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Abstract

The increased incidence of end-stage liver dis-
ease (ESLD) causes a major burden on the
global health system and population health.
Liver transplantation (LT) is one of the most
effective treatments for ESLD patients, but its
practice is extensively hampered by the scar-
city of liver donors, the limited number of
transplantation centers, the complexity of the
procedure, and postoperative complication. In
parallel, vast growing advances in cellular
biology and biotechnology have opened
new alternatives in clinics, including the trans-
plantation of adult stem cells for chronic
diseases such as ESLD. Numerous types of
stem cells, such as mesenchymal stem cells,
hematopoietic stem cells, endothelial progeni-
tor cells, and other cells, obtained from bone
marrow, umbilical cord, adipose tissue, or
peripheral blood had been isolated and given

to ESLD patients all over the world. Many
clinical data had demonstrated promising
results, indicating its potential. However, con-
clusive protocol and agreement on adult stem
cell definition and transplantation method are
still lacking, and thus further research must
still be conducted.
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BM Bone marrow
EPC Endothelial progenitor cells
ESC Embryonic stem cells
ESLD End-stage liver disease
HBV Hepatitis B virus
HCC Hepatitis C virus
HCC Hepatocellular carcinoma
HLO Human liver organoid
HSC Hematopoietic stem cells
iPSC Induced pluripotent stem cells
LPC Liver progenitor cells
LT Liver transplantation
MELD Model for End-Stage Liver Disease
MSC Mesenchymal stromal/stem cells
PHH Primary human hepatocytes
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1 End-Stage Liver Disease

Liver disease is one of the major health problems
in the world. It accounts for approximately two
million deaths per year worldwide, one million
due to complications of cirrhosis and one million
to viral hepatitis (hepatitis B virus (HBV) and
hepatitis C virus (HCV)) and hepatocellular car-
cinoma (HCC). Chronic liver disease is usually
caused by prolonged excess alcohol consump-
tion, metabolic disorders, and viral hepatitis
infection (Asrani et al. 2019).

The number of end-stage liver disease (ESLD)
cases is increasing resulting in a greater burden on
the healthcare system (Fricker and Serper 2019).
ESLD, often interchangeably called liver failure
or decompensated cirrhosis, is the final stage
of chronic liver disease and is associated with a
high degree of mortality. The annual rates of liver
disease progression to decompensated stage range
from 4% for HCV to 6–10% for alcoholic cirrho-
sis and 10% for HBV (Asrani et al. 2019).

Liver cirrhosis is characterized by a silent,
asymptomatic course that may be undetectable
for years. This is usually referred to compensated
cirrhosis. When the portal pressure is increased
and liver function is significantly reduced,
the clinical phenotype is observed. Decompensa-
tion is marked by the development of overt
clinical signs, the most frequent of which are
ascites, bleeding, encephalopathy, and jaundice
(European Association for the Study of the
Liver. 2018; Haep et al. 2021).

Liver transplantation (LT) is one (if not the
only one) of the most effective treatments for
any patients with ESLD. LT would extend life
expectancy of the patients regardless of the natu-
ral history of underlying liver disease where LT is
expected to improve the quality of life. However,
in practice, LT is hampered by the shortage of
donor organs, the limited number of liver trans-
plantation facilities, and the high cost (Harries
et al. 2019). Recently, the possibility of living
donor liver transplantation (LDLT) can be
another option. However, LDLT needs immense
and complicated technical operations. And still,
the donor shortage remains a concern (Au and
Chan 2019; Choudhary et al. 2022).

Following LT, further, the liver recipient
might suffer postoperative complications, trans-
plant rejection, and long-term immunosuppres-
sion side effects (Feng and Bucuvalas 2017).
Further, de novo malignancies are often detected
in liver transplant patients undergoing daily
immunosuppression regimens, one of the leading
causes of late death. The incidence of de novo
malignancies among transplant patients is
predicted up to four times higher than in the
healthy population (Herrero 2012; Manzia et al.
2019).

Since 2002, the Model for End-Stage Liver
Disease (MELD) has been used to rank liver
transplant candidates for ESLD (Kamath et al.
2001; Wiesner et al. 2003). It is considered an
effective strategy for prioritizing candidates with
a higher transplant survival benefit over those
with lower survival benefit (Luo et al. 2018).
This scoring system predicts liver disease severity
based on serum creatinine, serum total bilirubin,
and INR. It was previously shown to be useful in
predicting mortality in patients with compensated
and decompensated cirrhosis (Wiesner et al.
2003).

