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Abstract White rot fungi (WRF) produce various isoforms of extracellular perox-

idases (lignin peroxidase-LiP and manganese peroxidase-MnP) and phenoloxidases

(laccases), which are involved in the degradation of lignin in their natural ligno-

cellulosic substrates. This ligninolytic system of WRF is directly involved in the

degradation of various xenobiotic compounds and dyes. Liquid fermentation or

solid-state fermentation techniques can be used for enzyme production. Crude

enzymes or purified enzymes of WRF can be used for decolorization of azo dyes.

Repeated-batch decolorization technique is a new approach that can be used for

decolorization. There are different procedures to determine the enzyme(s) respon-

sible for decolorization. Single step isolation and identification procedure (SSIIP) is

a new and simple method that can be used for detection of the enzyme responsible

for biodegradation of azo dyes.

Keywords Azo dye, Biodegradation, Decolorization, Laccase, Peroxidase, White

rot fungus
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Abbreviations

LiP Lignin peroxidase

LME Lignin modifying enzyme

MnP Manganese peroxidase

PAGE Polyacrylamide gel electrophoresis

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SSIIP Single step isolation and identification procedure

WRF White rot fungi

1 Introduction

Azo dyes represent the largest group of organic dyes synthesized and account for

about 70% of all textile dyes produced. During the dying process most reactive dyes

are hydrolysed and later released into waterways. Although these dyes are not toxic

by themselves, after release into the aquatic environment, they may be converted

into potentially carcinogenic amines [1, 2] that impacted the ecosystem down-

stream from the mill. The public demands for colour-free discharges to receiving

waters have made decolourization of a variety of industrial wastewater a top

priority [3]. Microbial decolourization has been claimed to be less expensive and

less environmentally intrusive alternative [4]. Many bacteria and fungi are used for

the development of biological processes for the treatment of textile effluents [5–7].

Containing various substituents such as nitro and sulfonyl groups, synthetic dyes

are not uniformly susceptible to decomposition by activated sludge in a conven-

tional aerobic process. Attempts to develop aerobic bacterial strains for dye deco-

lourization often resulted in a specific strain, which showed a strict ability on a

specific dye structure [8]. The use of lignin-degrading white rot fungi (WRF) has

attracted increasing scientific attention, as these organisms are able to degrade a

wide range of recalcitrant organic compounds. Their lignin modifying enzymes

(LME), that is MnP, LiP and laccases, are directly involved in the degradation of

not only lignin in their natural lignocellulosic substrates [9, 10] but also various

xenobiotic compounds [11, 12] including dyes [13–18]. Peroxidases and laccases of

WRF are oxidative enzymes, which do not need any other cellular components to

work. They have broad substrate specificity and are able to transform a wide range

of toxic compounds. These enzymes, which are widely distributed in nature, have

been studied for many years because of their potential use as biocatalysts in pulp
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and paper bleaching, wastewater treatment, soil remediation, on-site waste destruc-

tion and medical diagnostics [19–23].

2 White Rot Fungi Capable of Decolorizing Azo Dyes

List of selected white rot fungi are given in Table 1.

Table 1 Selected white rot fungi and their enzymes able to decolorize azo dyes

WRF Enzyme Dye References

Phanerochaete
chrysosporium

LiP Diazo dyes [52]

LiP Reactive Brilliant Red K-2BP [53]

LiP and MnP

MnP and

b-glucosidase
Amaranth, new coccine, and Orange G [54]

Trametes vesicolor – Reactive Red 2 [55]

– Remazol Black B [56]

Coriolus versicolor Laccase Drimarene Blue [16]

Funalia trogii Laccase Astrazone Blue [34]

Laccase Drimarene Blue [16]

Pleurotus ostreatus Laccase Drimarene Blue [16]

LiP Disperse Orange 3 [57]

– Methyl Red and Congo Red

LiP Disperse Orange 3 [58]

Disperse Yellow 3

Phanerochaete
sordida

MnP Reactive Red 120 [59]

Pleurotus sajorcaju Laccase Amaranth, new coccine, and Orange G [14]

Laccase Reactive Black 5 [17]

Irpex lacteus – Methyl Red and Congo Red [60]

