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Abstract

Background: Due to the advances in catheter-
based interventional techniques, a wide range
of heart diseases can now be treated with a
purely interventional approach. Little is yet
known regarding biological effects at the
intracardiac implantation site or the effects on
endothelialization and vascular inflammation in
an in vivo environment. Detailed knowledge of

ongoing vascular response, the process of
endothelialization, and possible systemic
inflammatory reactions after implantation is
crucial for the clinical routine, since implants
usually remain in the body for a lifetime.

Methods: For this narrative review, we
conducted an extensive profound PubMed
analysis of the current literature on the
endothelialization processes of intracardially
implanted devices, such as persistent foramen
ovale (PFO) occluders, atrial septal defect
(ASD) occluders, left atrial appendage (LAA)
occluders, transcatheter aortic valve implan-
tations (TAVIs), and leadless pacemakers.
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Additionally, the known biological activities
of common metallic and synthetic components
of intracardiac devices in an “in vivo” setting
have been evaluated.

Results: Nitinol, an alloy of nickel and
titanium, is by far the most commonly used
material found in intracardiac devices.
Although allergies to both components are
known, implantation can be performed safely
in the vast majority of patients. Depending on
the device used, endothelialization can be
expected within a time frame of 3–6 months.
For those patients with a known allergy, gold
coating may be considered as a viable
alternative.

Conclusion: Based on our analysis, we
conclude that the vast majority of devices are
made of a material that is both safe to implant
and nontoxic in long-term treatment according
to the current knowledge. The literature on
the respective duration of endothelialization
of individual devices however is highly
divergent.
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Abbreviations

ASD Atrial Septal Defect
ASO Amplatzer Septal Occluder
ATP Adenosine Triphosphate
CMs Cardiomyocytes
DAMPs Damage-Associated Patterns
ECs Endothelial Cells
ECM Extracellular Matrix
EPCs Endothelial Progenitor Cells
GSO Gore Septal Occluder
HMGB1 High-mobility Group B1
HSPs Heat Shock Proteins
ICAM-1 Intercellular Adhesion Molecule 1
IFN-γ Interferon Gamma

LAA Left Atrial Appendage
MERTK Myeloid–Epithelial–Reproductive

Tyrosine Kinase
MMPs Matrix Metalloproteinases
MI Myocardial Infarction
NOAC New/“Non-Vitamin K” – Oral

Anticoagulants
PCI Percutaneous Coronary Intervention
PDGF Platelet-Derived Growth Factor
PET Polyethylene Terephthalate
PFO Persistent Foramen Ovale
PRRs Pattern Recognition Receptors
RAGE Receptor for Advanced Glycation

End Products
ROS Reactive Oxygen Species
SMCs Smooth Muscle Cells
TAVI Transcatheter Aortic Valve

Implantation
TGF-β Transforming Growth Factor Beta
TLRs Toll-Like Receptors
Treg Regulatory T-cells
VEGF Vascular Endothelial Growth Factor
VSD Ventricular Septal Defect

1 Introduction

Interventional cardiology is a rapidly evolving
field in modern clinical medicine. Although the
enormous therapeutic potential was not immedi-
ately recognized after Forßmann carried out the
first catheterization of the right heart in 1929 in a
heroic self-experiment, the idea was taken up and
further developed by Cournand et al., who are
today regarded as founders of interventional car-
diology (Forssmann-Falck 1997; Nicholls 2020).

Grüntzig’s first successful percutaneous coro-
nary intervention (PCI) in 1977 marked the dawn
of a new era in clinical cardiology as catheter-
based therapy changed from a purely diagnostic
tool to an interventional treatment option for
acute coronary syndrome (Ar et al. 1979).

During recent years, interventional cardiology
has undergone an enormous transformation as
catheter technology has developed rapidly and is
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used in many different cardiological diseases.
Today, in addition to coronary heart disease, a
wide range of valvular diseases or congenital
heart defects, such as atrial septal defect (ASD)
(Sievert et al. 1998) and persistent foramen ovale
(PFO) can be successfully treated using a catheter-
based interventional approach. Even the catheter-
based implantation of cardiac pacemakers is
widely used in countless clinics today.

Permanent intracardiac placement of devices
represents an enormous challenge for product
engineers, as all components must offer excep-
tional stability and durability combined with low
weight and small size. In addition, any device
exposed to blood flow in an “in vivo” environ-
ment must be safe in terms of hemostasiological
interactions; more precisely, the device must
not initiate thrombogenic or even hemolytic
cascades. Furthermore, the materials components
must have an extremely low allergic potential,
both at the implantation site and, in case of sys-
temic reactions, in the entire organism.

All the devices must undergo extensive testing
on safety and durability for market approval in
order to achieve CE certification. In addition, an
optimally designed intracardiac device should
also have acceptable biocompatibility, especially
rapid endothelialization, to reduce the duration of
anticoagulant use with the goal of reduced bleed-
ing risk and to safely discontinue use of endocar-
ditis prophylaxis.

The aim of this narrative review is to provide an
overview of the current state of knowledge on
endothelialization in common intracardiac devices

as well as an overview of the known in vivo
interactions, and the important components of dif-
ferent devices.