In brief, MELD score ranks patient to number
6 to >40 using the formula (0.967*loge(creatinine
(mg/dL)) + 0.378 � loge(bilirubin (mg/dL)) +
1.120 � loge(INR) + 0.6431) � 10) and is suit-
able as a disease severity index to determine
organ allocation priorities (Kamath et al. 2001).
Regardless of various revisions and updates
(MELD 3.0, MELD-Na, etc.) (Nagai et al. 2018;
Kim et al. 2021), the change in MELD score is
used as an indicator to measure the benefits
of therapy following LT or other treatment
regimens.

2 Liver Development
and Regeneration

Liver is not only the largest internal organ in
the body; it is also capable to replenish its mass
by self-regeneration capacity. From a liver phe-
notypic point of view, it reflects the broad meta-
bolic functions of hepatocytes as well as the
liver’s unique vascular anatomy, having an inflow
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blood supply from both an arterial (hepatic artery)
and venous (portal vein) sources (Haep et al.
2021).

Following liver injury, hepatocytes can prolif-
erate to reinstate their morphological and physio-
logical function. In the 1930s, liver regenerative
ability in a murine model of partial hepatectomy
(PH) had been evidenced. Following PH of
around 70% of its total mass, the liver was recov-
ered in about 1 week (Higgins 1931). Using thy-
midine tracking in the DNA, the restoration of
liver mass and function was further demonstrated
(Bucher and Swaffield 1964).

In the case of sustained damage such as fibrosis
and impaired hepatocytes regeneration, the liver
needs to activate its resident stem cells compart-
ment. The canals of Hering and bile ductules in the
human liver contain liver progenitor cells (LPC)
that can differentiate toward the biliary and
hepatocytic lineage (Theise et al. 1999; Libbrecht
and Roskams 2002). The source of the LPC is still
unclear. It has been variously demonstrated that
adult mature hepatocytes can be reprogrammed
into proliferative bipotent progenitor cells in
response to chronic liver injury (Tarlow et al.
2014; Hu et al. 2018). A population of EpCAM+
cells has been identified within the canals of
Hering and the bile ductules, serving as facultative
bipotent progenitors capable of differentiating into
hepatocytes and cholangiocytes (Safarikia et al.
2020).

During liver disease, the degeneration from
healthy-functioning livers involves a dynamic
process of hepatocyte damage leading to the
reduction of hepatic function. As already known
widely, the activation of stellate cells and the
production of extracellular matrix (ECM) are the
keystone of liver fibrosis. In the case of cirrhosis
and ESLD, hepatocyte proliferation or liver
regeneration is finished (Haep et al. 2021). Liver
failure is also majorly influenced by the exposure
to an inflammatory setting, a loss of cell-cell
contact caused by cell death and ECM deposition,
and changes in energy metabolism and transcrip-
tional deprogramming of hepatocytes (e.g.,
HNF4α, HNF1, FOXA, HNF6, and C/EBP). Fur-
ther, clinical manifestations in patients with
ESLD are directly related to specific alternated

metabolic pathways in failing hepatocytes (Haep
et al. 2021).

ESLD is not only due to the lack of healthy
hepatocytes but also to the disturbance of tissue
architecture and the continuous deposition of
inflammatory cells (Lorenzini et al. 2008). Thus,
when ESLD occurs, it is hard for the liver to
establish its capacity to regenerate.

3 Stem Cell Therapy

Cell therapy has been thought of as the source
of liver regeneration (Fig. 1). For therapy
applications, donor cells must act as fully func-
tional differentiated cells, such as the expression
of liver-specific markers and secretion of albumin
and alpha-fetoprotein. Thus, careful protocol and
cell characterization should be verified before the
transplantation.

