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Abstract During the last few decades, contamination by anthropogenic chemicals

such as persistent organic pollutants (POPs) has spread all over the world as

evidenced by their detection in various environmental components and biota

including those far from human activities. Particularly, research efforts on field

observations and numerical models of global fate of POPs have revealed oceanic

water bodies to be a global reservoir and final sink for these toxic contaminants that

undergo transport from emission sources and partition between air and water and

scavenge to deep-sea layers by various biogeochemical and geophysical processes.

This chapter provides an overview of the contamination by POPs and related

compounds in deep-sea ecosystems along frontal zones around Japan based on

the results of the monitoring studies conducted by our laboratory during the last
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decade. In the chapter, we focus mainly on two regions, the western North Pacific

(WNP), off-Tohoku, Japan, and the East China Sea (ECS). The WNP is a region

influenced by various water masses and currents, making it one of the world’s most

biologically productive zones. The other region discussed in the chapter, the ECS,

is an epicontinental sea with lots of continental inputs. Our studies in these regions

were conducted with the objective of understanding the environmental transport

and distribution and the specific accumulation characteristics of organohalogen and

butyltin compounds in deep-sea organisms. Our results suggest the vertical trans-

port of POPs and related compounds in high productive waters along oceanic fronts

and the potential role of deep-sea bed as a final sink and reservoir for these

persistent contaminants. Further, to implement and evaluate the effectiveness of

international agreements to protect the marine environment from the deleterious

effects of POPs, interdisciplinary approaches including studies on biogeochemical

and geophysical processes in the ocean as well as field observations are required to

delineate the global and regional fate of POPs.

Keywords Deep-sea ecosystem, East China Sea, Persistent organic pollutants,

Western North Pacific
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1 Introduction

Over the past few decades, large amounts of organic and inorganic contaminants

have been released into the environment as a consequence of the worldwide

urbanization and agricultural and industrial activities. Marine ecosystems are no

exception and they have also been increasingly subject to anthropogenic chemical

contamination, receiving contaminants from a variety of diffuse and point sources.

The contaminants include industrial chemicals inadvertently released into the
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environment, as well as those derived from land use activities such as agricultural

chemicals applied on crops. One such group of contaminants is the persistent organic

pollutants (POPs), comprising various well-known organohalogen contaminants

such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
and furans (PCDD/Fs), and organochlorine pesticides like dichlorodiphenyl-

trichloroethane (DDT) and its stable metabolites, DDE and DDD (DDTs),

chlordane-related compounds (CHLs), hexachlorobenzene (HCB), and hexachloro-

cyclohexanes (HCHs) (Fig. 1). Besides, certain brominated organic compounds

have been considered for inclusion in the list of POPs, i.e., polybrominated diphenyl

ethers (PBDEs) and hexabromocyclododecanes (HBCDs) (Fig. 1). These com-

pounds, which are added to electrical and electronic equipment, paints, textiles

and building materials as brominated flame retardants (BFRs), are an emerging

class of contaminants. In addition to the above contaminants, aquatic pollution by

butyltins (BTs), particularly toxic tributyltin (TBT), used as a biocide in antifouling

paints for boats and aquaculture nets, has been of concern due to the

bioaccumulative potential and deleterious effects of BTs in organisms [1].

Both the emerging and legacy POPs are toxic, are chemically stable, and

therefore do not easily degrade in the environment or in organisms. These

chemicals tend to partition between various environmental media, such as air,

water, soil, sediment, and biota, depending on the physicochemical properties.
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Fig. 1 Chemical structures of persistent organohalogen compounds (major POPs listed in the

Stockholm Convention)
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Furthermore, being semi-volatile, these compounds are subject to co-distillation

processes and can be transported globally through the atmosphere, which is well

known as a concept of long-range atmospheric transport (LRAT) [2]. As a conse-

quence, these substances have been detected in remote, relatively pristine locations,

such as the polar regions and the deep seas. To protect human health and the

environment, national and international control measures on the production and

usage of POPs have been (or are being) introduced to reduce their emissions to the

environment. For instance, the Stockholm Convention, negotiated under the sup-

port of the United Nations Environment Program (UNEP), established a globally

binding framework initially targeting a group of POPs, informally called the “dirty

dozen,” for reduction and eventual elimination [3]. The dirty dozen include several

organochlorine pesticides (aldrin, chlordane, dieldrin, endrin, heptachlor,

hexachlorobenzene, mirex, toxaphene, and DDT), PCBs, and PCDD/Fs. Besides

the pesticide use, HCB was also used for industrial processes. PCBs were widely

applied for industrial fluids in electrical equipment. PCDD/Fs and some PCB

congeners (i.e., dioxin-like PCBs or coplanar PCBs) are formed as unintentional

by-products during incineration and other thermal processes. The Stockholm Con-

vention also includes procedures for identifying and adding substances to the POPs

list. In May 2009, nine other POPs, including several BDE congeners present in

PBDE commercial mixtures, have been listed under the Stockholm Convention

[4]. More recently, HBCD has also been listed to Annex A of the Stockholm

Convention at the sixth Conference of Parties (COP 6) in 2013 [5].

Despite a limited number of studies, significant contamination by POPs in deep-

sea fishes has been demonstrated in the early 1980s [6–9]. Besides, in recent years,

POPs, including BFRs, have been found at appreciable concentrations in deep-sea

organisms from various parts of the world [10–28]. Research efforts by various

scientific groups in the last few decades have greatly increased our understanding

on the global distribution of POPs. The world’s oceans are thought to play an

important role in the cycling and removal of POPs [29]. The oceans cover

two-thirds of the Earth’s surface and because of their large volume can contain a

large inventory of POPs [30]. The sources of POPs to the marine environment are

riverine transport, municipal and industrial discharges, continental runoff, and

atmospheric deposition in open waters. Atmospheric deposition delivers a large

proportion of the POPs present in the oceans, through various mechanisms such as

diffusive air–water exchange of POPs and wet and dry deposition processes

[31]. Once in the aquatic environment, POPs can be dissolved in the water phase

or partition onto colloidal and suspended/settling particulate matter, incorporate

into food webs, transfer to the deep waters with the sinking particles, and eventually

deposit in bottom sediments. It should be noted as an important role in the global

behavior of POPs that the bottom sediments of deep-sea can either act as a final sink

or a reservoir for such persistent contaminants. Sediment-sorbed xenobiotics can be

taken up by the epibenthic and infaunal biota as they feed. A limited desorption of

POPs, independent from that mediated by the bottom currents at the superficial

level of the sediment, also occurs in the interstitial water [32]. These features can

lead to remobilization of sediment-bound POPs in the entire food web of the
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deep-sea benthos. Further, the fate of POPs are affected by the hydrodynamics of

water masses such as turbulence and advection of water masses and the differential

characteristics of coasts with respect to the open sea, i.e., enhanced stratification

due to freshwater input from rivers, influence of tides etc. Figure 2 is a conceptual

diagram showing the key processes affecting the transport of POPs between the

atmosphere, water column, and bottom sediments. Depending on the physico-

chemical properties of POPs (e.g., log Kaw), their global partition between
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environmental media and transport processes differ significantly among the com-

pounds, congeners, or isomers [31, 33].