Reactive Orange 16, Congo Red,

Reactive Black 5, Naphthol Blue

Black, Chicago Sky Blue

MnP [61]

Ganoderma lucidum Laccase Reactive Black 5 [42]

Ganoderma sp.
WR-1

LiP Amaranth [62]

Ischnoderma
resinosum

Laccase Orange G [15]

Dichomitus squalens Laccase and MnP Orange G [15]

Pleurotus calyptratus Laccase Orange G [15]

Strain L-25 (newly

isolated white rot

fungus)

MnP Direct-Orange 26, Direct Red 31, Direct

Blue 71, Acid Orange 56, Acid Red 6,

Mordant Yellow 3, Mordant Blue 13,

Mordant Black 11, Reactive Orange

16, Reactive Black 5

[25]

Lentinula edodes MnP Congo Red, Trypan Blue, Amido Black [13]
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3 Enzymes of White Rot Fungi Involved in Azo Dye

Decolorization

WRF are key regulators of the global C-cycle. Some WRF produce all three LME,

while others produce only one or two of them [10]. The main LME are oxidor-

eductases, that is two types of peroxidases, LiP and MnP, and a phenoloxidase

Laccase. Catalytic cycles of peroxidases and laccases are given in Figs. 1 and 2,

respectively. LME are produced by WRF during their secondary metabolism.
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Fig. 1 Generic scheme of the catalytic cycle of peroxidases (taken from [24])
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Fig. 2 The catalytic cycle of laccases (taken from [24])
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Synthesis and secretion of these enzymes are often induced by limited nutrient (C or

N) levels [24].

The proposed mechanism for the functionality of MnP involves the oxidation of

manganous ions Mn2+ to Mn3+, which is then chelated with organic acids. The

chelated Mn3+ diffuses freely from the active site of the enzyme and can oxidize

secondary substrates [25].

LiP catalyze several oxidations in the side chains of lignin and related com-

pounds [26] by one-electron abstraction to form reactive radicals [27]. Also the

cleavage of aromatic ring structures has been reported [28]. The role of LiP in

ligninolysis could be the further transformation of lignin fragments, which are

initially released by MnP.

Fungal laccases as part of the ligninolytic enzyme system are produced by

almost all wood rotting basidiomycetes. This group of N-glycosylated extracellu-

lar blue oxidases with molecular masses of 60–390 kDa [29, 30] contain four

copper atoms in the active site (as Cu2+ in the resting enzyme). Laccases catalyze

the oxidation of a variety of aromatic hydrogen donors with the concomitant

reduction of oxygen to water (Fig. 2). Laccase is an oxidase with a redox potential

of 780 mV and can catalyse the oxidation of organic pollutants by reduction of

molecular oxygen straightforwardly to water in the absence of hydrogen peroxide

or even other secondary metabolites [31]. While anthraquinone was directly

oxidized by the laccase, azoic and indigo dyes were not the substrates of laccase,

and small molecule metabolites mediated the interaction between the dyes and the

enzyme [32].

4 Enzyme Production and Decolorization Methods

Most studies on lignin biodegradation and dye decolourization have been carried

out using liquid culture conditions [15]. Homogenized mycelium [16] or pellets

[33, 34] of WRF can be used for biodegradation of azo dyes. In batch mode, at the

beginning of the decolorization process, adsorption of dye by cells might be

observed. However, this color sometimes disappeared when enzymes were released

by fungal strains [25]. Liquid media including lignocellulosic substrates are also

used for ligninolytic enzyme production [35].

In some researches, solid-state fermentation (SSF) is being used as the media

for ligninolytic enzyme production [36]. SSF reflect the natural living conditions

(i.e. in wood and other lignocellulosic substrates) of these fungi. SSF is defined

as the growth of microorganisms on solid materials in the presence of a small

amount of free water [37]. The list of different substrates used for the cultivation

of microorganisms on SSF is long, including several agricultural materials, such

as wheat bran, wheat straw, sugar cane bagasse and corn cob. The choice of corn

cob was due to the low amounts of natural coloured pigments found in this

material. The pigments found in other lignocellulosic substrates, such as wheat

bran and wheat straw, could interfere in the dye decolorization experiments [13].
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SSF containing wheat bran and soybean as a substrate was chosen for the

production of ligninolytic enzymes for Funalia trogii ATCC200800 [18] as it

mimics the natural environment of the WRF and permits the concentration of dyes

by absorption process prior to biological treatment [4, 38, 39]. It is possible to

stimulate the yield of laccase activity of Trametes versicolor by using several

agricultural wastes [40].

