization is, as previously mentioned, usually

induced by seawater intrusion relative to a decline in the piezometric level, which is

commonly associated with excessive pumping (overexploitation) of groundwater.

In the case of coastal confined aquifers, the groundwater system is generally

isolated from seawater by confining bed of clay-rich sediments, which were mostly

deposited in the latest transgressions. Yamanaka and Kumagai [88] used a combi-

nation of δ34S-SO4
values (ranging from +1.2 to +79.5‰) and chemical composi-

tions of brackish groundwater to examine the provenance of salinity in a confined

aquifer system in the SW Nobi Plain (central Japan). They highlighted that water

chemistry was explained by sulfate reduction in combination with the mixing of

two types of seawater: (i) present seawater and (ii) SO4-free seawater, with the fresh

recharge water. In particular, the δ34S-SO4
values showed that present and fossil

seawaters were responsible at most of 10.7 and 9.4% of the brackish groundwater

volume, respectively.

Deterioration of the quality of groundwater in urban areas has become a major

environmental concern worldwide. In this respect, researchers have applied

δ34S-SO4
and δ18O-SO4

since they have a distinctive isotopic composition to identify

pollution sources. Cortecci et al. [89] investigated the δ34S-SO4
isotopic signature of

the Arno river (northern Tuscany, Italy) and its main tributaries in order to constrain

the areal distribution of the anthropogenic contribution across a heavily industrial-

ized and densely urbanized territory, where the human load increases downwards

from the Apennine ridge to the Tyrrhenian sea coast. These authors observed that

the δ34S-SO4
values from natural inputs were ranging approximately between �15

and +4‰, likely related to the oxidation of pyrite disseminated in bedrocks, and

δ34S-SO4
values between +15 and +23‰, as a result of dissolution processes of

evaporitic rocks. Conversely, the sulfur isotopic signature associated with anthro-

pogenic sources (possibly in the chemical forms of Na2SO4 and FeSO4) was

characterized by δ34S-SO4
values varying between 1 and 8‰.

Urban groundwater contamination problems are becoming increasingly recog-

nized in all Asian megacities ([90] and reference therein). In the Taipei (Taiwan)

urban area, one of the most densely populated areas in the world, the investigation

of the hydrogeochemical groundwater characteristics and the causes of pollution

are subjects of prime importance for water resource preservation in the Pacific

island. Hosono et al. [90] explored the δ34S-SO4
and δ18O-SO4

isotope variability

with the aim of understanding the subsurface nature and environmental status of

such area. Importantly, they isotopically recognized possible sources, which were

affecting the Taipei groundwater system. Within the analyzed data, the sulfate

isotopic compositions of waters reacted with chemical fertilizers showed that the

δ34S-SO4
and δ18O-SO4

values were ranging from�5.0 to +14.4‰ and from +13.1 to

+25.7‰, respectively. Dissolved sulfate derived by chemical detergents had
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δ34S-SO4
and δ18O-SO4

values from �3.7 to +24.4‰ and from +11.6 to +20.6‰,

respectively. Eventually, the isotopic compositions of industrially processed high

concentration sulfuric acid were characterized by δ34S-SO4
¼ 1.2‰ and

δ18O-SO4
¼ 9.5.

Recently, the isotopic signature of dissolved sulfate was used to provide valu-

able information about the nature of water inputs to the sewage flow. The dynamics

of various hydrologic processes that commonly occur within the sewer system, such

as groundwater infiltration, rainwater percolation, or release from retention basins,

can readily be described by using water isotope ratios. Houhou et al. [86] applied a

combined water and sulfate dual isotope approach (δ34S-SO4
and δ18O-SO4

) to

examine the contribution of different water sources to flow within an urban sewer

system. Houhou et al. [86] found that sulfate originating from urine was also

detected as a tracer of human waste impacts, since δ18O-SO4
of urine is isotopically

distinct from other sulfate sources (values around 4.5‰ for δ34S-SO4
and between

5.9 and 7.5‰ for δ18O-SO4
). Inorganic sulfate indeed represents the main end

product of sulfur metabolism in the human body, although other forms such as

ester sulfate represent a 9–15% fraction of the urinary sulfate ([86] and references

therein). In the last years, intensive investigations of the stable isotopic composition

of sulfate from groundwater, surface waters, and acidic mine drainage were

performed due to the dominant role of sulfur as a component of AMD. Isotopic

(δ34S-SO4
and δ18O-SO4

) compositions can be used to clarify sources and transfor-

mation processes of sulfur in aquatic systems associated with coal mining ([87] and