Freshly isolated primary human hepatocytes
(PHH) are currently the benchmark cell type for
cell therapy, but they are not readily available,
dedifferentiate quickly, and rapidly die in culture
(Hannoun et al. 2016). Several groups had
reported methods to cryopreserve the PHH
(Godoy et al. 2013; Sison-Young et al. 2017).
Despite various optimization protocols, cryopres-
ervation still has damaging effects on the viability
and metabolic function (Hannoun et al. 2016).
Further, a rather large number of cells (10–15%
of liver mass) are needed to provide enough func-
tion (Fitzpatrick et al. 2009). So far, various stud-
ies had demonstrated the clinical application of
hepatocyte transplantation in liver diseases (Lee
et al. 2018). In chronic liver disease, however,
there are some hassles with engraftment since the
liver architecture is disrupted. It is one of the
causes of the common failure in hepatocyte trans-
plantation to date (Fitzpatrick et al. 2009).

Stem cells have the astonishing proliferative
capacity, self-renewal ability, and differentiation
properties. Due to their plasticity, stem cells have
been proposed as a source for cell therapy.
Embryonic stem cells (ESCs) are the most plurip-
otent cells that can become all cell types in the
body. They are derived from the embryo, typi-
cally from the inner cell mass in the blastocyst.
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Due to its pluripotency, the human ESCs would be
potent tools in regenerative medicine such as
Parkinson’s disease, spinal cord injury,
myocardial infarction, andmany more (Mountford
2008). ESCs have been demonstrated to have
potential in cell therapy for liver disease. ESCs
transplantation had been demonstrated to reduce
liver fibrosis and to engraft the liver in rodents
(Heo et al. 2006; Sharma et al. 2008; Moriya et al.
2008; Haideri et al. 2017). It is important to notice,
however, that ESCs implantation may be tumori-
genic where teratoma can occur (Fujikawa et al.
2005; Blum and Benvenisty 2008; Hentze et al.
2009; Stachelscheid et al. 2013). In the human
study, it also has a significant ethical dilemma
because it involves the destruction of an embryo
to obtain the ESCs.

Adult stem cells (or somatic stem cells) can be
found in a small number of undifferentiated cells
in a specific area of tissue or organ in the body.
Even though they are not as multipotent as
the ESCs, the adult stem cells can easily be
obtained and differentiated into various cells.
More importantly, these cells can be ideal sources
for autologous stem cell transplantation to replen-
ish tissue damage in the same patient. The bone
marrow (BM) compartment is the major source
of committed progenitor (stem) cells that can
develop into mesenchymal lineages and
hematopoietic cells (Masson et al. 2004).

In the beginning, it was assumed that adult
stem cells could differentiate only into their mat-
uration lineages. For instance, bone marrow
stem cells could only differentiate into blood
cells. However, more studies demonstrated that
adult stem cells are multipotent and they can
differentiate into various cells. For example,
bone marrow-derived stem cells could regenerate
de novo myocardium (Orlic et al. 2001); skeletal
(Gussoni et al. 1999), adipocytic, chondrocytic,
or osteocytic lineages (Pittenger et al. 1999);
microglial and perivascular cells in the brain
(Corti et al. 2002; Hess et al. 2004); as well as
the liver cells (Petersen et al. 1999). The injection
of these cells ameliorated the outcome of
diseases.

To date, there have been numerous clinical
studies on adult stem cell therapy for the treat-
ment of ESLD registered in the public database
(https://clinicaltrials.gov/) even though many of
these studies’ results are still unavailable. As the
primary outcome, usually, these studies measure
the improvement of the MELD score and liver
function as the success of the treatment.

3.1 Mesenchymal Stem Cells

The mesenchymal stromal/stem cells (MSC) is
the most common stem cells used in clinical

Fig. 1 Organ sources of cellular therapy for the liver
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therapy, in addition to being the most controver-
sial. The term mesenchymal stem cells was firstly
named in the late 1980s by Dr. Caplan for a cell
type derived from bone marrow. These cells
could be isolated and expanded in culture while
maintaining their in vitro capacity to be induced
to form a variety of mesodermal phenotypes and
tissues (Caplan 1991). In regard to their multi-
differentiation capacity and high self-renewal
ability, MSC are a good option for promoting
tissue regeneration and inhibiting fibrosis and,
at the same time, lessening tissue inflammatory
response (Xiang et al. 2022).

In the last three decades, however, the expo-
nential growth of scientific articles had used this
nomenclature across numerous isolated cells. In
some cases, these cells are various tissue-specific
cell types with the use of different cell-surface
markers (Sipp et al. 2018), leading to confusion
in the scientific community and clinical practice.
A previous study demonstrated that “MSC”
isolated from different anatomical sources (bone
marrow, skeletal muscle, periosteum, and perina-
tal cord blood) actually differed widely in their
transcriptomic signature and in vivo differentia-
tion potential (Sacchetti et al. 2016).