2 Intracardiac Devices

2.1 PFO Occluders

The patent foramen ovale (PFO) is an essential
component of intrauterine circulation, allowing
blood to bypass fetal lungs. Although spontane-
ous occlusion should occur shortly after birth, this
physiological process is absent or incomplete in
up to 27.3% of the population (Hagen et al. 1984).

In the vast majority of cases, a PFO does not
have a clinical relevance. Nevertheless, it may play
a crucial role in the genesis of migraine headaches
or even cryptogenic stroke (Saver et al. 2017). In
symptomatic patients, interventional treatment
with an occluder can be considered to permanently
close the opening. Recent studies (CLOSE,
REDUCE, RESPECT LT, and DEFENSE PFO)
showed that interventional PFO occlusion (Fig. 1a)
was associated with a significant reduction in
recurrent stroke compared to drug therapy
(Mas et al. 2017; Saver et al. 2017; Søndergaard
et al. 2017). Based on the long-term results of
RESPECT and the results of the REDUCE study,
two occluder devices, the AMPLATZER PFO clo-
sure and GSO (GORE Medical, Flagstaff, AZ,
USA) received US Food and Drug Administration
(FDA) approval for secondary stroke prevention in
2016 and 2018, respectively.

Fig. 1 PFO occluders. (a) Schematic representation of the regular position of a PFO occluder. (b) Amplatzer™ PFO
Occluder. (c) Figulla Flex II® PFO Occluder. Pictures provided by Occlutech International AB
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The later developed Flex II PFO occluder
(Occlutech, Jena, Germany) received CE certifica-
tion for clinical use in Europe in 2009. According
to the manufacturer, more than 33,000 such
devices have been delivered worldwide.

2.1.1 Amplatzer PFO Occluder
The Amplatzer occluder (Abbott Cardiovascular,
North Chicago, Illinois, USA), first implanted in
1997, has been very well described elsewhere
(Meier 2005; Madhkour et al. 2019). In brief, it
is a double disc made of Nitinol mesh, the inside
of which is made of polyester fabric.

A thin neck, which consists of the tightly
woven wires of the discs, serves as a connector.
The neck is rotated around its longitudinal axis so
that it can be extended in principle (Fig. 1b). The
two discs are sewn together with polyester fabric
for better stabilization (Scalise et al. 2016).

The special feature is the so-called “shape
memory,” which means that the device returns
to its original shape after being stretched through
the guiding catheter.

The Amplatzer PFO Occluder is available in
three different sizes (18 mm, 25 mm, 35 mm),
whereby the size specification is based on the size
of the right-sided disc. The most frequently
implanted occluder is the medium size. The
small version has its special value in the case of
a small PFO with a largely stable septum primum,
whereas the 35 mm version is used in the case of
an extremely redundant septum primum and pos-
sibly in the case of an atrial septal aneurysm.

According to the current literature, the chances
of success are very high, so that complete closure
of the shunt can be assumed in well over 90% of
cases (Bruch et al. 2002; Greutmann et al. 2009).

Residual shunts require surgical intervention
only in rare cases, although the actual average
duration until complete endothelialization
“in vivo” is not completely clear. In a recent posi-
tion paper, the German Cardiology Society
recommends dual antiplatelet therapy with aspirin
and clopidogrel for a period of 6 months. Should
there be a concomitant indication for oral
anticoagulation, this will be given as monotherapy,
with NOACs being preferred.

2.1.2 Gore Septal Occluder
The Gore Septal Occluder (GSO) has been
approved for the treatment of PFOs in Europe
for 10 years now by means of CE certification.

In contrast to the more commonly implanted
Amplatzer Occluder, it is intended to offer
advantages in difficult anatomical conditions.
The device consists of five nitinol wires formed
into a left atrial and a right atrial disc. The outer
frame is coated with polytetrafluoroethylene film.
For implantation, the device comes already
loaded on a 10 French introducer catheter. A
special safety feature is the integrated retrieval
cord, which can be used to retrieve the device if
necessary. When fully deployed, two circular
discs are formed, facing each other, which can
be fixed in place by a locking mechanism in the
center.

2.1.3 Flex II PFO Occluder
The Flex II PFO occluder (Occlutech, Jena,
Germany) consists of two self-expanding woven
nitinol discs (Fig. 1c). The special feature of this
device is a central pin on the left atrial disc and
also a ball socket joint connection. The complete
closure is achieved by two biocompatible poly-
ethylene terephthalate patches.

The superiority of this device is the flexibility
and ability to angulate in order to achieve the
maximal adaptation to the interatrial septum.
This offers an advantage for the complex
anatomical variations (Neuser et al. 2016).

2.2 ASD Occluders

Atrial septal defect (ASD) is a relatively common
congenital heart defect with a birth prevalence of
1.43:1000 live births and an expected survival
rate into adulthood of 97% (Anderson et al.
2002; Anderson 2016; Lee et al. 2018). ASD of
the ostium secundum is the most common type,
occurring in 70% of all patients with ASD,
followed by ASD of the ostium primum (10%)
and ASD of the sinus venosus (5–10%) (Moons
et al. 2009). The “true atrial septum,” that is, the
tissue directly separating the atrial cavities, is
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restricted to the base of the oval fossa and the
surrounding inferoanterior margins. Defects of
the true atrial septum are called “secundum
defects.” Atrial septal defects are usually well
tolerated in children, but can cause significant
complications in adults (Campbell 1970). Early
closure is therefore recommended and can be
achieved using catheter deployment in the major-
ity of cases. A symptomatic benefit can be seen at
any age (Komar et al. 2014) Since left ventricular
compliance decreases with age or in the presence
of conditions that can increase left atrial pressure
(e.g., high blood pressure, ischemic heart disease,
cardiomyopathy, aortic and mitral valve disease),
the left–right shunt can increase due to ASD
(Le Gloan et al. 2018; Kumar et al. 2019). How-
ever, conditions that reduce right ventricular com-
pliance (e.g., pulmonary arterial hypertension,
pulmonary stenosis, right heart disease, tricuspid
valve disease) may eventually reverse the shunt
and cause cyanosis (Le Gloan et al. 2018).