references therein). It is well assessed that the exposure of pyrite and other metal

sulfides to weathering under atmospheric conditions produces sulfuric acid, with

subsequent mobilization of other toxic substances (metals, metalloids) into ground-

water and surface water (e.g., [91] and references therein). The Great Falls–

Lewistown Coal Field in central Montana contains over 400 abandoned under-

ground coal mines, many of which are discharging acidic waters with serious

environmental consequences [84]. In this respect, Gammons et al. [84] examined

the spatial and temporal changes in the chemistry of the mine waters and used the

stable isotopes to address the sources of water and dissolved sulfate in the aban-

doned coal mines, as well as the surrounding sedimentary aquifers. They reported

that most sulfates in these waters were derived by oxidation of pyrite in the coal

with δ34S-SO4
and δ18O-SO4

values ranging from �16.1 to �9.3‰ and from �12.5

to �9.1‰, respectively, while pyrite samples in coal from drill cuttings produced

δ34S values from �27.2 to �19.6‰. Bacterial sulfate reduction is known to cause

extreme fractionation of S isotopes ([84] and references therein). The fact that the

mine waters and pyrite samples in this study are strongly depleted in 34S suggests

that bacterial sulfate reduction played an important role in the formation of the

high-S coals. Gammons et al. [84] concluded that sulfate in the AMD waters was

isotopically distinct from that in the underlying aquifer, and that mine drainage may

have leaked into the aquifer.
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5 Nitrogen Stable Isotopes

5.1 Background Principles

There are two naturally occurring stable isotopes of nitrogen, 14N and 15N. The

majority of N in the atmosphere is consisting of 14N (99.6337%), whereas the

remainder is 15N (0.3663%) [92]. Stable isotope ratios are expressed with the delta

notation defined by Eq. (1) as δ15N: 15N/14N ratios in‰ relative to the atmospheric

air (AIR-NBS). The dominant source of nitrogen in most natural ecosystems is the

atmosphere (δ15N¼ 0‰). Most terrestrial materials have δ15N values between�20

and +30‰. As a consequence, plants fixing N2 from the atmosphere have δ15N
values of about�5 to +2‰ [93]. Typical available soil N has δ15N values from 0 to

+8‰, although the δ15N interval for refractory soil N may be larger [94–96]. Rock

sources of N are generally considered negligible contributors to groundwater and

surface water, but they can be important in some environments [97]. The use of

isotopes to trace nitrogen reactions in hydrology gained further attention when it

became possible to routinely measure the 18O contents of nitrate [98]. The combi-

nation of δ15N and δ18O (whose values are reported relative to VSMOW) now

provides a tool that enables us to distinguish between nitrates of different origins, to

recognize denitrification processes, and to discuss the N-budget in the soil–water

system (e.g., [94, 96, 99–107]). δ15N values of NO3 from various sources and sinks

are reported in Fig. 6. Nitrate (NO3) concentrations in public water supplies have

risen above acceptable levels in many areas of the world, largely as a result of

overuse of fertilizers and contamination by human and animal waste. Identifying

Fig. 6 δ15N values of NO3 from various sources and sinks. Fields are from Xue et al. [96]
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the dominant source or sources of nitrate and other solutes to surface water and

groundwater systems is critical for making effective contaminant management

decisions. Overuse of fertilizers results in high concentrations of nitrates, able to

modify the isotopic composition of N-NO3 in superficial water and groundwater.

Nitrates from synthetic fertilizers have δ15N values varying from �6 to +6‰ AIR

[94, 96]), while those of δ18O are 22�3‰ VSMOW [98], because they are

produced from atmospheric nitrogen (δ15N¼ 0‰) and oxygen (δ18O¼ 23.5‰).

Nitrate derived from manure and sewage is isotopically distinct from that of

fertilizers in both δ15N (from +5 to 25‰, [64, 94, 96]) and δ18O (<15‰, [94]).

Nitrate from wet and dry atmospheric deposition has a wide range of δ15N values of

approximately�10 to +15‰ and can also be originated from human activities, such

as agriculture, vehicle exhaust, and power plant emissions [108]. In general,

biologically mediated reactions (e.g., assimilation, nitrification, and denitrification)

strongly control nitrogen dynamics in the soil and can influence and/or affect

nitrogen dynamics in water. For instance, in the stepwise conversion of NO3
� to

N2, nitrogen isotopes are fractionated: the lighter isotope (14N) is preferentially

partitioned in the products, while the heavier one (15N) becomes concentrated in the

residual reactants [109]. Several studies have employed both δ15N and δ18O of

nitrate in the estimation of denitrification in the water system. They reported that a

linear relationship, indicating an enrichment of 15N relative to 18O by a factor

between 1.3:1, 1.5:1, and 2.1:1, gives strong clues for denitrification processes

[110–113].