Back in 2005, a working group of the Interna-
tional Society for Cellular Therapy (ISCT)
acknowledged the MSC inconsistencies and
ambiguities, and they recommended a new desig-
nation: multipotent mesenchymal stromal cells
(Horwitz et al. 2005). The ISCT also proposed
minimal criteria to define human MSC. First,
MSC must be plastic-adherent when maintained
in standard culture conditions. Second, MSC
must express CD105, CD73, and CD90 and lack
expression of CD45, CD34, CD14 or CD11b,
CD79α or CD19, and HLA-DR surface
molecules. Third, MSC must differentiate into
osteoblasts, adipocytes, and chondroblasts
in vitro (Dominici et al. 2006). Another term
of medicinal signaling cells (also abbreviated as
MSC) was proposed by Dr. Caplan to more accu-
rately reflect the fact the tissue origin or disease
and secrete bioactive factors that are immuno-
modulatory and trophic (regenerative) medicine
(Caplan 2010; Caplan 2017). Regardless of the
nomenclature, the capacity of the MSC in the

repair of liver tissues had been widely studied
with various results.

Several sources of MSC had been used in
various clinical trials for ESLD, with the most
common sources being umbilical cord (UC) and
bone marrow (BM; autologous or allogenic).
Some also take advantage of adipose tissue-
derived MSC, naively or following cell differen-
tiation (Nhung et al. 2015). As for adipose tissues,
sources are broad, and cells can be collected from
the subcutaneous tissue, viscera, omentum, ingui-
nal fat pads, peritoneal fat, and other sources
(Hu et al. 2019).

As expected, the results of these studies are
variable. The injection of autologous BM with
CD44+ phenotype had resulted in short benefit
in treated patients, regardless of the delivery
method (hepatic or peripheral transfusion)
(Kharaziha et al. 2009; Peng et al. 2011; Amin
et al. 2013; Salama et al. 2014). In these studies,
MSC-injected patients had improvement in their
liver function and MELD and CP scores com-
pared to control. A meta-analysis of five studies
showed that bone marrow infusion in the treat-
ment of decompensated cirrhosis improved liver
function without serious side effects at least for
the first year (Pan et al. 2014). However, at least
in one of the studies, the long-term outcomes
were not markedly improved with no significant
difference in the incidence of hepatocellular
carcinoma (HCC) or mortality between the two
groups (Peng et al. 2011).

A recent report from a Japanese clinical
trial (UMIN Clinical Trials Registry
UMIN000022601) using freshly isolated autolo-
gous adipose tissue-derived stem cells in seven
patients also showed promising results. Stem cell
transplantation improved serum albumin in six
out of seven patients and prothrombin activity in
five out of seven patients. No trial-related adverse
events, which were serious or nonserious, were
observed (Sakai et al. 2020; Sakai et al. 2021).

For donor transplantation, the infusion of allo-
genic MSC from donors was also considered a
safe procedure. In patients with liver failure,
donor MSC significantly increased the survival
rate by improving liver function (reduction of
ascites volume, increase of albumin, decrease of
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bilirubin, improvement of CP and MELD score)
and decreasing the incidence of severe infections
(Zhang et al. 2012; Lin et al. 2017; Schacher et al.
2021). In a longer study, upon allogeneic MSC
infusion (obtained from donor BM, cord blood,
and umbilical cord), MELD score improved at
6 months, 1 year, and 2 years of follow-up. No
serious adverse events were observed during or
after infusions of MSC in patients with
decompensated cirrhosis as compared to control
patients (Zhang et al. 2012; Liang et al. 2017).
UC-derived MSC transfusion also increased liver
function and survival rate in ACLF patients,
either by intravenous infusion or hepatic arterial
transfusion (Shi et al. 2012; Li et al. 2016).