A left–right shunt leads to right ventricular
volume overload, which in turn results in right
ventricular dilatation. It is well tolerated through-
out childhood, despite a pulmonary–systemic
flow ratio that can exceed 3:1. The pulmonary
vascular system is also able to absorb the
increased blood flow at low pulmonary artery
pressure for many years. A persistent large left–
right shunt leads to increased right atrial and right
ventricular dilatation from late childhood
onwards, which in some patients leads to arrhyth-
mia and a progressive increase in pulmonary

vascular resistance (Le Gloan et al. 2018). Severe
pulmonary vascular disease is rare (<5%), unless
there are other associated factors (Nashat et al.
2018).

2.2.1 Amplatzer Septal Occluder
The Amplatzer® Septal Occluder (ASO) (Abbott
Cardiovascular, North Chicago, Illinois, USA;
former: St. Jude Medical, Inc., St. Paul,
Minnesota) consists of nitinol–titanium memory
wire mesh infused with polyester patches that
facilitate occlusion and endothelialization
(Fig. 2a). It consists of a smaller right and a larger
left disc connected by a waist; the difference in
size of both discs is 4 mm (Nassif et al. 2016).

ASO has been shown to be a practical, safe,
and effective treatment option for ASD (Masura
et al. 1997; Podnar et al. 2001; Masura et al. 2005;
Cardoso et al. 2007; Knepp et al. 2010). Never-
theless, complications such as implant emboliza-
tion, mispositioning, and fracture may occur in
rare cases. Moreover, cases of erosion/perfora-
tion, cardiac arrhythmia, cardiac tamponades,
and even infectious endocarditis have been
reported (Sievert et al. 1998; Chessa et al. 2002;
Fischer et al. 2003; Balasundaram et al. 2005;
Sadiq et al. 2012).

2.2.2 Occlutech ASD Occluder
The Figulla Occlutech ASD closures (Occlutech,
Jena, Germany) consist of individually braided,
very thin (40–150 μm or 0.00157–0.00590
inches) nitinol strands. All strands end proximally

Fig. 2 ASD occluders. (a) Amplatzer™Multi-Fenestrated Septal Occluder – “Cribriform”. (b) Occlutech® Fenestrated
Atrial Septal Defect Occluder. Pictures provided by Occlutech International AB
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and therefore do not require clamping to the left
disc (Fig. 2b). This results in a smaller amount of
uncovered metallic material. The ultrathin fabrics
made out of polyethylene terephthalate (PET) of
the device promote the endothelial growth after
implantation as well as the defect closure (Pedra
et al. 2016). The design of the Flex II ASD
occluder is intended to allow ideal alignment of
the septum, which in turn should increase feasi-
bility and patient safety during implantation. The
device is made of Titanium oxide–covered niti-
nol, which should result in the lowest possible
release of nickel.

2.3 Left Atrial Appendage Occluders

The term “LAA occluder” refers to devices that
can be used to close the left atrial appendage
(LAA). In patients with atrial fibrillation, the
LAA is anatomically particularly important, as
this is where the vast majority of cardio-embolic
strokes originate (Alli and Holmes, 2015). In
patients at high risk for bleeding complications,
implantation of an occluder allows discontinua-
tion of anticoagulants after the initial endothelia-
lization phase. The most common product is the
Watchman Device, which has been CE certified
since 2005. Another product, CE certified in
2013, is the Amulet device, which is designed to
provide benefits due to its wide range of available
sizes, according to the manufacturer.

2.3.1 Watchman Device
The Watchman device (Boston Scientific,
Marlborough, MA, USA) consists of a nitinol
frame coated with a permeable 160 micron poly-
ethylene terephthalate knit fabric on the left atrial
surface (Fig. 3a) (Fountain et al. 2006). It is a
parachute-shaped, self-expanding device (Kramer
and Kesselheim, 2015). The PET knit fabric
facilitates endothelialization over the device and
serves as a filter for emboli that originate from the
LAA pouch (Della Rocca et al. 2019). After fem-
oral vein access and transseptal puncture, the
Watchman device is delivered using a 12-Fr
delivery catheter and is then deployed until its
titanium dowel pin separates from the catheter
(Fig. 3b). The Watchman device is affixed to the
LAA wall by 10 fixation barbs, which are
arranged around the mid-perimeter. To match
different LAA orifice sizes, the device is
manufactured in five sizes (21 mm, 24 mm,
27 mm, 30 mm, and 33 mm) to allow adequate
placement. An adequate seal is defined as a leak-
age < 5 mm.