For the past four decades, our laboratory at the Center for Marine Environ-

mental Studies (CMES), Ehime University, Japan, has been conducting research

on the contamination status and spatial distribution, temporal trends, behavior,

and fate of the above-listed contaminants in various matrices from different

ecosystems (reviewed in Tanabe [34]; Tanabe et al. [35]; Tanabe and Ramu

[36]). In the following chapter, we review some of our studies dealing with

POPs in deep-sea organisms collected from various deep-sea environments.

Although it is ideal to directly measure the levels of POPs in seawater to monitor

the contamination status of POPs in marine ecosystems, there are limitations such

as large volumes of seawater required for the analysis, sensitive analytical tech-

niques crucial for detecting the low concentrations of POPs, and fluctuations of

POP concentrations in seawater depending on the weather conditions. Therefore,

in our studies, we often employ marine organisms like fish and shellfish as

bioindicators to elucidate contamination status and spatial distribution of POPs

in marine ecosystems. Aquatic organisms are very efficient in accumulating these

contaminants, since, in addition to bioaccumulation through the diet, they are also

subject to bioconcentration. Furthermore, data regarding levels and distributions

of POPs in marine organisms, especially edible ones (and this includes an

increasing number of deep-sea species), are important not only for assessing the

state of the ecological environment but also from the human health perspective.

In the chapter, we focus mainly on two regions, the western North Pacific

(WNP), off-Tohoku, Japan, and the East China Sea (ECS). The WNP is a region

influenced by various water masses and currents making it one of the world’s most

biologically productive zones. The other region discussed in the chapter, the ECS,

is an epicontinental sea with lots of continental inputs. Both the regions are

characterized by the formation of numerous oceanic fronts. Belkin [37] defined

oceanic fronts as a narrow zone of enhanced horizontal gradients of water

properties (temperature, salinity, nutrients, etc.) that separates broader areas

with different water masses or different vertical structure. These fronts are mostly

characterized by strong mixing, stirring, enhanced bioproductivity, and ecotones.

High productivities around the fronts may enhance flux of POPs into the oceans

and their transport to deep waters because of phytoplankton uptake and the

vertical flux of the particles play important roles in the biogeochemical cycles

of POPs in the oceans [38, 39]. In general, land- and open-ocean-derived

materials tend to converge at the frontal zones. The formation of coastal fronts

has been suggested to be an important oceanic phenomenon determining the

behavior and flux as well as the fate of persistent contaminants in the marine

environment [40].

Detailed information on the sampling and analytical methods can be found in the

cited papers [14, 41–44]. The reviewed studies may help improve our insights into

the contamination status and the fate of legacy POPs and emerging contaminants

such as BFRs in the deep-sea environments.
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2 Description of the Study Areas

2.1 The Western North Pacific, Off-Tohoku

The study area, theWNP, off-Tohoku, is characterized by a complex oceanographic

structure represented by major ocean currents (Fig. 3). The Oyashio, a western

boundary current of the Subarctic North Pacific, is a continuation of the East

Kamchatka Current (EKC) and is fed by waters from the Western Subarctic Gyre

and the Sea of Okhotsk [45]. The primary productivity of the Sea of Okhotsk is very

high, especially on the continental shelf due to the relatively high insolation and the

nutrient input from the Amur River and Pacific Ocean [46]. Recently, the dense

shelf water flowing into Okhotsk Sea Mode Water (OSMW) has been considered as

a potential source for exporting large amounts of organic matter and nutrients such

as iron from the continental shelf to adjacent ocean interior along Oyashio [47,

48]. The eastward flowing Oyashio forms the Oyashio Front (OYF) which becomes

Polar Front (PF) or Subarctic Front (SAF) to the east. The Kuroshio, a western

boundary current from the southern tropic area, turns eastward from the eastern

coast of Honshu, Japan. Then, warm and saline water is transported by this

Kuroshio Extension [49]. The region between the Oyashio Front and the Kuroshio

Extension Front is called the Kuroshio–Oyashio Transition Zone (KOTZ) or mixed

water region, in which cold and warm waters mix and complex frontal structures are

formed [49, 50].

KE

OSMW

Fig. 3 A schematic

circulation pattern of the

major currents and frontal

structures in the Kuroshio–

Oyashio transition area,

EKC East Kamchatka

Current, ESC East Sakhalin

Current, OY Oyashio, TWC
Tsushima Warm Current,

KE Kuroshio Extension,

OYF Oyashio Front, PF
Polar Front, SAF Subarctic

Front, OSMW Okhotsk Sea

Mode Water
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Thus, the oceanography in the Tohoku area is complex and variable due to the

confluence of various currents and water masses. Due to mixing of these water

masses, the nutrient-rich subsurface water is brought into the euphotic zone pro-

moting high phytoplankton production [51]. Marine biogeochemical activities

including primary production, zooplankton grazing, microbial transformation,

aggregation, and degradation processes of organic particles influence the flux of

biogenic particles in the ocean. Vertical sinking of particle-associated pollutants

such as PCBs may be enhanced by eutrophication since higher primary productivity

leads to larger vertical fluxes of particles and organic carbon [38, 52]. This region

known as Japan Trench is a depository of biogenic and lithogenic materials that are

transported from the coastal shelf [53]. Thus, it can be assumed that a considerable

proportion of anthropogenic contaminants may be transported into the deep water

of North Pacific through the various biogeochemical processes.

2.2 The East China Sea

The ECS, located at midlatitudes between 25 and 35�N is an epicontinental sea

surrounded by the Ryukyu archipelago, Japan, Korea, China, and Taiwan (Fig. 4). It

has a broad continental shelf covering an area of 530 � 103 km2 [54]. The major

western boundary current, the Kuroshio, runs along the outer edge of the continen-

tal shelf, enters the ECS through the strait between Taiwan and the westernmost

island of the Ryukyu Islands, flows northeastward along the shelf slope, and exits to

the Philippine Sea after turning eastward near 30�N [55]. Two of the largest rivers

in the world, the Yangtze River (Changjiang) and the Yellow River, discharge into

the ECS. Thus, the cold, freshwater distributed on the continental shelf and the

warm saline Kuroshio water that occupies the area around the shelf water lead to the

formation of salinity front near the continental shelf break.

The Kuroshio, the Yangtze River runoff, and the East Asia monsoons are the

dominant factors affecting the circulation in the ECS. The ECS continental shelf

circulation pattern is characterized by the Kuroshio, Tsushima Current, Taiwan

Warm Current, and other coastal waters and shelf fronts [56, 57] (Fig. 4). It has been

demonstrated that the Kuroshio strongly influences not only the circulation in the

ECS shelf but also its chemistry through water-mass exchanges [56–58].