However, in contrast, several studies showed
no benefit of MSC transplantation. A previous
study indicated the unsafety of the procedure,
and even mortality, following cell transplantation.
In a randomized, placebo-controlled trial, from
15 autologous MSC-injected patients, there were
3 deaths registered, while the rest of the patients
did not show any improvement in liver function
and CP or MELD score (Mohamadnejad et al.
2013). Another study had shown that in this
study, even though it was considered safe and
feasible, consecutive liver biopsy examinations
suggested that MSC infusion via peripheral vessel
could not reach the liver in a sufficient amount;
thus there were no improvements in MELD
scores and serum albumin (Kantarcıoğlu et al.
2015).

3.2 Hematopoietic Stem Cells

Hematopoietic stem cells (HSC) are the most
accessible source of stem cells in the body. They
give rise to all lineages of blood cell differentia-
tion. In the beginning, it was thought that CD34
(CD34+ cells) is the HSC marker in mammals;
however, then it was noticed that human CD34-
also had self-renewing capability and acted as
primitive HSC that could give rise to CD34+
cells (Zanjani et al. 1998; Wang et al. 2003;
Sumide et al. 2018).

The differentiation capacity of HSC, espe-
cially to hepatic lineage, is still limited if not

controversial. Previously, it was shown that
HSC could become liver cells when co-cultured
with injured liver separated by a barrier (Jang
et al. 2004). In mouse model studies, the trans-
plantation of human cord blood cells CD34+ was
able to repopulate the liver (even though with a
very low percentage) showing the contribution of
HSC (Masson et al. 2004). However, this poten-
tiality was challenged over time. A study showed
that HSC expressed mRNAs of hepatic cell
markers, but could not efficiently convert into
hepatocytes in vitro even in the presence of
cytokines or co-cultured hepatocytes (or tissue)
(Lian et al. 2006). As mentioned by Thorgeirsson
and Grisham, it seemed that the hematopoietic
cells are only a minor contributor to hepatocyte
formation under either physiological or patholog-
ical conditions. These cells, however, may pro-
vide cytokines and growth factors that promote
hepatocyte functions by paracrine mechanisms
(Thorgeirsson and Grisham 2006).

In the clinical study, the application of HSC
transplantation in the ESLD had been another
option, even though it is not as frequent as the
MSC, in line with this limitation described above.
One of the first studies comprised a rather small
number (phase 1); autologous CD34 was injected
into five patients with liver insufficiency. Patients
were previously given subcutaneously granulo-
cyte colony-stimulating factor (G-CSF) for
5 days to increase the number of harvested
CD34+ cells from the circulation. Following por-
tal vein or hepatic artery injection of these cells,
four patients showed improvement in serum albu-
min (Gordon et al. 2006).

In another study which used the same method,
90 ESLD patients received G-CSF followed by
autologous CD34+ and CD133+ HSC infusion in
the portal vein. Up to 6 months of follow-up,
around 50% had near normalization of liver
enzymes and improvement in synthetic function,
and 14% showed stable states, compared to con-
trol group (Salama et al. 2010). From the same
group in another study, stem cell transplantation
was done via portal vein infusion of 50% of HSC
(CD34+/CD133+), and the other 50% were
differentiated to MSC and infused systemically
in a peripheral vein in the presence of growth
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factors. This procedure had a low incidence of
complications and it improved CP and MELD
score and degree of ascites of the patients. When
the infusion was done in two sessions, the
sustained response was continued throughout the
follow-up period of 12 months (Zekri et al. 2015).

Another group had shown that the infusion of
cell population with CD133+ marker (stem/pro-
genitor cell (SPC)) in ESLD patients was feasible
and safe and improved liver function transiently.
The recollection of SPC after G-CSF treatment
was associated with increased levels of selected
cytokines potentially facilitating SPC function
(Catani et al. 2017).

Hematopoietic cell isolation and injection
from BM also had been performed. In this
study, autologous mononuclear (CD34/CD45+)
from BM was infused via the peripheral vein in
nine patients. Following the procedures, no major
adverse effects were noticed. Infused patients
had significantly improved CP scores at 1 and
6 months together with improvement in liver
biopsy (Terai et al. 2006).

3.3 Endothelial Progenitor Cells

The endothelial progenitor cells (EPC) were
discovered around two decades ago (Asahara
et al. 1997). These cells were purified by mag-
netic bead selection with the surface markers
antigens CD34+ and Flk1+; in vitro, these cells
differentiated into endothelial cells (Asahara et al.
1997). As in MSC the nomenclature of EPC is
still under discussion, where another term “endo-
thelial colony-forming cells (ECFC)” is also used
(Prasain et al. 2012; Keighron et al. 2018). This
disagreement in consensus needs a more precise
characterization of these cells based on a
pre-defined cellular phenotype and function
(Medina et al. 2017).