5.2 Applications to Groundwater and Surface Water Studies

Nitrate contamination of surface water and groundwater is an environmental

problem in many regions of the world. High nitrate concentrations in drinking

water are also believed to be a health hazard. At global scale, groundwater is a

critical resource for both drinking water and other applications, such as agricultural

irrigation. A prerequisite for controlling and managing nitrate pollution is to

identify sources of nitrate. Contamination of aquifers from nitrate and other solutes

is a significant concern, and therefore, the use of nitrate isotopes to understand

contaminant sources and nitrate cycling in groundwater has become much more

common. Karst aquifers are particularly vulnerable to nitrate contamination from

anthropogenic sources due to the rapid movement of water in their conduit net-

works. Many studies have shown that stable isotope techniques are useful for

evaluating sources of nitrogen because certain sources of nitrate have characteristic

or distinctive isotopic compositions (e.g., [96] and references therein). Li

et al. [114] used nitrate isotopes combined with chemical compositions to identify

the primary sources of contamination and characterize the processes affecting

nitrate in the karstic groundwater system of the Zunyi area (SW China) during

summer and winter. The wide range of δ15N-NO3
values (from�1.8 to +22.7‰) and

the intercorrelations between NO3 and K observed in this study suggested that there
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were at least three major sources contributing to the nitrate pollution of the

groundwater in Zunyi, which included organic manure and synthetic fertilizer,

and urban sewage effluents, while there was no direct evidence to show that

denitrification occurred in the aquifer evaluated. However, Einsiedl and Mayer

[115] reported that denitrification could have occurred in the porous rock matrix of

a karst aquifer in southern Germany.

Generally speaking, elevated concentrations by nitrate in groundwater and

surface water were most often measured in regions of intensive agriculture and

principally attributed to the impacts of organic and chemical fertilizer inputs. In this

respect, Savard et al. [116] analyzed the isotope ratios of the potential nitrate

sources and measured the isotope and concentrations of nitrate in groundwater

and surface water samples collected during eight campaigns distributed over the

2003–2004 and 2004–2005 seasonal cycles to constrain a conceptual apportion-

ment model quantifying the relative seasonal N contributions in an area of intense

potato production in the Wilmot River basin (PEI, Canada). In the Wilton region,

the potential sources of nitrogen included urea fertilizer (H2NCONH2), whose δ15N
values were ranging from �1.9 to +1.1‰, whereas the wet atmospheric load varied

between �11.8 and +11.4‰ and +22.8 and +83.2‰ for δ15N and δ18O values,

respectively [116]. According to Savard et al. [116], elevated nitrate levels were

coupled with agricultural activities and appeared to be most closely associated with

extensive use of fertilizers for row crop production, rather than with other potential

sources such as atmospheric load.

In agricultural regions, fertilizers and irrigation are the primary factors that

contribute to increase world crop production. The use of fertilizers accounts for

approximately 50% of the yield increase and greater irrigation for another substan-

tial part [117]. In this respect, China is the world’s greatest producer and consumer

of fertilizers using about 31% of the total amount of fertilizers used worldwide

[118]. Zhang et al. [119], by using a dual isotopic analysis of NO3, conducted a

study in the North China Plain with the aim to identify nitrate pollution in both

surface water and groundwater in irrigated agricultural regions. Zhang et al. [119]

showed that the main sources of nitrate were nitrification of fertilizer and sewage in

surface water, whereas groundwater sources during the dry season were minerali-

zation of soil organic N and sewage. When fertilizers were applied, nitrate was

transported by precipitation through the soil layers to the groundwater in the wet

season. Savard et al. [116] and Zhang et al. [119] concluded that strategies to

attenuate contamination by nitrate in waters of temperate climate row-cropping

regions must consider nitrogen cycling by soil organic matter including the crucial

role of crop residues throughout both the growing and nongrowing seasons. In

particular, they suggested that plowing and its associated stimulation of minerali-

zation and nitrification and the application of manures and its nitrogen loading

should be timed to optimize crop uptake and minimize leaching losses.