Riverine runoff is an important mode to transport anthropogenic pollutants from

terrestrial sources to adjacent oceans. The Yangtze River flows through densely

populated areas with agriculture and industrial activities along both the banks, and

Shanghai, the largest city in China, is situated at its mouth. Discharge of industrial

wastes, application of fertilizers, pesticides, and herbicides in farming, as well as

heavy metal pollution are said to make the Yangtze River one of the most polluted

rivers in the world [59]. Li and Daler [60] reported that the environmental pollution

of the Yangtze River basin greatly influences the state of the marine environment of

the ECS. Consequently, the ECS has attracted much interest as a site for the study of

the fate of terrestrial material in the marine environment [61]. The ECS shelf

receives a rich supply of nutrients from the Yangtze River and the upwelled

Kuroshio subsurface waters. As a result, the ECS shelf is one of the most productive
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marginal seas in the world [62]. Thus, it is obvious that the ECS receives enormous

amounts of anthropogenic pollutants, suspended matter, and nutrients with the

riverine runoff. Furthermore, the intensive exchange between the shelf water and

the Kuroshio and the high primary productivity observed in this region may

facilitate the flux of persistent contaminants to the bottom of the ECS.

3 POPs and Related Compounds in the Western North

Pacific, Off-Tohoku

This section provides a synopsis of our studies conducted in the WNP, off-Tohoku

[14, 41, 44], with the objective of understanding the distribution and the specific

accumulation characteristics of organohalogen and butyltin compounds in deep-sea

organisms in this region.

3.1 Contamination Status

Organochlorine compounds (OCs) were detected in all the deep-sea organisms (e.g.,

deep-sea eels, grenadiers, cods, eelpouts, sculpins, bikumins, flounders, myctophids,

Fig. 4 A schematic

circulation pattern of the

major currents and frontal

structures in the East China

Sea. TsC Tsushima Current,

TWC Taiwan Warm

Current, WKCC Western

Korea Cold Current, CDW
Changjiang Diluted Water,

ECSCoW East China Sea

Coastal Water, YSCoW
Yellow Sea Coastal Water,

YSWW Yellow Sea Warm

Water. Dashed lines
indicate major shelf fronts

in the East China Sea
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lantern sharks, ratfishes, squids, octopus, shrimps, crabs, gastropods) collected during

three different time periods (see the above references for more details). The concen-

trations of PCBs and DDTs were the highest among the OCs analyzed, and the

concentrations of other compounds were in the following order CHLs > HCHs �
HCB. The predominant accumulation of PCBs and DDTs in deep-sea organisms

collected from the WNP, off-Tohoku, agreed with those reported in shallow- and

deep-water fishes collected from other locations along the Pacific coast of Japan

[12, 15] (Table 1). This reflects the higher bioaccumulative properties of PCBs and

DDTs in marine food web as well as their significant usage.

Except for some higher trophic level organisms like snubnosed eels

(Simenchelys parasitica), which contained some OCs at extremely high concentra-

tions, the concentrations of OCs in deep-sea fish collected from the WNP,

off-Tohoku, were generally lower than those in deep-sea organisms collected

from other locations in the Atlantic Ocean, Mediterranean Sea, Ireland and Nor-

wegian coasts, and the Arctic region [10, 11, 17–21, 25–27] (Table 2). The

relatively low contamination by OCs in the present study area might be due to

the smaller usage of these compounds in the WNP region compared to that of the

North American and European countries. Besides, factors like variations in analyt-

ical methods and fish species (having different biological and ecological characters)

may also influence the differences in the OC levels compared between the studies.

Comparing with studies carried out in adjoining areas on deep-sea fishes by our

research group (Table 1), the concentrations of PCBs, DDTs, CHLs, and HCB in

deep-sea fishes collected from the WNP, off-Tohoku, were comparable or lower

than the data so far reported from Suruga and Tosa Bays [12, 15] and the ECS

[42]. On the other hand, concentrations of HCHs in deep-sea fishes from this region

were higher than those from other locations along the warm Kuroshio Current such

as Tosa Bay and the ECS (Table 1). Higher concentrations of HCHs in cold waters

along the Oyashio Current than in other offshore waters around Japan were also

observed in a study using skipjack tuna (Katsuwonus pelamis) [63]. Due to the high
vapor pressure, HCHs are known to rapidly evaporate and be transported from their

pollution sources in the tropics and temperate regions to colder regions via the

atmosphere [2, 30, 64]. The distribution patterns of HCHs found in the deep-sea

organisms reflect the highly transportable nature of HCHs and its accumulation in

the cold-water current of the WNP. No significant difference in the contamination

status of HCHs between three research periods from 1994 to 2005 in this region

(Table 1) is also suggestive of continuous flux of HCHs into the cold waters of the

WNP region.

Among the three studies reviewed here, only the study by Takahashi et al. [44]

reported the concentrations of PBDEs and HBCDs in deep-sea fishes collected from

the western North Pacific, off-Tohoku, in 2005. The concentrations of PBDEs ranged

from 1.3 to 8.5 ng/g with a mean of 3.6 ng/g lipid wt, while the concentrations of

HBCDs ranged from 5.4 to 45 ng/g with a mean of 22 ng/g lipid wt (except for

snubnosed eels). Despite the low levels compared to the other POPs, the detection of

PBDEs and HBCDs in deep-sea fishes indicates the widespread presence of such

“emerging POPs” even in deep oceans and their long-range transport. Similar to the
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result above, higher concentrations of HBCDs than PBDEs were observed in skipjack

tuna collected from offshore waters around northern Japan [65, 66]. On the other

hand, accumulation of PBDEs at higher concentrations than HBCDs was reported in

fishes and cetaceans from East and South China Seas [35, 43]. Comparing to the

concentration levels of PBDEs (5.1 and 19.9 ng/g lipid wt at mean concentrations)

and HBCDs (<1.5 ng/g lipid wt) in two species of deep-sea grenadiers from the

Mediterranean Sea [23], relatively high magnitude of contamination by HBCDs was

noted in our data on deep-sea fish from the western North Pacific, off-Tohoku. Such

differences among the studies and locations may reflect possible long-range transport

of HBCDs to cold offshore waters, like HCHs, and/or significant usage of HBCDs

(especially for thermal insulating materials) in northern Japan. Although HBCD is

currently being proposed to be listed a POP in the Stockholm Convention, the

contamination by this BFR in marine ecosystems around Japan may increase or

continue in the meantime as its use or disposal, considering the increase in market

demand for HBCD in Japan during late 1990s [67].