By using a nonhuman primate model, the local-
ization of injected autologous EPC/endothelial
cells (EC) can be traced. At 14 days postinjection
via the portal vein, these cells were found scattered
in the intercellular spaces of hepatocytes at the
hepatic tissues, indicating successful migration
and reconstitution in the liver structure as the

functional EPC/EC (Qin et al. 2018). Another
study examined the benefit of BM-EPC in a rat
model of liver fibrosis/cirrhosis induced by carbon
tetrachloride (Sakamoto et al. 2013; Lan et al.
2018). While EPC transplantation gave a benefi-
cial result, combined transplantation of BM-EPC
and BM-derived hepatocyte stem cells exhibited
maximal treatment effect (Lan et al. 2018).

The transplantation of EPC in decompensated
liver cirrhosis patients had been reported. In
this phase 1–2 pilot clinical trial, autologous
cells were harvested from the bone marrow of
patients subjected to differentiation to EPC
ex vivo. Following hepatic arterial administration
in 11 patients, no treatment-related severe adverse
events were observed. At 90 days post-
transplantation, there was a significant improve-
ment in MELD, and five of nine patients alive
showed a decreased hepatic venous pressure gra-
dient (D’Avola et al. 2017).

3.4 Fetal Human Hepatocytes

Fetal liver is becoming an available source of
cells for the treatment of liver diseases. Group of
Cardinale et al. defined fetal liver as the liver
developed from 10 weeks of gestation, the timing
when the hematopoietic progenitor cells migrate
from the aorta-mesonephros-gonad region to col-
onize the liver (Giancotti et al. 2022). It contains
hepatic stem/progenitor cells within the ductal
plates and multipotent stem/progenitor cells
within large intrahepatic bile ducts and extrahe-
patic bile ducts (Semeraro et al. 2013).

Still, limited information is available for the
clinical application of fetal liver for ESLD. An
Indian clinical study of fetal liver transplantation
in 25 end-stage liver cirrhosis patients showed
clinical improvement observed in terms of all
clinical and biochemical parameters together
with a decrease of MELD in 6 months’ follow-
up in all patients. These cells were obtained from
fetal livers of spontaneous abortions from 16 to
20 weeks of gestation and showed positivity of
EpCAM+ (Khan et al. 2010). A comparable result
was obtained from a study in Italy. Following
fetal liver transplantation in an ESLD patient,
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the MELD score decreased from 15 to 11 at
3-month and 10 at 18-month follow-up with no
signs of encephalopathy. These cells expressed
highly significant amounts of proliferation
markers compared to adult hepatocytes (Gridelli
et al. 2012).

3.5 Hepatic Lineage Differentiation

Several studies had taken another additional step
for the application of the MSC. Taking advantage
of the multipotency ability, MSCs obtained either
from BM, UC, or adipose tissues can be subjected
to a hepatic lineage differentiation in vitro before
the infusion into the patient/recipient. For exam-
ple, adipose-derived MSC can be differentiated
into hepatocytes in 14 days’ culture condition
with hepatogenic medium containing dexametha-
sone, insulin, hepatocyte growth factor (HGF),
and epidermal growth factor (EGF), followed by
activation of the extracellular signal-regulated
kinase (ERK)/mitogen-activated protein kinase
(MAPK) signaling pathway (Liang et al. 2009).

One of the first clinical studies using this
approach in ESLD was reported in 2011. In this
study, upon the isolation and the phenotyping of
the autologous BM-MSC, MSC was stimulated
into hepatic cells using in the presence of HGF
for 7 days. The hepatic-committed lineage was
then evaluated by morphological, immunophe-
notyping, and albumin production. Cells were
then injected via the intrasplenic or intrahepatic
route. The result showed that MSC-infused
patients had significant improvement in ascites
and serum albumin, CP, and MELD score over
the control group. No difference was observed
between intrahepatic and intrasplenic groups
(Amer et al. 2011).