Identification of nitrate sources is important in preserving water quality and

achieving sustainability of the water resources. However, the occurrence of multi-

ple inputs and/or the presence of overlapping point and nonpoint sources makes this

task complicated. For instance, sewage and manure end members have overlapping
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δ15N-NO3
and δ18O-NO3

values, and their differentiation on this basis is critical. In a

recent review, Fenech et al. [103] showed that chemical markers (such as pharma-

ceuticals and food additives) with nitrate isotopes are suitable to differentiate

sewage and manure sources of nitrate contamination. It is worthwhile to mention

that a number of potential chemical markers are consumed by both humans and

livestock, e.g., antimicrobial agents such as some tetracyclines and sulfonamides

([103] and references therein). Some examples of pharmaceuticals, which are used

for the treatment of humans, animals, or both, are given in Fenech et al. [103],

indicating these substances as suitable indicators of human and animal sources.

6 Boron and Strontium Isotopes

6.1 Background Principles

Boron is a ubiquitous minor or trace constituent in all natural surface and subsur-

face aquatic systems. It is mainly derived from the interaction of fluids with the

crust (~10–13 mg kg�1 B) [120] and/or mixing between fluids from different

reservoirs and weathering of rocks and soils characterized by B-bearing minerals,

whose the highest concentrations are recorded in waters leaching B-bearing salt

deposits [121]. In coastal areas, rain containing sea salt from ocean spray provides

another natural B source, but such inputs decline with distance from the coast

[122]. The boron budget of surface and subsurface aquatic systems can consider-

ably be affected by discharge of anthropogenic boron-laden waters. Elevated B

levels in surface waters most commonly occur in industrial and urban areas. Among

the many possible sources of anthropogenic B, domestic and some industrial

wastewater effluents, herbicides and insecticides, glass manufacturing wastes,

antifreeze, landfill and coal mine leachates, fly ash, petroleum products, slag,

sewage sludge, manure, and compost ([123] and references therein) are those

which mainly affect the natural waters. In hydrological investigations, the B isotope

ratios often provide the fingerprint needed to identify the origin of B dissolved in

natural waters, because it enables distinguishing B from natural sources from that

due to anthropogenic sources ([124, 125] and references therein).

Boron has two naturally occurring stable isotopes, 11B and 10B. The isotopic

composition of boron is expressed as a ratio of the two naturally occurring stable

isotopes 11B (80.1%) and 10B (19.9%). The delta notation is similar to that

expressed in Eq. (1), i.e., δ11B¼ [(11B/10B)sample/(
11B/10B)standard� 1]� 1, 000,

where the standard is the NBS boric acid 951, whose 11B/10B is

4.04362� 0.00137 [126].

Boron isotope fractionations are almost entirely controlled by the partitioning

between the two dominant dissolved species B(OH)3, trigonal and planar, and B

(OH)4
�, tetrahedral, through the reaction:
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B OHð Þ3 þ OH� ¼ B OHð Þ4� ð3Þ

The relative abundances of the boron-dissolved species are pH dependent.

The large relative mass difference between the two stable boron isotopes leads to

a wide range of isotope variations in nature with diagnostic signatures of crustal,

meteoric, and marine B sources. The δ11B approximate ranges of the main B

reservoirs are +4 to +58‰ for marine B, �31 to +26‰ for nonmarine B, �17 to

�2‰ for igneous B, and �34 to +22‰ for metamorphic B ([127] and references

therein). Natural waters (such as seawater, river water, rainwater, groundwater,

saline formation water, brines, and geothermal fluids) encompass a range in δ11B
from �16 to +60‰ ([128] and references therein).

Strontium is classified as a trace element, and in aquatic environment, it occurs

as a divalent cation that readily substitutes for Ca2+ in carbonates, sulfates, feld-

spars, and other Ca-bearing rock-forming minerals (e.g., plagioclase, apatite, cal-

cium carbonate, especially aragonite). These include the primary mineralogy of the

sediments, secondary weathering products, and cement. Strontium has four natu-

rally occurring isotopes, 88Sr, 87Sr, 86Sr, and 84Sr, all of which are stable. The

isotopic abundances of strontium isotopes are variable because of the formation of

radiogenic 87Sr by the decay of naturally occurring 87Rb. For the Rb–Sr isotope

system, the mechanism of interest for the decay is represented by the following

equation:

87Rb!87Srþ β� ð4Þ

Over time, the amount of the daughter (radiogenic) isotope in a system increases

and the amount of the parent (radioactive) isotope decreases as it decays away. If

the rate of radioactive decay is known, we can use the increase in the amount of

radiogenic isotopes to measure time. In practice, this is commonly done by mea-

suring the concentration of the radiogenic isotope relative to a non-radiogenic

isotope of the same element, e.g., 87Sr is referenced to 86Sr and the 87Sr/86Sr ratio

(e.g., [129]) is measured. Although the minerals in igneous and metamorphic rocks

may have identical Sr isotope ratios at the time of formation, the decay of 87Rb

(which has a half-life of 4.88� 1010, [129]) to 87Sr leads, over time, to differences

in 87Sr/86Sr.