Concentrations of butyltin compounds (BTs) were reported by Takahashi

et al. [14] and de Brito et al. [41]. Takahashi et al. [14] detected BTs in almost all

myctophids analyzed (levels up to 46 ng/g wet wt for total BTs (∑BT: MBT +

DBT + TBT)). Widespread contamination by BTs in deep-sea organisms from the

western North Pacific, off-Tohoku (levels up to 530 ng/g wet wt in the liver of

demon grenadier, Coelorinchus gilberti, for ∑BTs), was also reported by de Brito

et al. [41]. Although the magnitude of contamination by BTs in open-water

ecosystems of the western North Pacific seems to be relatively low, the results

indicate the expansion of BT pollution in deep-sea ecosystems.

3.2 Species-Specific Accumulation and Trophic
Magnification

Among various fish species analyzed, snubnosed eel (Fig. 5) accumulated hydro-

phobic organohalogens (with log Kow ~ 6–8) such as PCBs, DDTs, CHLs, and

PBDEs at extremely high concentrations (Table 2). This species can be considered

as an organism at a high trophic level in the food web due to its strong carnivorous

and unique feeding habit; this fish has been found to burrow into the body of large

fish such as halibut and shark and feed on their intestine and blood [68]. Relatively

higher concentrations of these compounds were also found in some large carnivore

and/or bottom-dwelling fishes. These observations suggest that accumulation of the

hydrophobic OC and PBDEs is influenced by trophic magnification and/or feeding

habits of organisms and their long biological half-lives, i.e., higher uptake rate via

food and slower equilibrium between ambient water and body lipids. In contrast,

HCHs, HCB, and HBCDs, which have less lipophilicity than the other

organohalogen compounds, showed smaller variation in concentrations among

species of different trophic levels and feeding habits.
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Isotopic signatures based on the ratios of different stable isotopes of elements have

been broadly applied to investigate a variety of processes. In particular, stable carbon

and nitrogen isotope ratios (δ13C and δ15N) have been used in environmental studies

for delineating carbon flows and trophic relationships in continental and marine

ecosystems. The stable isotope ratios of nitrogen δ15N reflect diets and represents

time-integrated averages of assimilated foods [69]; thus, stable nitrogen isotope

analysis has been used to assess the relative trophic level of aquatic biota and provide

a quantitative continuous variable for studying the trophic magnification of contam-

inants within complex food webs [70, 71]. In contrast, the ratios of stable carbon

isotopes δ13C, in biota, can help to elucidate trophic interactions by establishing the

relative contribution of marine (or pelagic) versus coastal (or benthic) carbon sources

[72]. Thus, the quantification of both stable carbon and nitrogen isotope ratios can

provide valuable information on the feeding ecology of biota and its potential

influence on the trophic enrichment of contaminants [70, 73].

To understand the trophic magnification of organohalogen compounds, δ15N and

δ13C were determined in fishes collected in 2005. Their correlations to the concen-

trations of organohalogen compounds were discussed [44]. A wide range of δ13C
values among fishes was observed, implying the existence of multiple carbon

sources in the food web of this region. Significant positive correlations were

found between δ15N (‰) and lipid normalized concentrations of PCBs, DDTs,

and PBDEs ( p < 0.05) showing their high trophic magnification potential in

marine food webs (Fig. 6). No such relationship was found for HCB, HCHs, and

HBCDs (Fig. 6). The rapid elimination through gills to surrounding water and by

excretion via other means may prevent the trophic magnification of these com-

pounds. In addition, less trophic magnification observed for some organohalogen

Fig. 5 Snubnosed eel (Simenchelys parasitica) (Photo by Dr. T. Kubodera, National Museum of

Nature and Science, Tokyo, with permission). (a) Whole body; (b) head part
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compounds in this study may be due to the smaller difference in trophic levels of

fishes. In fact, there were no significant correlations between δ15N values and the

concentrations of almost all the compounds analyzed when the data of snubnosed

eels was excluded (only a significant relationship for PBDEs with p < 0.05). Thus,

the accumulation profiles of organohalogen compounds in deep-sea fishes reflect

not only their trophic transfer but also the different sources of the contaminants in

the food web and/or species-specific distribution of fishes. Especially, some

bottom-dwelling fishes including snubnosed eels showed significant lower δ13C
values than the other fish species, reflecting influence of substances originated from

sediments. Therefore, the data of high trophic bottom-dwelling fishes were

excluded for further discussion on spatial and vertical distribution of contaminants.

A considerable variation was observed in the concentrations of BTs among

tissues/organs and species. Among the tissues/organs analyzed, higher concentra-

tions of BTs were found in the liver of fish (97 � 212 ng∑BT/g wet wt) and viscera
of crabs (17 � 17 ng ∑BT/g wet wt) [41]. Nevertheless, in the case of BTs,

relatively high concentrations were observed not only in larger carnivore fishes

(e.g., 9.7 ng ∑BT/g wet wt in the whole body of Pacific grenadier) but also in small

fishes (up to 46 ng ∑BT/g wet wt in the whole body of myctophid fishes) and squids

(up to 44 ng ∑BT/g wet wt in the whole body of Japanese hooked squid) [14, 41]. It
is evident from previous studies that the bioaccumulation properties of BTs (i.e.,

organometallic compounds) were principally different from organohalogen
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compounds having hydrophobic and/or lipophilic nature. Less biomagnification of

BTs was also documented in some food webs along Japanese coasts [74, 75].

3.3 Distribution in Relation to the Water-Mass Structure

Even among fishes showing similar trophic levels, considerable variation in the

concentrations of POPs and related compounds was observed, which cannot be

explained only by their feeding habits and trophic magnification. It has been

documented that fishes can be used as suitable bioindicators to elucidate the envi-

ronmental levels and distributions of persistent and lipophilic compounds in water

bodies after careful consideration of their biological and ecological parameters [76].

Takahashi et al. [14] studied the accumulation profiles of OCs and BTs in

relation to the sampling locations and diel vertical migration modes of myctophid

species to delineate the spatial and vertical distribution of the contaminants in the

WNP. While concentrations of OCs and BTs varied among species, no significant

difference in the concentrations of fishes were observed between sampling loca-

tions (in the area: 38–41�N, 143–147�E). On the other hand, the accumulation

patterns of contaminants showed a specific trend in accordance with the migration

types (Fig. 7). Except for a migrant speciesD. theta, higher concentrations of PCBs,
DDTs, and CHLs were found in non- or less-migratory species living in deeper

waters. On the contrary, HCHs, HCB, and BTs accumulated at higher concentra-

tions in migratory species as compared to nonmigratory fishes. A similar trend can

also be suggested from mean concentrations of OCs and BTs in deep-sea fishes

collected from the WNP, off-Tohoku [41] (Fig. 8). In general (except for snubnosed

eels), higher concentrations of PCBs, DDTs, and CHLs were found in fishes from

deeper waters (~1,000 m). On the contrary, HCHs, HCB, and BTs accumulated at

higher concentrations in fishes from shallower waters.