Crude enzyme of Earliella scabrosa obtained in SSF showed higher decolour-

ization percentage of Navy FNB and Red FN-3G dyes than Trametes maxima and

Ganoderma zonatum (B-18). T. maxima exhibited the best decolourization percent-
age in submerged cultures supplemented with Navy FNB, Red FN-3G and yellow

P-6GS dyes. Growing biomass of T. maxima could supply other enzymes and

mediators for dye transformation. Peculiar behaviour was observed with G. zona-
tum (B-18); it had a similar dyes biodegradation in both liquid and solid bed

fermentation and there was no positive correlation between ligninolytic enzymes

production and decolourization pattern. The employment of crude enzymes pro-

duced in the solid bed of bagasse could be an attractive option for biological

removal of textile dyes [41].

Forest residue wood chips contain a mixture of fungi and bacteria, which is an

advantage when complex molecules should be degraded. The wood chips further-

more provide the microorganisms with carbon source, which make the addition of,

for example, glucose unnecessary. The decolourization of a mixture of 200 mg/L

each of Reactive Black 5 and Reactive Red 2 dye was studied in batch experiments

using microorganisms growing on forest residue wood chips in combination with or

without added WRF, Bjerkandera sp. BOL 13. The microorganisms growing on the

forest residue wood chips decolourized the mixture of the two dyes; adding extra

nutrients approximately doubled the decolourization rate [42].

Dye decolorizing potential of the WRF Ganoderma lucidum KMK2 was demon-

strated for recalcitrant textile dyes. G. lucidum produced laccase as the dominant

lignolytic enzyme during SSF of wheat bran, a natural lignocellulosic substrate.

Crude enzyme shows excellent decolorization activity to anthraquinone dye Rema-

zol Brilliant Blue R without redox mediator, whereas diazo dye Remazol Black-5

(RB-5) requires a redox mediator [43].

Funalia trogii ATTC 200800 pellets and enzymes were used wherein an effi-

cient decolourization was observed within 24 h [16, 34]. The direct decolourization

of textile dyes by crude enzymes of F. trogii ATCC200800 would provide a cost-

effective solution for textile industry. On the other hand, using pellets would also

provide a cost-effective solution as repeated addition of dyes is possible. Yesilada

et al. reported a 86% decolorization efficiency at the end of tenth cyle [34].

Repeated-batch mode represents a potential alternative mode of fermentation, in

which medium or some part of the medium is drawn and fresh medium is refilled

periodically without changing the pellets [24]. This process allows the maintenance

of long-term activity of the pellet for a long period of time and achieves better

results compared with batch cultivation [44]. With this method, it also possible to

store the pellets and reuse them. Thus, repeated-batch-type laccase production

represents a process which may be applicable for industrial purposes [33].
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Using purified enzymes of WRF is another method used for degradation of azo

dyes [45]. Purified laccase from Pleurotus sajorcaju was reported to be used for

decolorization of Reactive Black 5, and increased decolourization was observed

with increase in enzyme concentration [43].

Both purified laccase as well as the crude enzyme from the WRF Cerrena
unicolor were used to convert the dyes in aqueous solution. Biotransformation of

the dyes was followed spectrophotometrically and confirmed by high performance

liquid chromatography. The results indicate that the decolorization mechanism

follows MichaeliseMenten kinetic and that the initial rate of decolorization depends

both on the structure of the dye and on the concentration of the dye. Surprisingly,

one recalcitrant azo dye (AR 27) was decolorized merely by purified laccase in the

absence of any redox mediator [46].

5 Detection of Enzymes Responsible for Azo Dye Decolorization

Measuring Lignin peroxidase, Laccase and MnP activities in decolorization

medium is a method to determine the enzyme responsible for decolorization [15,

17, 25].