2.3.2 Amulet Occluder
The AMULET is a second-generation Amplatzer
Cardiac Plug (Abbott Cardiovascular, North
Chicago, Illinois, USA; former: St. Jude Medical,
Inc., St. Paul, Minnesota). The self-expanding
device is made of flexible, braided nitinol filled
with polyester tissue. It consists of a proximal
disc and a distal lobe shaped like a hockey puck

Fig. 3 Watchman Devices. (a) Watchman™. (b) Watchman™ on a 12 French delivery catheter. Pictures provided by
Boston Scientific
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connected by a flexible waist (Meerkin et al.
2013). The proximal disc covers the LAA orifice
and the distal lobe with stabilization hooks
that secure the engagement of the occluder to
the LAA wall. The LAA Occluder is delivered
by a 12-F or 14-F sheath into the left atrium after a
transseptal puncture. It is available in eight
sizes. Pre-interventional standard imaging,
including transesophageal echocardiography
and computerized tomography (CT) scan, is
performed in order to determine the proper
occluder size. The proximal disc is always
slightly larger than the lobe and has a central
screw.

2.4 Transcatheter Aortic Valve
Implantation

Transfemoral aortic valve replacement, first
performed in 2001 by Cribier et al., is beyond
doubt one of the greatest achievements in inter-
ventional cardiology (Cribier et al. 2002). As
alternative to conventional surgical aortic valve
replacement, a minimally invasive transcatheter
implantation of a valve prothesis is possible. The
intervention was originally reserved for medium-
to high-risk elderly patients, also due to material
durability profiles. In recent years, its indication
has been extended to younger patients age

<75 years. Recently, transcatheter valve replace-
ment has been approved by the FDA as the
method of choice for all patients (Edlinger et al.
2020). The most important challenge is the mate-
rial compatibility and the special required
characteristics of the valve. Those consist of
“durability, low thrombogenicity, hydrodynam-
ics, hemocompatibility, low calcification suscep-
tibility and crimping and deployment stability”
(Rotman et al. 2018).

Various models have been developed over the
years, whereby the self-expanding Medtronic
valves (CoreValve, Evolut R) (Medtronic,
Minneapolis, MN, USA) and the balloon-
expanding Edwards valves (Sapien, Sapien XT,
Sapien 3) (Edwards Lifesciences, Irvine, CA,
USA) are the most widely implanted valve types
(Chakos et al. 2017). The SAPIEN 3 and SAPIEN
3 Ultra are the latest generation of balloon-
expanding Edwards valves. The Evolut R and
Evolut PRO are the latest self-expanding valves
from Medtronic (Renker and Kim, 2020). In sev-
eral hospitals they consist more than 70% of the
total transcatheter aortic valve implantation
(TAVI) procedures.

Another important aspect concerns the valve-
in-valve procedures. Here is the geometric orifice
area that plays the most significant role. Therefore
a valve-in-valve procedure should only be used
after careful planning, because it can diminish the

Fig. 4 Transcatheter aortic valve products of Edwards
Lifesciences. (a) Edwards SAPIEN™; Edwards SAPIEN
3TM transcatheter heart valve. Picture provides by

Edwards-Sapien. (b) Edwards SAPIEN™ 3 Ultra;
Edwards SAPIEN 3 UltraTM transcatheter heart valve.
Picture provided by Edwards-Sapien
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hydrodynamic performance of the valve and sig-
nificantly reduce the opening area (Rotman et al.
2018).

2.4.1 Edwards SAPIEN 3/SAPIEN 3 Ultra
The Edwards SAPIEN 3 (Fig. 4a) and SAPIEN
3 Ultra (Fig. 4b) consist of a cobalt–chromium
stent frame, three leaflets of bovine pericardium,
an inner and an outer skirt. The SAPIEN 3 has an
internal skirt and an outer sealing skirt made of
polyethylene terephthalate (PET) (Jose et al.
2015). In the SAPIEN 3 Ultra, the outer portion
is textured PET material with a greater height in
comparison to the SAPIEN 3 (Renker and Kim,
2020). The valves are manufactured in four sizes
(20 mm, 23 mm, 26 mm, and 29 mm).

2.4.2 Medtronic Evolut R/Evolut PRO
Both valves consist of a self-expandable nitinol
stent frame and three leaflets of porcine pericar-
dium positioned in a supra-annular location. In
contrast to the Evolut R (Fig. 5a), an external
porcine pericardial sleeve has been added to the
Evolut PRO (Fig. 5b) as a sealing sleeve. The
Evolut R model is manufactured in four sizes:
23 mm, 26 mm, 29 mm, and 34 mm, while the
Evolut PRO is only available in 23 mm, 26 mm,
and 29 mm.

The valve size selection is of paramount sig-
nificance for the physician and for the patient and

is highly associated with the success of a TAVI
procedure. In order to choose the right valve size,
an MSCT Scan must be performed. Then the
appropriate software should be used to quantify
the aortic root.

The cut-off values of the manufacturer’s sizing
plan should be considered. There is often a differ-
ence between clinical valve selection and selec-
tion based on the computer software. The
“device–host interaction” is very important in
order to prevent complications such as obstruc-
tion of the coronary arteries, relevant aortic regur-
gitation after implantation as well as conduction
disorders such as atrioventricular (AV) block
(El Faquir et al. 2020).