These observations suggest the vertical distribution of these contaminants in the

water column of this region. Tanabe and Tatsukawa [77] showed that the concentra-

tions of HCHs significantly decreased with depth in the open-water column of the

Pacific Ocean because of their volatility and high atmospheric mobility. Long-range

atmospheric transport and cold condensation of volatile POPs, as noted in the above

section, may enhance their flux to the surface waters in thisWNP region. On the other

hand, results of these studies are also suggestive of the vertical transport of hydro-

phobic OCs and their accumulation in benthic deep-sea organisms. OCs with lower

water solubility and higher affinity for adsorption to particles would be transported to

deeper waters and incorporated into the marine food web more readily than more

water-soluble compounds. With regard to BTs, higher concentrations were found in

shallow-water than deep-sea fishes. Recent input of BTs from the usage in surface

waters (e.g., antifouling) could be well over the vertical transportation rate of these

compounds, which results in higher levels in shallow waters.

In addition, the structure of the water mass around the WNP should be consid-

ered in evaluating the vertical profiles of contaminants. As noted in the description

of the studied area, it has been suggested that the North Pacific Intermediate Water
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(NPIW), which is found at depths of 300–800 m in the North Pacific subtropical

gyre, originates from the water mass of OSMW, and new NPIW is formed along the

Kuroshio–Oyashio interfrontal zone [50]. The dense shelf water flowing into the

OSMW has been considered as a potential source for exporting large amounts of

organic matter and nutrients such as iron from the continental shelf to adjacent

ocean interior along Oyashio. This means that organic pollutants as well as the

shelf-originated nutrients can be transported from the continental shelf to NPIW.

Despite limited data available, elevated background levels of OCs such as DDTs

and PCBs in the Okhotsk Sea and East Siberia regions have been suggested by

several studies on air and water [78, 79] and wild animals such as seals and sea

eagles [80, 81]. The sampling depths and locations in the study of Takahashi

et al. [14] and de Brito et al. [41] overlapped with the area where an intrusion of

water mass from the Okhotsk Sea into the mesopelagic zone and the formation of
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Fig. 7 Concentrations and residue patterns of PCBs, DDTs, HCHs, and BTs in myctophid fishes

from the western North Pacific, off-Tohoku, with different migration types. Each bar indicates the
concentration in a composite sample which was prepared from pooled and homogenized individ-

ual specimen belonging to the same species collected from the same sampling location [14]
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NPIW occur. In this context, the intermediate water in the study area can be

expected to have higher concentrations of OCs such as PCBs and DDTs that

originate from more contaminated Okhotsk Sea.

3.4 Compositions and Temporal Trends of Organohalogen
Compounds

Influence of the water-mass structure and material transport around the Okhotsk Sea

and Oyashio current on the vertical profiles of OCs can be also found in the

compositions of DDTs in deep-sea fishes from the WNP, off-Tohoku. Among the

DDT compounds, p,p’-DDE and p,p’-DDT were the predominant constituents in
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Fig. 8 Mean concentrations and residue patterns of PCBs, DDTs, HCHs, and BTs in deep-sea

fishes (except for some high trophic benthic fishes) from the western North Pacific, off-Tohoku,

with different sampling depth (error bars show standard deviations)
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almost all the deep-sea fishes (Figs. 9 and 10) [14, 44]. Similarly high proportions of

p,p’-DDT (> 40%) were also found in Japanese common squid (Todarodes
pacificus) from off-Tohoku, Japan, although the location is far away from any

possible sources of DDT [82]. Such DDT composition (i.e., high proportions of a

parent compound, p,p’-DDT) observed in fishes and squids from the WNP,

off-Tohoku, is apparently different from those reported in previous studies from

Suruga and Tosa Bays [12, 15] and in other recent researches from the Mediterra-

nean Sea [25, 26] and North Atlantic Ocean [20, 27], where p,p’-DDE, a stable

degradation compound, was dominant among DDTs in almost all the fishes ana-

lyzed. In this context, the intermediate water in the study area can be expected to

have relatively fresh input of DDTs. Particularly in myctophids, higher proportions

of p,p’-DDT were observed in nonmigratory fishes than in those of migratory ones

( p < 0.05, Mann–Whitney U-test) (Fig. 9). This agrees with the concentration

profile of DDTs as noted above.

Among the HCHs isomers, α-HCH was the predominant isomer in all the deep-

sea fishes in the NWP, off-Tohoku (Figs. 9 and 10). It has been reported that the

ratio of α-HCH to total HCH concentrations in seawater and fish has a tendency to

increase with the increasing latitude [30, 63]. α-HCH is preferentially transported to

northern colder regions due to higher vapor pressure among the HCH isomers.

Regarding to the temporal change in the composition of OCs, the percentages of

p,p’-DDT in myctophids collected in 1994 (~40%) was apparently lower than those

in myctophids collected from Yaizu, Suruga Bay, in 1976 (58%) [83]. This suggests

the reduction of fresh input of DDTs in the WNP during the last few decades. The

decreasing p,p’-DDT proportion in total DDT compounds has also been reported in

the study on temporal trend of OCs in northern fur seals from the Pacific Coast of

Japan [84]. In contrast to the composition of DDT compounds, no significant
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Fig. 9 Compositions of DDT compounds and HCH isomers in myctophid fishes from the western

North Pacific, off-Tohoku. Each bar indicates the composition in a composite sample which was

prepared from pooled and homogenized individual specimen belonging to the same species

collected from the same sampling location [14]
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difference in the proportion of α-HCH (~60%) was observed between the

myctophids collected in 1976 and 1994. Such a small variation in the temporal

trend of HCH isomer composition has also been reported in the northern fur seals

[84]. It may be attributable to the global transport of HCHs to high-latitude regions

and/or the water-mass inflow from the Okhotsk Sea. Further monitoring along the

Kuroshio–Oyashio interfrontal zone including marginal seas such as the Okhotsk

Sea with geophysical and biogeochemical studies is required to delineate the

distributions and fate of anthropogenic contaminants.