In freshwater systems, the residence times of waters are sufficiently short (days

to 102–3 years) compared to the half-life of 87Rb; thus, the radioactive decay of 87Rb

can be considered negligible. The application of Sr isotope ratios as a natural tracer

in water–rock interaction studies and in assessing mixing relationships is now well

established (e.g., [130–133]). 87Sr/86Sr ratio is diagnostic of Sr sources and, by

analogy, Ca sources. The Sr isotopic signature can usefully be utilized as hydrology

tracer since Sr derived from any mineral through weathering reactions maintains in

solution the same 87Sr/86Sr ratio of the original mineral, i.e., no fractionation

processes take place, differently to the stable isotopic systematics previously

described. Strontium isotopic fractionation is negligible even when this element
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is removed from water by either mineral precipitation or cation exchange process

(e.g., [134]). A prerequisite for the use of Sr isotopes as tracer for groundwater

pollution is a sufficient variability in the signature of the 87Sr/86Sr ratios among the

different end members. Such variations have been observed between natural

groundwater and human inputs (e.g., [135–137]).

6.2 Isotope Applications in Hydrology

As previously stated, seawater intrusion has for long been recognized as a serious

threat to the groundwater quality in coastal aquifers. The increasing use of ground-

water has in many places, especially in arid and semiarid regions, caused kilometer-

scale intrusions resulting in severe groundwater quality problems (e.g., [138] and

references therein). In this respect, traditional tracers such as chloride yield limited

information on hydrochemical evolutionary trends because evapo-concentration

effects can mask the indicators of groundwater flow paths. It is in these

hydrogeological settings that trace element isotopes become particularly useful.

Boron isotopes become much more powerful tools when combined with other

isotope systematics such as Sr (e.g., [127, 139, 140]). Recently, Meredith

et al. [141] have applied B and Sr concentrations and their isotopic compositions

to the alluvial Darling River (a catchment about 650,000 km2) groundwater system

(water samples were collected from 19 wells), which is located in inland Australia in

order to provide (i) information on the hydrology of the system, (ii) evaluation of the

groundwater recharge, and, finally, (iii) identification of water–sediment interaction

processes leading to the hydrochemical evolution of saline groundwaters in the

catchment. In this study, the trace element isotopes have showed a complex

hydrogeochemical process in the same aquifer system. The δ11B values were all

higher than seawater and close to some of the highest δ11B values ever reported in

the literature for a groundwater system (from +44.4 to +53.9‰), while the 87Sr/86Sr

ratios ranged from 0.708 to 0.713. The measurement of the trace element isotopes

permitted to delineate the groundwater end members that included (i) shallow dilute

waters from wells proximal to the channel (Darling River), (ii) saline groundwaters

from wells located far away from the channel (Darling River), and (iii) deep saline

groundwaters. By interpreting the geochemical and isotopic data, it was found that

groundwaters influenced by river recharge were controlled by water–sediment

reactions that varied substantially within the unsaturated zone. Groundwater–surface

water exchange from fresh bank storage formed dilute groundwaters where B and Sr

were related to clay mineral reactions.

Several studies have demonstrated the use of 87Sr/86Sr ratio and B isotopes in

tracing anthropogenic inputs in groundwater and originated from industrial and

household effluents, wastewater, and fertilizers [123, 133, 142–144]. For instance,

Petelet-Giraud et al. [145] conducted a study in the Dommel catchment (1,800 km2

large), which is a riverine system located in northern Belgium (380 km2) and in the

southern part of the Netherlands, with the aim to investigate Sr and B isotopes as
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potential tracers to discriminate the natural versus anthropogenic sources of the

dissolved load and to identify various pollution sources such as agriculture, indus-

trial activity, and wastewater treatment plants. Hasenmueller and Criss [123]

showed that municipal drinking water used for lawn irrigation contributes substan-

tial nonpoint loads of B and other chemicals (S species, Li, and Cu) to surface water

and shallow groundwater in the St. Louis (Missouri, USA) area.