A rare but sometimes life-threatening compli-
cation is the transcatheter heart valve migration
into the outflow tract of the left ventricle. In this
case is a balloon repositioning of the valve neces-
sary as well as possibly a valve-in-valve proce-
dure in order to prevent severe aortic
regurgitation (Ito et al. 2017).

One of the deciding mortality as well as suc-
cess parameters of a TAVI procedure – also long
term – is the paravalvular regurgitation. This
reinforces the importance of correct valve selec-
tion and the experience of the physician. In sev-
eral publications, it is observed that in the second
part of the study or cohort there are a greater
number of good final results as the technique of

Fig. 5 Transcatheter aortic valve products of Medtronic. (a) CoreValve™ Evolut™ R. (b) CoreValve™ Evolut™ Pro.
(Source: Medtronic GmbH)
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the interventional cardiologist improves exponen-
tially (Wang et al. 2021).

2.5 Leadless Pacemakers

Within the last decade, single-chamber leadless
pacemaker devices have been developed, which
are implanted to the inner side of the right ventri-
cle via a steerable catheter insertion system
(Reynolds et al. 2016). Currently, the most com-
mon device in clinical use is the MicraTM
(Medtronic Inc., Minneapolis, MN, USA).
Despite its small size of 0.8 m3, a light capsule
weight of 2.0 g, a length of 25.9 mm, and an outer
diameter of 6.7 mm, it has all the features of a
conventional single-chamber pacemaker system
(Reddy et al. 2015). The Micra pacemaker itself
consists of nitinol, gold, steel, titanium, and tung-
sten (Figs. 6a and 6b). The tines, with which the
device is affixed to the endocardium of the right
ventricle, consist entirely of nitinol.

There are now numerous clinical studies that
prove both, the effectiveness and safety of the
product. Medtronic postulates that the device
would float in an in vivo environment at the inside
of the right ventricle. According to the manufac-
turer, the only connection to the endothelium is

through the pacemaker’s anchoring system. As
lead-free pacemaker technology is a relatively
new topic, the effects on the intracardiac endothe-
lium at the anchor point are not yet well under-
stood. However, individual cases have also been
published in which unexpected encapsulation was
observed. . First data from autopsies show partial
or even complete encapsulation (Tjong et al.
2015; Kypta et al. 2016). In the two published
cases, complete endothelialization or even encap-
sulation is reported after 12 months and
19 months, respectively. Within one of our prior
in vitro studies, we could identify a potential
impact of the tungsten component in these pro-
cesses of endothelialization (Edlinger et al. 2019).

3 Common Device Components

3.1 Nitinol

Nitinol, a material used in the majority of intra-
cardiac devices, is a 55:45 nickel–titanium alloy.
It is of enormous value for medical applications
due to its thermal shape–memory effect and super
elasticity (Ryhänen et al. 1998). Nitinol is not
considered cytotoxic or thrombogenic, although
its individual components, nickel and titanium,

Fig. 6 Micra Pacemakers. (a) Illustration of Micra™ pacemaker size compared to a human hand. (b) Micra™. (Source:
Medtronic GmbH)
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can be detected in peripheral blood samples
(Shayan and Chun 2015).

It is assumed that the immunological effects
are comparable to those of stainless steel without
any toxic effects (Ryhänen et al. 1998). Nitinol is
widely used, for example, in many PFO and ASD
occluders, as well as the tines of the Micra pace-
maker are made of this material.

3.2 Titanium

Due to its good in vivo compatibility, titanium is
a widely used component for implants and alloys
(Ungersboeck et al. 1995). Concentrations of
50–150 μg/l can be measured in peripheral
blood samples, a level considered nontoxic
(Ipach et al. 2012). Data from orthopedic studies
could show an increase in classical inflammatory
cytokines such as tumor necrosis factor alpha
(TNF-α), interleukin-1beta (IL-1β) and IL-6 in
patients with titanium implants. However, there
is no evidence of toxicity to date (Sun et al. 2000;
Östberg et al. 2015). In cardiology, for example,
titanium is used in pacemaker generators with no
long-term adverse effects. It is particularly impor-
tant as a component of the nitinol alloy.

3.3 Tungsten

Tungsten is another component that is commonly
used in medical devices. Certain publications
point to toxic effects during long-term treatments
(Witten et al. 2012). However, according to the
current knowledge, no toxic effects are expected
at normal corrosivity rates and slightly elevated
serum levels are considered as normal (Peuster
et al. 2003). It is considered to be a very strong
and durable material as well as very resistant to
corrosion. In cardiology, tungsten is widely used
as a component of pacemaker probes. The Micra
pacemaker also partly consists of this material.

3.4 Gold

Implants made of gold and its nanoparticles are
known to be noncytotoxic and nonimmunogenic

(Shukla et al. 2005). Cytokine elevations of inter-
leukin 6 (IL-6), tumor necrosis factor-alpha
(TNF-α), interleukin 1-beta (IL-1β), and mononu-
clear chemotactic protein 1 (MCP-1) are fre-
quently found. However, these cytokine
reactions are insignificant and have no influence
on the cell viability (Zhang et al. 2011). For this
reason, gold is of paramount value as a reserve
material if the patient to be implanted suffers from
a previously known allergy, for example to tita-
nium. This is a rare allergy, which affects only the
0.6% of the total population. There are reports of
patients who have been successfully implanted
with a gold-plated leadless pacemaker for this
indication. This was described in a 65-year-old
man with a type IV allergy to titanium in the case
report by Kypta et al. (Kypta et al. 2015; Goli
et al. 2012).