4 POPs and Related Compounds in the East China Sea

In this section our recent studies in the ECS [42, 43] have been reviewed for

understanding the distribution and the specific accumulation characteristics of

organohalogen and butyltin compounds in various deep-sea organisms (e.g.,

deep-sea eels, sea perches, hairtails, argentines, grenadiers, splitfins, flounders,

gurnards, myctophids, lantern sharks, dogfish sharks, skates, squids, shrimps,

prawns, lobsters, crabs, sea anemones; see the above references for more details).
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4.1 Contamination Status

Among the organohalogen compounds analyzed in deep-sea organisms from the

ECS, the concentrations of DDTs were the highest and those of the other com-

pounds were approximately in the order of PCBs > CHLs > HCB > HBCDs >
PBDEs ¼ HCHs [42, 43] (Table 3). Deep-sea fishes from the ECS had the highest

concentrations of DDTs among the data reported so far from our group for theWNP

region (Table 1). Rapid industrial development and population growth in coastal

areas of China have resulted in significant environmental pollution and damage to

the aquatic ecosystems. From the 1950s to the 1980s, DDT was widely used in

agriculture in China before it was legally banned in 1983 [85]. In the last two

decades, many agricultural lands in China have been developed for commercial

uses, thus, accelerating the remobilization of previously buried insecticides/pesti-

cides. Yuan et al. [86] reported that the large-scale usage of DDT in agricultural

practices and the subsequent runoff into the waterways have resulted in the high

levels of DDTs in the freshwater, estuarine, and marine environment of China. In

the case of PCBs, the concentrations in deep-sea fishes from ECS were comparable

to that of deep-sea fishes from Tosa Bay [15] and off-Tohoku, Japan [14, 41, 44],

but were significantly lower than that of deep-sea fishes from Suruga Bay [12] and

other locations of the world (Table 2). On the other hand, the concentrations of

HCHs and HCB in deep-sea organisms from the ECS were about one or two orders

of magnitude lower than those of DDTs and PCBs. HCH isomers are less lipophilic

when compared to other OCs, and, thus, they have lower biomagnification factors in

aquatic ecosystems [87]. Significant fluxes (i.e., volatilization) of more volatile

POPs, HCHs and HCB, to the atmosphere in the waters of low-latitude regions

[2, 30, 64] may also be attributable to their less contamination in the ECS along the

Kuroshio Current.

Unlike PCBs and DDT, which are largely a legacy of the past, BFRs such as

PBDEs and HBCDs have been banned from usage since late 1990s–2000s or even

currently used in various electronic devices, furniture and textiles. Being additive

flame retardants they can leak out of the treated materials during the life cycle of the

product, causing a continuous contamination of the environment even after the

regulations on their production/application were implemented. Total concentrations

of PBDEs and HBCDs in various deep-sea organisms from the ECS ranged from

0.31 to 57 ng/g lipid wt. and 0.15 to 210 ng/g lipid wt., respectively (Table 3).

Reports on PBDEs and HBCDs in marine ecosystems and food webs, particularly

for the deep-sea environment, are relatively scarce. The concentrations of PBDEs in

deep-sea fishes from the ECS were higher than those from the WNP, off-Tohoku

[44]. The detection of PBDEs and HBCDs in deep-sea organisms from the ECS

indicates that these compounds are also transportable to the deep oceans, similar to

that of other POPs. The sources of these BFRs in the ECS could be from the various

manufacturing operations as well as e-waste recycling activities along the Chinese

coast [88]. The recycling of e-wastes could mobilize these BFRs from the electronic

components into the environment.
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The contamination status of organohalogen compounds in the ECS is probably

affected by the various hydrological processes, notably the Yangtze River discharge

and the Kuroshio Current. The Yangtze River flowing through big cities and

important agricultural areas with an annual discharge of more than 9.0 � 1011 m3

[89] is a significant source of anthropogenic pollutants from the terrestrial environ-

ment to the ECS. On the other hand, the Kuroshio, flowing to the northeast along the

continental slope, is a unique source of oceanic materials of open-ocean origin to

the shallow continental shelf [90].

Concentrations of butyltin compounds (BTs) and other organotin compounds

including triphenyltin (TPT) were reported by Tanabe et al. [42]. BTs and TPT were

detected in almost all deep-sea organisms analyzed (levels up to 62 ng/g wet wt in

blackbelly lantern shark, Etmopterus lucifer, for ∑BT, and 40 ng/g wet wt in garden

eel,Conger myriaster, for TPT). Although the magnitude of contamination by BTs in

ECS seems to be relatively low comparing with that of the western North Pacific,

off-Tohoku, the results indicate widespread contamination by organotin compounds

including TPT in various deep-sea ecosystems around the East Asian region.

4.2 Species-Specific Accumulation and Composition
of Organohalogen Compounds

The concentrations of most of the organohalogen compounds in deep-sea organ-

isms from the ECS varied considerably between the various species analyzed.

Factors like food web characteristics, habitat, and feeding strategies can contribute

to the exposure of deep-sea organisms to organohalogen compounds. Higher

concentrations of organohalogen compounds were found in fishes like garden eel

(Conger myriaster), Japanese split fin (Synagrops japonicus), lantern shark

(Etmopterus lucifer), dogfish shark (Squalus japonicus), sharpnose sevengill

shark (Heptranchias perlo), and green eyes (Chlorophthalmus acutifrons). All
these species are deep-sea species and feed at high trophic levels of the food web.

Thus, the species-specific differences in the accumulation patterns of the

organohalogen compounds observed are due to biomagnification and/or feeding

habits of the organisms. In general, HCHs and HCB, which have lower molecular

weights and are less lipophilic than the other organohalogen compounds, exhibited

smaller variation in concentrations among species and trophic levels owing to their

faster rates of attaining equilibrium with water concentrations [83, 91]. However,

unicorn grenadier (Caelorinchus productus) showed very high levels of HCB (up to

290 ng/g lipid wt.). The other grenadier species from the ECS also showed elevated

levels of HCB. High levels of HCB were also found in the same species from Tosa

Bay, Japan [15], and off-Tohoku, Japan [41]. So far, it is not clear why grenadier

species accumulate such high levels of HCB.

Among the DDT compounds, p,p’-DDE or p,p’-DDT were the predominant

constituents in almost all the deep-sea organisms. The percentages of p,p’-DDT in

shallow-water and deep-sea fishes, 37% and 40%, respectively, were higher than in
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the deep-sea fishes from Suruga Bay and Tosa Bay [12, 15] and other locations of

the world such as the Mediterranean Sea [25, 26] and North Atlantic Ocean [20, 27],

indicating that there is fresh input of DDT from China or other Southeast Asian

countries to the ECS. Higher percentages of p,p’-DDT were also found in skipjack

tuna (Katsuwonus pelamis) from the ECS [63]. In case of HCH composition,

β-HCH was the dominant isomer in all the deep-sea organisms, and this may be

because of its persistent nature. α-HCH which is the major isomer in technical HCH

mixture was detected in most of the samples, but the percentage composition of

α-HCH was far less when compared to deep-sea fishes from the WNP, off-Tohoku

[14, 41, 44]. In spite of the usage of technical HCH mixture in China and nearby

countries, the low levels of α-HCH may be due to the rapid volatilization of α-HCH
in the lower latitudes [30].