Lentinula (Lentinus) edodes produced only Mn peroxidase, and the production

of both laccase and lignin peroxidase was, apparently, negligible. Consider that a

strict relation between the production of Mn peroxidase and the dye decolorization

ability was observed in vivo [13].

Statistical analysis of enzyme amounts could be used to demonstrate which

enzyme plays an important role in the decolourization process of azo dyes, and it

was reported that the complete decolourization time and enzyme activity are

negatively correlative [47].

Molecular masses of the same enzymes of different species are different.

Molecular mass of the laccase of Pleorotus ostreatus was found to be 66.8 kDa

by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) [48].

Purified enzyme of T. versicolor having a single band with a molecular mass of

�68 kDa was in the same range with the molecular weights of laccase isoforms

isolated from 2,5-xylidine-induced cultures of T. versicolor [49].
Using SDS-PAGE or native polyacrylamide gel electrophoresis (PAGE) meth-

ods is another method to determine enzyme(s) responsible for decolorization. The

degradation of the disazo dye Chicago Sky Blue 6B by a purified laccase from

Pycnoporus cinnabarinus showed a band having a molecular size of 63 kDa

determined by SDS-PAGE [50]. Unyayar et al. had reported the Drimarene Blue

X3LR decolourizing enzymatic activity in the culture filtrate of F. trogii by using

SDS-PAGE [18]. In this method, two SDS-PAGEs were performed. One of them

was used for determining molecular weight of protein bands (Lane A, Fig. 3). The

other one was used for single step isolation and identification procedure. The stain-

ing activity was done with Drimarene Blue X3LR dye and guaicol after the gel was

re-natured. After the gel was stained with Drimarene Blue X3LR dye and incubated
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at 30�C for 30 min, a colourless zone was observed (Lane B, Fig. 3). This colourless

zone was found to be equal to 65 kDa in Lane A (Fig. 3). Afterwards, the gel was

treated with guaicol. This colourless zone turned into orange colour after incubation

with guaicol, which is a classical indicator and substrate of laccase (Lane C, Fig. 3),

and so it was concluded that this enzyme responsible for decolourization of

Drimarene Blue X3LR was a laccase [18].

A similar method was used by Murugesan et al. PAGE of crude enzyme and

oxidation of guaicol on gels confirm that the laccase enzyme was the major enzyme

involved in the decolorization of RB5. Native and SDS-PAGE indicates the pres-

ence of single laccase with molecular weight of 43 kDa [43].

A microtitre plate-based method was developed for a fast screening of nume-

rous fungal strains for their ability to decolourize textile dyes. In 3 days, this

method allowed to estimate significant fungal decolourization capability by mea-

suring the absorbance decrease on up to 10 dyes. WRF strains belonging to 76

fungal genera were compared with regards to their capability to decolourize five

azo and two anthraquinone dyes as well as the dyes mixture. The most recal-

citrant dyes belonged to the azo group. Several new species unstudied in the

bioremediation field were found to be able to efficiently decolourize all the dyes

tested [51].

Decolorization of azo dyes by WRF technology improvements will require

integration of all major areas of industrial biotechnology: novel enzymes and

microorganisms, functional genomics, protein engineering, biomaterial develop-

ment, bioprocess design and applications.

Fig. 3 SDS-PAGE Photograph: Separation (Lane Mr and A) and activity staining (Lane B and C)

of the crude filtrate of Funalia trogii. Lane Mr standard molecular weight markers (b-galactosi-
dase, 118.0 kDa; bovine serum albumin, 79.0 kDa; ovalbumin, 47.0 kDa; carbonic anhydrase,

33.0 kDa; b-lactoglobulin, 25.0 kDa; and lysozyme, 19.5 kDa). Relative mobilities of the stan-

dard markers vs. common logarithms of their molecular masses were plotted.With the linear

regression output, the molecular masses of the proteins in the crude filtrate were estimated (taken

from [18])
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The enzymes of WRF will play a significant role for the working of treatment

processes. As a result, the mechanical equipments will be reduced and also pre-

investment expenses will drop. The biotechnological methods presented in this

work will be expected to reduce the operational cost.
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