3.5 Steel

Steel is considered to be a material of
manufacturing precision, good hygiene, as well
as high resistance against corrosion. It has been
reported that the toxic effects of steel implants are
higher than those of other components (Haynes
et al. 1998). Lacey et al. observed a decrease in
monocyte and macrophage survival in response to
steel (Lacey et al. 2009), as well as a reduced
leukocyte migration to the implant site or pros-
thetic implants. In addition, steel has been shown
to induce abundant elevation of cytokines such as
IL-1β (Haynes et al. 1998).

4 Cardiac Injury, Wound Healing,
and Regeneration – A Brief
Overview

Cardiac injury causes a severity-related damage
of the myocardium, followed by cardiac repair or
wound healing where damaged tissue is usually
replaced by a fibrotic scar, as described in the
literature (Deb and Ubil 2014; Talman and
Ruskoaho 2016). Moreover, it has recently been
reported that adult cardiomyocytes (CMs) have a
slight ability to proliferate, raising the promise of
promoting cardiac regeneration in humans
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(Beltrami et al. 2001; Bergmann et al. 2009;
Mollova et al. 2013). However, the feasibility of
cardiac regeneration is largely dependent on the
type and extent of immune responses, thus lead-
ing to an inflammatory response (Sattler and
Rosenthal 2016; Cheng et al. 2017).

Although the implantation of an intracardiac
device is necessary for the maintenance of proper
cardiac pacing in various cardiac diseases, it is
also accompanied by the injury of the cardiac
tissue at the site of implantation. This inevitable
injury initiates a complex series of tissue repair
processes that comprise of the interaction and
timely coordination of several cell types,
cytokines, chemokines, and signaling cascades.
Furthermore, there is a host reaction following
the implantation of foreign biomaterial into the
cardiac implantation site. This also includes
blood–material interactions, inflammation, gran-
ulation, provisional matrix formation, and the
fibrotic remodeling of the injured area (Gretzer
et al. 2006; Luttikhuizen et al. 2006).

Generally, the immune response to cardiac
injury is accomplished by the innate and the
adaptive immune systems in synergy and can be
divided into three phases: the pro-inflammatory
phase, the proliferative phase, and the reparative
phase (Lai et al. 2019).

4.1 Pro-inflammatory Phase

In the very early process after the implantation of
a foreign biomaterial, a material–blood interac-
tion occurs, whereby proteins from the blood
adhere to the implant’s surface. A provisional
matrix based on the blood’s components forms,
that is, the initial thrombus or blood clot where
further protein adsorption proceeds. This provi-
sional matrix and the injured tissue are responsi-
ble for the recruitment of structural, biochemical,
and cellular compartments that are essential for
wound healing (Gristina 1994; Gretzer et al.
2006; Luttikhuizen et al. 2006). In this period,
inflammatory cells are recruited to the site of
injury to clear the damaged wound of dead cells
and tissue, as well as to degrade the matrix debris.
Furthermore, it initiates the processes necessary

to form the reparative scar. However, it has been
described that prolonged or excessive inflamma-
tion is accompanied by a poor tissue remodeling
and worse outcomes in patients or animal models
with myocardial infarction (MI) (Timmers et al.
2008; Arslan et al. 2010; Frangogiannis 2012).

The initial immune response is driven by
molecules released from necrotic cells, the
so-called damage associated patterns (DAMPs)
(Arslan et al. 2010). In addition, during tissue
death, dying proteases, hydrolases, and mitochon-
drial reactive oxygen species (ROS) are also
released into the extracellular space, generating
further DAMPs that trigger the inflammatory
response (Kono and Rock 2008). Subsequently,
these DAMP molecules bind to pattern recogni-
tion receptors (PRRs), including toll-like
receptors (TLRs) and the receptor for advanced
glycation end products (RAGE), that are
expressed by both tissue resident cells and
recruited leukocytes (Muzio et al. 2000; Chavakis
et al. 2004). Among other DAMPs present in
cardiac inflammation, high-mobility group B1
(HMGB1) is one of the best characterized
(Andrassy et al. 2008). HMGB1 is responsible
for the initiation of inflammation in myocardial
infarction (MI) and cardiac ischemia by promot-
ing the migration of immune cells through its
interaction with PRRs, such as TLR2/4 (most
abundant TLRs in the heart) and RAGE
(Nishimura and Naito 2005; Klune et al. 2008;
Sims et al. 2009). Moreover, it induces tissue
healing by changing the macrophages’ pheno-
type, favoring neoangiogenesis and promoting
stem cell activation and proliferation (Bianchi
et al. 2017).

Physiologically, the extracellular matrix
(ECM) is responsible for the support and the
maintenance of the heart’s structural integrity.
However, during inflammation the ECM is
degraded by matrix metalloproteinases (MMPs),
activated by necrotic cells, neutrophils, and
macrophages. This degraded ECM can in turn
act as a DAMP, driving the inflammatory path-
way forward (Dobaczewski et al. 2010a). In the
context of cardiac injury, a switch to a transient
fibrin-based ECM is achieved (González-Rosa
et al. 2011; Frangogiannis 2017), further
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modulating and guiding inflammatory cells
through TLRs (Corbett and Schwarzbauer 1998;
Smiley et al. 2001; Flick et al. 2004) and promot-
ing the proliferation of endothelial cells and
fibroblasts (Frangogiannis 2017).