Of the fourteen PBDE congeners analyzed, a total of ten congeners from tri- to

deca-BDE were identified in the deep-sea organisms from the ECS. The congener

profiles of PBDEs varied between the species and, in most cases, the congeners

from tetra- to hexa-BDEs were predominant (Fig. 11). The higher brominated
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congeners from octa- to deca-BDE were detected in very few samples, suggesting

the relatively low bioaccumulation potential as well as the low bioavailability of

these congeners. Congener-specific biotransformation of PBDEs undoubtedly plays

an important role in the bioaccumulation behavior of PBDEs. BDE 209 was

occasionally present at concentrations above its detection limit. It is noteworthy

that BDE 209 was the dominant congener in case of an echinoderm (Holothuroidea
sp.) and in flatfish (Chascanopsetta lugubris), and this can be explained by their

sediment-dwelling nature. BDE 209 is mainly associated with sediments and is a

major congener in suspended particles and sediments and related environments.

The low detection of BDE 209 in other deep-sea organisms could be due to either its

large molecular size which lowers its uptake rates or its relatively rapid biotrans-

formation [92]. However, the presence of BDE 209 in deep-sea organisms from the

ECS indicates that this congener probably is capable of long-range transport and

dispersal. Among the HBCD isomers, α- and γ-HBCDs were detected in all the

samples, while β-isomer was below detection limits in most of the samples

(Fig. 11). Similar to BDE 209, higher proportion of γ-HBCD was observed in

sediment-dwelling organisms.

4.3 Trophic Magnification and Sources of Contaminants
in the Food Web

As noted above in the section for the WNP, the quantification of both stable carbon

and nitrogen isotope ratios can provide valuable information on the feeding ecology

of biota and its potential influence on the trophic enrichment of contaminants. [43]

examined δ15N and δ13C in deep-sea organisms from the ECS to assess trophic

magnification of organohalogen contaminants in the food web of the ECS. The

δ15N values in the deep-sea organisms from the ECS ranged from 7.18‰ to

14.17‰. No clear relationships were observed between δ15N (‰) and concentra-

tions (both in wet and lipid wt) for all the contaminants. In the aquatic environment,

the uptake of contaminants by biota usually includes direct partitioning from the

surrounding environment and ingestion of contaminated dietary sources, whereas

the loss processes include direct partitioning, biotransformation, growth dilution,

maternal transfer to offspring, and egestion. Besides, intensive biological N2

fixation by cyanobacterium, Trichodesmium, which plays an important role of

primary production in the ECS, can affect variation of δ15N in individual organisms

and entire food web [93]. The large difference in nutrient and organic matter

sources between the sampled locations and specimens can be plausible reasons

for the lack of relationship between δ15N (‰) and concentrations of organohalogen

compounds in the ECS food web, as will be explained later.

Generally, the terrigenous organic matter is depleted in 13C, while the marine

organic matter is usually enriched in 13C [94, 95]. Since the δ13C of marine

planktonic sources is different from those of most terrestrial organic material

sources, the carbon isotopic composition can be used as a tracer to distinguish

344 S. Takahashi et al.



marine from terrigenous organics. In the present study, the δ13C values in the deep-

sea organisms from the ECS ranged from �15.54‰ to �20.87‰. Zhou et al. [96]
reported the mean δ13C values of suspended particulate matter (SPM) in the

Changjiang Estuary to be �22.6‰. Therefore, the deep-sea organisms from the

ECS with low δ13C (�20.87‰) could indicate the input of terrigenous materials to

the ECS. In the present study, strong negative relationships were observed for

log-normalized lipid weight concentrations and δ13C (‰) for all the analyzed

organohalogen compounds (Fig. 12, data shown only for PBDEs). Thus, the

negative relationships observed between the organohalogen concentrations and

δ13C (‰) indicate that organisms showing the higher concentrations than the

other species accumulate these compounds from terrigenous (coastal benthic)

sources rather than oceanic (pelagic) organic matter. Such specific pattern also

reflects that steep slope in the concentrations of nutrients, terrigenous materials,

and, possibly, contaminants from the coastal front zone is affected by Yangtze

River discharge to oceanic waters along the Kuroshio Current.

4.4 Distribution and Transport of POPs into Deep Waters

Apart from the species-specific accumulation of organohalogen compounds, the

variation in the concentrations of the organohalogen compounds among the organ-

isms could be related to the distribution of these compounds in the marine ecosys-

tem. Even among the fishes showing similar feeding habits, considerable variations
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in the concentrations of organohalogen compounds were observed, which cannot be

explained only by their feeding habits and food web magnification. To understand

spatial and vertical distribution of the contaminants in the ECS, the fishes were

grouped into two categories, shallow water (<200 m) and deep water (>200 m),

based on their sampling depths. Interestingly, it was found that the concentrations

of almost all the contaminants (except for PCBs) were significantly higher in fishes

from greater depths than that from shallower depths ( p < 0.05 for DDTs and

HBCDs and p < 0.05 for CHLs, PBDEs, and HBCDs, Mann–Whitney U-test)

(Fig. 13).

As it was mentioned before, the ECS shelf receives large amounts of freshwater,

suspended matter, and nutrients with the Yangtze River discharge [62]. Further-

more, Gong et al. [97] reported that the ECS has a moderately high primary

production (108–997 mg/m2/d with a mean value of 425 mg/m2/d). Thus, the

high primary productivity and input of terrestrial materials with the Yangtze

River discharge leads to an increase in the particulate matter. Kao et al. [61] tracked

the export flux of organic matter from the shelf to the deep-sea by comparing carbon

and nitrogen isotopic characteristics of sedimentary organic matter all over the ECS

and the adjacent Okinawa Trough. The study found similar δ13C and δ15N values

between sediments from the inner shelf near the China coast and from the Okinawa

Trough, suggesting that the ECS shelf is a source of particulate matter to the deeper

waters of the ECS.
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Fig. 13 Mean and range concentrations of organohalogen compounds in fishes collected from

shallow (<200 m) and deep waters (>200 m) in the East China Sea (error bars show the maximum

concentrations)
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In the marine environment, organohalogen compounds are either dissolved in the

water phase or associated with suspended particulate matter or dissolved organic

carbon depending on their hydrophobicity and organic carbon–water partition

coefficients (KOC). The particulate matter, on which POPs sorb by the process of

flocculation and aggregation to be eventually deposited into the deep waters, could

be of natural origin, like detritus, fecal pellets, and living planktonic organisms, or

from an anthropogenic source. Studies have shown that eutrophication results in

large vertical fluxes of particle-associated pollutants and organic carbon to the deep

waters [38, 52]. Thus, all the examined organohalogen compounds being hydropho-

bic are expected to have high affinity to particulate matter and get transported to

deep waters. Volatilization of semi-volatile compounds like HCHs and HCB to the

atmosphere from the surface waters of ECS due to the high temperatures in the

subtropical region could also contribute to the vertical gradient of their concentra-

tions. On the other hand, biological and ecological factors which can influence the

results obtained from various organisms should be considered for further discussions

on behavior of POPs. It is necessary to develop a useful model including key

biological and ecological parameters for further “normalization” of the contaminant

concentrations in organisms (instead of simple lipid normalization) as well as to use

better “bioindicators” comprising of same/similar species for future research.