Another study used a two-step MSC differen-
tiation into the hepatic lineage, using HGF and
FGF, continued by oncostatin and dexametha-
sone. In this phase 2 trial, however, cells were
injected intravenously. MSC-received patients
showed partial improvement in liver function
tests and MELD score at 3 and 6 months post-
infusion. However, there was no significant dif-
ference regarding clinical and laboratory findings

for MSCs transplantation of either undifferenti-
ated or differentiated cells (El-Ansary et al.
2012).

4 Cell Reprogramming

In the last decades, advances in molecular and
cellular biology technologies open exponential
opportunities in the manipulation of cellular
fate. One of the greatest breakthroughs of the
century is the discovery that mature cells can be
reprogrammed to become immature, even plurip-
otent cells, leading to a greatly appreciated shared
Nobel Prize in Physiology or Medicine 2012
awarded to Sir John B Gurdon and Shinya
Yamanaka (https://www.nobelprize.org/prizes/
medicine/2012/summary/).

Back in the 1960s, John Gurdon was successful
in transplanting nuclei from fully differentiated
cells from the intestine of a tadpole into the cell
nucleus of a frog’s egg cell. The egg developed
into a fully functional cloned tadpole. The
transplanted nucleus promoted the formation of a
differentiated intestinal cell and at the same time
contained the genetic information necessary for
the formation of all other types of differentiated
somatic cell in a normal feeding tadpole (Gurdon
1962). This nuclear transfer technique was then
widely publicized several decades later with the
cloning of Dolly sheep, published in 1997 by
Wilmut et al. (1997).

In 2006, by using four defined transcription
factors Oct3/4, Sox2, c-Myc, and Klf4 (OSKM
factors), Takahashi and Yamanaka showed that
mouse fibroblasts could be reprogrammed into an
embryonic stage, namely, the induced pluripotent
stem cells (iPSC). These iPSC cells exhibited
ESCs morphology and growth properties and
ESCs marker genes. Furthermore, subcutaneous
transplantation of iPSC cells into nude mice
resulted in variety of tissues from all three germ
layers (Takahashi and Yamanaka 2006). In the
following year, this technique was then proven in
a human cell. Human iPSC cells were similar to
human ESC in morphology, proliferation, surface
antigens, gene expression, epigenetic status of
pluripotent cell-specific genes, and telomerase
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activity (Takahashi et al. 2007). Because of its
ESC-like pluripotency, iPSC is a valuable tool in
the basic research on the mechanisms of tissue
formation, cell therapy, and patient-specific cell
development.

4.1 Induced Pluripotent Stem Cells
(iPSC)

First data on the iPSC differentiation to functional
hepatocytes was reported in 2009 by Song et al.
(Song et al. 2009). They used iPSC cell lines 3U1
and 3U2 subjected to hepatic differentiation pro-
tocol composed of four stages: endoderm induc-
tion (activin A), hepatic specification (FGF4,
BMP2), hepatoblast expansion (HGF, KGF),
and hepatic maturation (oncostatin M, dexameth-
asone, N2, B27, nonessential amino acids, and
β-mercaptoethanol). The differentiated cells
exhibited mature hepatocyte functions including
albumin secretion, glycogen synthesis, urea pro-
duction, and inducible cytochrome P450 activity
(Song et al. 2009). This process takes around
21 days.

A more rapid protocol was then demonstrated.
In about 12 days, iPSC could be directed into
mature hepatocytes by using the protocol of endo-
dermal induction (activin A, Wnt3a, HGF),
hepatic lineage commitment (in the presence of
nonessential amino acids, β-mercaptoethanol,
DMSO), and hepatic (oncostatin M, dexametha-
sone, ITS) (Chen et al. 2012). The cells had similar
gene expression profile to mature hepatocytes.
Besides its functionality as mature hepatocytes
including cytochrome P450 enzyme activity,
secreted urea, uptake of low-density lipoprotein
(LDL), and glycogen storage, these induced
hepatocyte-like cells rescued lethal fulminant
hepatic failure in a NOD-SCID mouse model
(Chen et al. 2012).