As mentioned above, dying cardiomyocytes
release intracellular components, such as
deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA), as well as intracellular components
like adenosine triphosphate (ATP) and heat shock
proteins (HSPs), that might accelerate the ongo-
ing immune response (Arslan et al. 2011; Kono
et al. 2014). Furthermore, reactive oxygen species
(ROS), which stem from mitochondria of necrotic
cells or are secreted by neutrophils, constitute a
key player in the promotion of immune cells to
infiltrate the injured tissue. ROS contributes to the
onset of the nuclear factor kappa light chain
enhancer of activated B-cells (NF-κB), a main
chemotactic and pro-inflammatory protein com-
plex (Thannickal and Fanburg 2000; Gloire et al.
2006), and directly activates the so-called
inflammasome, as well as cardiac resident cells,
such as fibroblasts and mast cells (Gilles et al.
2003; Kawaguchi et al. 2011). The inflamma-
some, a multiprotein complex of receptors and
cytokines, in turn promotes the immune response
and triggers the expression and activation of other
cytokines (Latz et al. 2013).

After the immune response has been initiated
by damage-associated molecular patterns
(DAMPs) and related pattern recognition
receptors (PRRs), resident immune cells and non-
immune cells, such as resident macrophages,
endothelial cells (ECs), and fibroblasts, drive the
expression of pro-inflammatory cytokines and
chemokines. In cardiac device implantation, the
extent of immune responses is primarily mediated
by the extent of injury that happened during the
implantation procedure (Zdolsek et al. 2007;
Tang et al. 1998). In the presence of DAMPs,
cytokines, chemokines, activated platelets, and
histamine, neutrophils are the first innate immune
cells that are rapidly recruited to the injured tissue
(Mcdonald et al. 2010; Soehnlein and Lindbom
2010). Contemporaneously, the cardiac endothe-
lium is activated by pro-inflammatory cytokines,
such as TNF-α, IL-1β, and histamine (Duperray

et al. 1995; Dewald et al. 2004; Debrunner et al.
2008). This ensemble of pro-inflammatory
cytokines constitutes the inflammasome and
facilitates the neutrophil transmigration between
and through the endothelial wall to the site of
tissue injury (Frangogiannis et al. 1998; Singh
and Saini 2003). Furthermore, IL-6 seems to be
a main mediator of tissue injury, since it is
expressed by CMs and recruited neutrophils and
macrophages (Youker et al. 1992). IL-6 in turn
upregulates intercellular adhesion molecule
1 (ICAM-1) on CMs that mediates neutrophil
binding and is associated with cytotoxic events
(Entman et al. 1992; Youker et al. 1992).

4.2 Cell Proliferation Phase

The cellular proliferative phase is the second
phase and is characterized by the expansion of
neutrophils and macrophages that degrade dead
cells and the matrix debris, further promoting the
expression of cytokines and growth factors. Due
to the pro-inflammatory and cytotoxic activity of
neutrophils, excessive amounts or a prolonged
presence of neutrophils have been associated
with remodeling and a poor prognosis after MI
(Mocatta et al. 2007; Akpek et al. 2012). On the
other hand, they constitute a key factor in the
resolution of inflammation and lead to a shift of
the macrophages’ phenotype to a reparative one
(Čulić et al. 2002; Pase et al. 2012). Furthermore,
they contribute to the initiation of angiogenesis
during inflammation by expressing vascular
endothelial growth factor (VEGF) (Gong and
Koh 2010).

Generally, monocytes are a type of leukocytes
that have the ability to differentiate into
macrophages and dendritic cells. There are two
different subpopulations of monocytes present in
cardiac inflammation: the Ly6Chigh and Ly6Clow

(Hettinger et al. 2013; Yona et al. 2013). Ly6Chigh

monocytes belong to the primary subset that is
recruited to the injured heart, driven by MCP-1.
Therefore, Ly6Chigh monocytes are commonly
active in the early pro-inflammatory phase and
are responsible for proteolytic and inflammatory
processes. In contrast, Ly6Clow are sometimes
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known as resident monocytes due to their appear-
ance of not being actively recruited into the
injured myocardium (Geissmann et al. 2003;
Nahrendorf et al. 2007). They have been shown
to emerge later, in the resolution phase, demon-
strating decreased inflammatory properties, as
well as the expression of VEGF (Yao et al.
2012). It is not definitively clear if Ly6Clow arise
from differentiation of Ly6Chigh (Hanna et al.
2011; Yona et al. 2013), although it has been
speculated that they arise from the same progeni-
tor cells (Hettinger et al. 2013; Yona et al. 2013).
In addition, two macrophage subsets (M1 and M2
macrophages) correspond with these different
monocyte concentrations. M1 macrophages are
present early after heart injury and are known to
secrete pro-inflammatory cytokines, like IL-1β,
TNF-α, IL-6, and IL-10 (Dewald et al. 2005),
whereas M2 monocytes become active at the
later stage of reparative heart tissue healing
(Nahrendorf et al. 2010). However, the simple
division of macrophages into two subsets should
be considered due to the great variety of macro-
phage phenotypes (Martinez and Gordon 2014).
The initial acute inflammatory response usually
resolves within 1 week after device implantation,
though it is also dependent on the extent of injury
at the implant site (Gretzer et al.).