Jiang [146] investigated the effects of human activities (agriculture and sewage

effluents) on the Sr isotope geochemistry in the Nandong Underground River

System, which is located in a typical karst area dominated by agriculture in SE

Yunnan Province (China). This study showed that agricultural fertilizers and

sewage effluents significantly modified the natural 87Sr/86Sr ratio signature of

groundwater that was otherwise dominated by water–rock interaction. Three

major sources of Sr were distinguished on the basis of 87Sr/86Sr ratios and Sr

concentrations. Two sources of Sr were the Triassic calcite- and dolomite-rich

aquifers, where waters were characterized by low Sr concentrations (0.1–0.2 mg/

L) and low 87Sr/86Sr ratios (0.7075–0.7080 and 0.7080–0.7100, respectively); the

third input was anthropogenic and related to Sr sourced by agricultural fertilizers

and sewage effluents with waters affecting the 87Sr/86Sr ratios (0.7080–0.8352 for

agricultural fertilizers and 0.7080–0.7200 for sewage effluents, respectively), with

higher Sr concentrations (0.24–0.51 mg/L).

7 Untraditional Isotopes: The Metal (Fe, Cr, and Cu)

Stable Isotopes

The differences in the relative, mass-dependent abundances of stable isotopes have

the potential to elucidate sources and fate of contaminants in the biosphere. In this

section, the potential uses of nontraditional stable isotope systems to trace sources,

fate, and behavior of metals in the environment are presented. In particular, a basic

review of isotopic fractionation mechanisms as well as summaries for three con-

taminants (Fe, Cr, and Cu) and their isotope systematics, fractionation processes,

and environmental applications is here provided.

7.1 Iron Isotopes

Iron is an essential nutrient and is the third most abundant element that participates

in a wide range of biotically and abiotically controlled redox processes in different

geochemical environments. Iron solubility is highly dependent on its redox state. In

oxygenated aquatic systems, concentrations of dissolved Fe are generally low due

to the low solubility of its oxidized forms, which tend to form nanoparticle

aggregates and colloids of oxy-hydroxides, thus precipitating [147, 148]. Iron has
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four naturally occurring stable isotopes, 54Fe (5.84%), 56Fe (91.76%), 57Fe (2.12%),

and 58Fe (0.28%), and the natural, mass-dependent isotope variations of Fe in rocks

record a span in the range of ~4‰ for the 56Fe/54Fe ratio [149]. Iron isotope data in

the literature have been reported with the standard δ notation, and the δ56Fe
(56Fe/54Fe) and δ57Fe (57Fe/54Fe) values are most commonly used as defined by

Eq. (1). The choice of the reference reservoir for calculating δ values is quite

variable among different laboratories. Most authors are used to report the Fe isotope

data as relative to terrestrial igneous rocks or to the IRMM-014 (Institute for

Reference Materials and Measurements) standard [149]. Therefore, interlaboratory

comparisons are obtained by normalizing the Fe isotope ratios to IRMM-014, this

standard rapidly becoming the most accepted interlaboratory standard. According

to Dauphas and Rouxel [150], Fe isotopic systematics can be considered a valuable

tool to study the Fe biogeochemical cycle and can potentially be used to trace its

transport in aqueous systems. Figure 7 shows the ranges of δ56Fe values found in

nature for a number of different forms of iron.

Iron stable isotope fractionations during aqueous and biological processes

include redox reactions [152, 153], adsorption and mineral dissolution [154, 155],

precipitation [156, 157], and dissimilatory Fe reduction, where Fe(III) oxides act as

electron acceptors for anaerobic respiration [158–160]. Beard and Johnson [149]

and references therein reported that in general microbiological reduction of Fe3+

forms a much larger quantity of iron with distinct δ56Fe values than those produced
by abiological processes. The bulk continental crust has δ56Fe values close to zero

[149]. Hydrothermal fluids at mid-ocean ridges and river waters have δ56Fe values
between 0 and �1‰ [161–163]. In modern aqueous environments, such as the

oceans, dissolved Fe contents are low (upper oceans <1 nM, [164]) and their

isotopic compositions are sensitive indicators of Fe sources and pathways. Johnson

and Beard [165] indicated that iron isotopes are exceptional indicators of Fe redox

cycling, particularly in low-temperature environments where isotopic fraction-

ations are relatively large and where significant pools of Fe2+ and Fe3+ may coexist.