The induction of iPSC into bipotent hepatic
progenitor cells (HPC) gave rise to both mature
hepatocytes and cholangiocytes (Yanagida et al.
2013). The induced-HPC from iPSC resulted in
CD13highCD133+ cells, positive markers of
hepatoblast. Spheroid formation of the
HPC could be induced into hepatocytes

(dexamethasone, OSM) and cholangiocytes
(EGF, HGF, R-spondin 1, Wnt-3a, A-83-01, and
Y-27632) (Yanagida et al. 2013). The clinical
application of iPSC was performed in several
diseases such as degenerative and cardiovascular
disease with various results (Martins et al. 2014;
Bracha et al. 2017; Tsujimoto and Osafune 2021).
However, for liver diseases, its application mostly
is still conducted in a preclinical setting.

4.2 Human Liver Organoids (HLO)

Organoid biology is one of the fastest-growing
interests in recent organ development and regen-
eration study. The capacity of isolated cells to
self-assemble to form an entire organism was
already reported in the early 1900s. When sili-
ceous sponges are kept in confinement under
proper conditions, they degenerate and gave rise
to small masses of undifferentiated tissue which
in turn grow and differentiate into perfect sponges
(Wilson 1907).

Human liver organoids (HLO) derived from
either adult stem/progenitors or pluripotent stem
cells emulate the structure and cellular diversity
of the human liver in vivo (Chang et al. 2021;
Reza et al. 2021). Under a strict cell culture con-
dition and the presence of correct growth factors
(e.g., matrigel, TNFα), organoids can resemble a
functional liver. A recent report even showed that
from a single hepatocyte, organoids can be
established and grown for multiple months
while keeping its key morphological, functional,
and gene expression features (Hu et al. 2018).
However, when compared to the fetal culture,
HLO derived from hepatocytes appeared to be
more limited in their expansion times yet yielded
organoids of very similar composition (Hu et al.
2018).

In the clinical application, HLO technology is
not yet available, even though preclinical data in
the animal model showed promising result. In a
PH model in rat, the transplantation of HLO
through portal vein is safer and more effective
compared to monolayer cell transplantation,
showing 70% replacement of the damaged liver
(Tsuchida et al. 2019). Further, HLO in
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combination with co-culture with other cell lines
and advanced bioengineering tools (sheet layers,
microfluidics, 3D scaffold) will increase the dif-
ferentiation efficiency and enhance the functional
maturity.

5 General Perspective

Stem cell therapy is a promising alternative for
the treatment of ESLD, especially when the avail-
ability of donor liver for LT is scarce. Thriving
development of technology in stem cell isolation
and maintenance, characterization, and in vitro
differentiation to hepatic cells is growing fast,
thus allowing an improved method in clinical
application.

In ESLD, however, at least until now, stem cell
therapy application is still rather far from ideal.
The biology of stem cells is still needed to be
explored. Clinicians and basic scientists must
know whether the transplanted cells are
multipotent and self-renewable or the cells’ phe-
notype (Fig. 2), both in donor cells and in the
recipient patient, including the protocol of admin-
istration, patient’s status, safety, and efficacy.
Further, vast differences in the source of the
cells, type of the cells, transplantation protocol,
and criteria of recipients render technical hitches.

The administration of stem cell injection (quantity
and mode of delivery) may vary between
laboratories based on each protocol and experi-
ence. Several studies were conducted to definite
numbers of stem cells for the injection, while
others calculate the body weight of the recipient.
Similarly, several studies preferred intrahepatic
administration while others via intrasplenic or
peripheral vein. Therefore, so far, there is no
definite indication or international consensus
regarding the protocol of adult stem cells in
ESLD patients.

Apart from a scientific perspective, the clinical
application of cell therapy is related also to the
vast speed of the internet spread. Advances in
information technology significantly increase the
global transfer of knowledge, including in the
search for stem cell therapy in one click. As
can be seen in cell therapy for regenerative medi-
cine, the so-called stem cell tourism (Berger et al.
2016; Sipp 2017) is also a problem in hepatology
and gastroenterology (Hermerén 2014). This
problem requires prompt action for the regulation
of cell therapy, from scientists, clinicians,
professional associations, and government or
authorities. Stem cell therapy for ESLD had
shown some promising results, but more research
and the definition of a better protocol are still
significantly needed.

Fig. 2 Important factors for adult stem cell therapy
for ESLD. Stem cell therapy would need to consider
aspects both in the donor cells (source, types, phenotypes,
potency) and in the recipient (liver status, patients’

performance, risk/benefit), together with the mode of
administration (site, presence of growth factor, doses)
and correct protocol
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