5 Conclusions and Perspectives

It is noteworthy that higher concentrations of POPs and related compounds in

deeper waters were indicated by using bioindicators such as fishes in the WNP,

off-Tohoku, and ECS, which have been documented to be high productive frontal

zones around East Asia. Expansion of contamination by emerging POPs including

PBDEs into the deep-sea ecosystems was also suggested by our research. Our

recent ocean survey on POPs in sediments from the ECS reported significantly

higher concentrations of DDTs and PCBs in deep-sea sediment from the Okinawa

Trough than those in the shallower continental shelf [98]. These results suggest the

vertical transport of POPs and related compounds in the high productive waters

along the oceanic fronts and the potential role of deep-sea bed as a final sink and

reservoir for these persistent contaminants. The accumulation and distribution of

the POPs and related compounds observed in the marine ecosystems reflects their

physicochemical properties such as vapor pressure and hydrophobicity as well as

biological and ecological factors of organisms. In addition, riverine discharges,

advection by oceanic currents, and formation of oceanic fronts are some examples

of the physical transport processes that influence the redistribution of POPs. Further

interdisciplinary approach including studies on biogeochemical and geophysical

processes in the ocean as well as field observations are required to delineate the

global and regional fate of POPs.

Mathematical models are one of indispensable tools to describe the chemodynamics

of POPs, including themass budget, half-life, and long-range transport potential.Models
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have been used to study the role of atmospheric transport in the multi-compartmental

global fate and distribution of persistent substances. However, high-resolution global

models that predict nonsteady dynamics of POPs in oceans need to be developed to

understand the potential impact of POPs on ecosystems, human health, and their

ultimate fate. In this regard, our group has developed a model called the Finely

Advanced Transboundary Environmental model (FATE) [99, 100]. The FATE is a

global high-resolution multi-compartment model that computes nonsteady POPs bio-

geochemical cycles in and across the five environmental compartments (atmosphere,

ocean, vegetation, soil, and cryosphere). This model enables to predict the three-

dimensional distributions of POPs as a result of advective transports, and to quantify

the amount of PCB exports to the deep ocean by several physical and biogeochemical

processes including phytoplankton detritus settling. Furthermore, we have developed a

three-dimensional high-resolution transport model for regional scale POPs fate in the

ECS [101], which will be linked and evaluated by our POP observations in the ECS for

three consecutive years from 2008 to 2010 [98]. Using such state-of-the-art models, we

were able to predict global and regional sinks and reservoirs of POPs which could

provide new insights into our current understanding of the fate and transport of POPs.

Recently, we have also started looking at the chemical aftermath of the Tohoku

earthquake (the Great Eastern Japan Earthquake) and tsunami that took place on

March 11th, 2011 [102]. Three nuclear reactors at Fukushima Daiichi Nuclear

Power Station in the tsunami area suffered hydrogen explosions, and leaked

radioactive substances including 29.3 PBq of 137Cs were estimated to be released

into the ocean [103]. These and other radioactive materials are now polluting the

global environment, and it has been cautioned by many that these may accumulate

in the biotic compartments and may ultimately reach human. This phenomenon

needs the maximum attention of scientists working on the aftereffects of the Great

Eastern Japan Earthquake. In addition, the tsunami had wiped out a strip of coast

supporting a wide range of land uses and industries. Petro- and agrochemical plants,

iron foundries, steel works, and automotive, electronics, food processing, paper,

plastics, and pharmaceutical plants were among those that suffered damage.

Numerous reports available indicate that various chemicals with potential environ-

mental and health hazards may have been present at many facilities in heavily

impacted locations and that old electrical equipment containing PCBs was washed

away [104]. The complexity of the waste generated during the Great Eastern Japan

Earthquake and tsunami may pose a serious threat of environmental pollution,

which should also be monitored along with the effects of nuclear disaster. Our

previous study [105] showed that the levels of 137Cs was the lowest in the species of

marine mammals obtained from off-Tohoku, Japan, when compared with the

specimens caught from other parts of the world such as Lake Baikal, Black Sea,

North Sea, and Northern Canadian waters. As reviewed in this chapter, the data on

POPs and related compounds in various organisms in the WNP, off-Tohoku, Japan,

was also based on the observations in the region where the Great Eastern Japan

Earthquake occurred. Thus, we would like to reiterate here that work on POPs and

other emerging contaminants (e.g., brominated flame retardants, perfluoro-

chemicals, pharmaceutical and personal care products, toxic elements) as well as

348 S. Takahashi et al.



radionuclides on the specimens from this region now can give an insight into the

most discussed environmental problem in the area. The papers reviewed here can

provide the baseline data for comparison for studying the possibility of build-up of

the chemical contaminants in the marine ecosystems along northeastern Japan. We

hope that our outcomes and future trials on the marine pollution can contribute to

avoid any possible catastrophe by such chemicals around our country and the world.

Acknowledgements Our studies reviewed here were conducted as part of a joint research project

entitled “Study on Deep-Sea Fauna and Conservation of Deep-Sea Ecosystem” between the

Department of Zoology, the National Museum of Nature and Science, and the Center for Marine

Environmental Studies, Ehime University. We thank the late Prof. Kouichi Kawaguchi,

Dr. Masatoshi Moku, and the crew and staff members of the R/V Tansei-maru, Ocean Research

Institute, The University of Tokyo; Dr. Tsunemi Kubodera, National Museum of Nature and

Science; and the crew and staff members of the R/V Wakataka-maru, Fisheries Research Agency,

for their help on the collection of valuable samples and information of deep-sea organisms. Our

studies were also supported by Global Center of Excellence Program of the Japanese Ministry of

Education, Culture, Sports, Science and Technology and Grants-in-Aid for Scientific Research

(S) (No. 20221003) and (B) (21310043) from the Japan Society for the Promotion of Science.

References

1. Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117

2. Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ

Sci Technol 30:390A–396A

3. UNEP (2005) Ridding the World of POPs: a guide to the Stockholm convention on persistent

organic pollutants. http://www.pops.int

4. UNEP (2009) Report of the Conference of the Parties of the Stockholm Convention on

Persistent Organic Pollutants on the work of its fourth meeting. United Nations Environment

Programme, 2009 UNEP/POPs/COP.4/38

5. Sixth meeting of the conference of the parties to the stockholm convention. http://chm.pops.

int/TheConvention/ConferenceoftheParties/Meetings/COP6/tabid/3074/mctl/ViewDetails/

EventModID/870/EventID/396/xmid/10240/Default.aspx. Accessed 20 Nov 2013

6. Barber RT, Warlen SM (1979) Organochlorine insecticide residues in deep sea fish from

2500 m in the Atlantic Ocean. Environ Sci Technol 13:1146–1148
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