In a recent study, Castorina et al. [166] observed significant variations for the Fe

Fig. 7 Iron isotope

distribution in nature. Fields

are from Hoefs [151]
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isotopes measured in Fe-rich groundwaters in aquifers from the Low Friuli Plain

coastland (northern Adriatic Sea, Italy), an area impacted by strong industrializa-

tion, including past and present metallurgic activities and steel production related to

manufacturing of low-alloyed steel. In this study, Fe contents ranged from 0.48 to

9.99 mg/L and from 2.50 to 43.8 mg/L in low-salinity and brackish waters,

respectively. The δ56Fe value was varying over a wide range: from �5.29 to

+0.87‰ in low-salinity waters and between �2.34 and +2.15‰ in brackish waters.

The isotopically lighter compositions were interpreted as reflecting isotopic frac-

tionation during repeated cycling of Fe precipitation. Castorina et al. [166] con-

cluded that the positive δ56Fe values might be indicative of either a higher solubility

of oxy-hydroxides, which during diagenesis preferentially incorporated the isoto-

pically heavier fraction of Fe, or leaching processes of the foundry landfill disposal,

which characterizes the site. Recent in-depth reviews on Fe isotope geochemistry

may be found in Johnson and Beard [165] and Bullen [167].

7.2 Chromium Isotopes

Chromium is a trace element abundantly occurring in ultramafic and mafic rock

minerals and represents an important contaminant in surface water and groundwater

although its mobility and environmental impact are strongly depending on its

valence state and redox transformations. Chromium is present in two oxidation

states, Cr(III), as cation Cr3+, and Cr(VI), as oxyanion (CrO4
2�, HCrO4

�, and
HCr2O7

�), which have different chemical behaviors: Cr3+ is the dominant form

in most minerals and in water under reducing conditions, whereas Cr(VI) is stable

under oxidizing conditions and highly toxic leading to health problems such as lung

cancer and dermatitis (e.g., [168]). Chromium is a common anthropogenic contam-

inant in surface waters and the potential toxicity of Cr(VI), and its fairly common

occurrence as a point-source contaminant has spurred research into the ability of Cr

stable isotopes to provide information on Cr sources, transport mechanisms, and

fates in the environment. Chromium has four stable isotopes with the following

abundances: 50Cr (4.35%), 52Cr (83.79%), 53Cr (9.50%), and 54Cr (2.36%)

[169]. Variations of the isotope ratios are expressed using the delta notation

according to Eq. (1), the δ53Cr value being relative to the 53Cr/52Cr ratio referred

to that of the NIST SRM 797 (National Institute of Standards and Technology

Standard Reference Materials) standard. The measured range of 53Cr/52Cr in natural

materials is presently �6‰, essentially reflecting the range measured for naturally

occurring Cr(VI) in groundwater [170]. Equilibrium fractionations between Cr

(VI) and Cr (III) were estimated by Schauble [171], who predicted Cr isotope

fractionations of >1‰ between Cr species with different oxidation states. Ellis

et al. [172], Sikora et al. [173], Berna et al. [174], Zink et al. [175], Dossing

et al. [176], Basu and Johnson [177], Han et al. [178], Jamieson-Hanes

et al. [179], and Kitchen et al. [180] studied the fractionation of Cr isotopes in a

series of Cr(VI) reduction experiments. The results showed a general trend of
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accumulating heavier Cr isotopes in the unreacted Cr(VI) species and an accumu-

lation of the lighter ones in the produced Cr(III), whereas Cr(III) did not undergo

rapid isotopic exchange during Cr(III) oxidation runs [175]. These properties make

Cr isotope investigations suitable to detect and quantify redox changes in different

geochemical reservoirs. In this respect, the tracking of Cr(VI) reduction is espe-

cially powerful when dealing with subsoil Cr(VI) contamination and related reme-

diation actions. Recent in-depth reviews on Cr isotope geochemistry may be found

in Villalobos-Aragón et al. [181], Bonnand et al. [182], Wanner and Sonnenthal

[183], and Frei et al. [184].

7.3 Copper Isotopes

Copper is present in the Earth’s crust at mg kg�1 level [185] and enters natural

water and soil reservoirs from rock weathering and anthropogenic contamination

sources. The major Cu-bearing minerals are sulfides (e.g., chalcopyrite, bornite,

chalcocite), and, under oxidizing conditions, secondary copper minerals in the form

of oxides and carbonates host this chalcophile element. Copper is a nutrient

element, although toxic for all aquatic photosynthetic microorganisms when ele-

vated concentrations occur (e.g., [186, 187]), due to its ability to either readily

accept or donate single electrons as it changes oxidation states. Copper occurs in

two oxidation states, Cu+ and Cu2+, and rarely in the form of native copper. Copper

may form a great variety of complexes with very different coordination numbers

such as square, trigonal, and tetragonal complexes. These properties are ideal

prerequisites for relatively large isotope fractionations. Copper has two stable

isotopes 63Cu (69.1%) and 65Cu (30.9%). As with light stable isotope systems,

variations in transition-metal isotope ratios can be described using the δ notation in
‰. The δ65Cu values are calculated as reported in Eq. (1) and the reference
65Cu/63Cu ratio is the NIST SRM 976 (0.4456, [188]). Figure 8 shows the ranges

of δ65Cu values found in nature for a number of different forms of copper.

Experimental investigations have demonstrated that redox reactions between Cu

(I) and Cu(II) species are the principal process that fractionates Cu isotopes in

natural systems [189]. As a consequence, copper isotope ratios may be used to

interpret useful details of natural redox processes. The measured range of
65Cu/63Cu in natural materials is approximately 9‰ for solid samples

(δ65Cu¼�3.0 to +5.7‰) and 3‰ for water samples (δ65Cu¼�0.7 to +1.4‰)

([167] and references therein). Recent studies, related to the Cu isotope variations in

a variety of stream waters draining historical mining districts located in the USA

and Europe, have shown that the δ65Cu values were varying from �0.7 to +1.4‰,

pointing out that Cu mineral weathering did not deliver a single averaged isotope

composition to drainage water [190]. At large scale, Cu isotopes can provide

important insights about the nature of the parameters which control the fraction-

ation processes. In this respect, Vance et al. [191] studied the 65Cu/63Cu ratios in

estuarine waters and particulates, riverine, and open ocean waters. They reported

that in estuarine samples the δ65Cu values of dissolved Cu were between 0.8 and
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1.5‰, i.e., greater than that of Cu associated with particulate material. Moreover,

dissolved Cu in rivers had δ65Cu values ranging from 0.02 to 1.45‰, most of them

being heavier than those measured in crustal rocks (+0.16‰). Vance et al. [191]

concluded that the isotopic contrast reflects the different partitioning of the weath-

ered pool of Cu between an isotopically light fraction adsorbed onto suspended

particles and an isotopically heavy dissolved fraction dominated by Cu bound to

strong organic complexes.

8 Conclusions

The use of stable and (subordinately) radiogenic isotopes in hydrologic systems is

playing an important role to address water resource sustainability issues worldwide.

The possibility to evaluate and quantify effects and modalities of isotopic fraction-

ation affecting the light elements such as oxygen, hydrogen, carbon, sulfur, nitro-

gen, and boron provides outstanding opportunities to identify sources and to trace

transformation processes. Stable isotope applications are nowadays well-

established approaches in hydrogeochemistry, and some of them are routinely

analyzed to contribute to the understanding of the hydrological circuits as well as

the presence of anthropogenic contamination/pollution. Environmental isotope

geochemistry is a fast-growing discipline as new additional isotopic systems are

set up and applied to different geological and urban, industrial, and agricultural

areas. In this review, we have provided some examples of their application to

highlight the potential of traditional and nontraditional stable isotope systems to

Fig. 8 Copper isotope

distribution in nature. Fields

are from Ehrlich et al. [189]
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trace sources, fate, and behavior of different solutes and metals in surface water and

groundwater. In these studies, stable isotopes have demonstrated to be a powerful

tool in order to analyze situations that cannot be faced with conventional tech-

niques. However, at a large scale, the isotopic signatures can significantly change

and often not enough data are provided to determine the original source, as their

determination is time-consuming and costly. On the other hand, new techniques,

particularly for what regards oxygen and hydrogen isotopes, are presently able to

provide a large number of determinations in a short time. Nevertheless, we

acknowledge that the best approach in environmental studies is to combine as

many tracers as possible, which should include and integrate chemical and isotopic

data. This combination constitutes an important requisite for hydrogeochemical

researches in general, and for the main focus of this book in particular, regarding

study of the main threats to the quality of groundwater.
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Guanajuato, México. Appl Geochem 27:1783–1794

182. Bonnand P, James RH, Parkinson IJ, Connelly DP, Fairchild IJ (2013) The chromium

isotopic composition of seawater and marine carbonates. Earth Planet Sci Lett 382:10–20

183. Wanner C, Sonnenthal EL (2013) Assessing the control on the effective kinetic Cr isotope

fractionation factor: A reactive transport modeling approach. Chem Geol 337–338:88–98
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