4.3 Endothelialization
and Resolution of Inflammation

Finally, the conversion from inflammation to the
repair phase is crucial for wound healing as a
prolonged inflammatory response would lead to
CM death, excessive fibrosis, cardiac remodeling,
and damage. In cardiac device implantation, acute
inflammation is often followed by a chronic
inflammation period that is characterized by
the presence of mononuclear cells, such as
monocytes and lymphocytes. This chronic
inflammation lasts for a short time of approxi-
mately 2 weeks and is strictly located to the site
of implantation. The prolongation of the inflam-
mation phase for greater than 3 weeks, usually a
device infection is indicated (Luttikhuizen et al.
2006). Once the inflamed/injured area is cleared

of apoptotic cells, the repair process is initiated
and a new ECM is produced (Frangogiannis
2014). The resolution phase is mainly
characterized by the recruitment of lymphocytes,
the activation of fibroblasts, and the proliferation
of ECs, as well as the activation of smooth muscle
cells (SMCs).

Originally, it was thought that circulating
endothelial progenitor cells (EPCs), as
progenitors of ECs, were a source of new endo-
thelial cells, as first described by Asahara et al. in
1997 (Asahara et al. 1997). They originate from
different hematopoietic progenitor cells located
in the bone marrow, such as hematopoietic stem
cells, myeloid precursors, and mesenchymal stem
cells (Balistreri et al. 2015). However, EPCs also
stem from different nonhematopoietic tissues,
such as the umbilical cord etc. (Ingram et al.
2004; Mund et al. 2012; Chan et al. 2013). In
response to tissue damage, they are released
into the circulation and invade the site of
injury attracted to inflammatory cytokines and
chemoattractant proteins. As progenitor cells,
EPCs constitute a source for ECs by differentia-
tion and further promoting the proliferation of
resident ECs (Buijs et al. 2004; Li et al. 2012).
Furthermore, they release several growth factors,
such as VEGF and angiopoietins, and other
pro-endothelial factors that promote the healing
process (MCP-1), stromal cell-derived factor
1, insulin-like growth factor 1, platelet-derived
growth factor (PDGF), and macrophage inflam-
matory protein 1a (Rehman et al. 2003; Caiado
et al. 2008). In turn, these factors stimulate ECM
proteins and the proliferation of SMCs. An over-
view of the factors released by ECs, SMCs, and
inflammatory cells was already provided by Welt
and Rogers (Welt and Rogers 2002).

Both lymphocytes, B- and T-cells, comprise
the main cellular components of the adaptive
immune system. T-cells are further divided into
CD8+ and CD4+ subsets, whereas CD4+ T cells
are the main actors in the healing process.
According to their secreted cytokines they are
further classified into Th1 (IL-2, TNF-α, and
interferon gamma (IFN-γ); Th2 (IL-4, IL-4,
IL-13); Th17 (IL-17, IL-21, IL-22); and regu-
latory T-cells (Treg) (transforming growth factor
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beta (TGF-β), IL-35) (Hofmann and Frantz
2015). More precisely, especially Tregs play a
key role in the healing phase through suppressing
the immune response in the damaged tissue, pro-
moting revascularization, and initiating the shift
to a reparative phenotype of the macrophages
(M2 microphages; as mentioned above)
(Zouggari et al. 2009; Dobaczewski et al.
2010b; Weirather et al. 2014). Particularly,
TGF-β was shown to be mainly responsible for
the deactivation of inflammatory macrophages in
MI (Dobaczewski et al. 2011). These M2
macrophages then have the ability to express
high amounts of several different MMPs and
secrete anti-inflammatory cytokines, such as
IL-4, IL-13, and mainly IL-10 (Frangogiannis
et al. 2000). Consequently, the extent of IL-4
and IL-13 expression also determines the extent
and duration of the inflammatory response. Fur-
thermore, it was found that myeloid–epithelial–
reproductive tyrosine kinase (MERTK) (Wan
et al. 2013) and platelet-derived growth factor
(PDGF) (Zymek et al. 2006) are crucial for
the transition to a reparative status too. Further-
more, TGF-β signaling and the decline in
pro-inflammatory cytokine signaling result in
the activation of interstitial and perivascular
fibroblasts, EC proliferation, followed by repara-
tive myocardial fibrosis and angiogenesis (Chen
and Frangogiannis 2013). Any failure of accurate
regulation of Treg or TGF-β signaling may lead to
excessive scar formation, an ongoing chronic
inflammation (Kypta et al. 2016), such as
described in the case report by Kypta et al.
(Dobaczewski et al. 2011).

5 Discussion

In the last decades, an immense increase in the
number of implanted intracardiac devices could
be observed (Mond and Proclemer, 2011). At the
same time, patients implanted with a device are
getting older and therefore may live for decades
with this foreign material embedded in the endo-
cardium and exposed to blood flow (Leon et al.
2010; Proclemer et al. 2010). This is of relevance

insofar as little is known about long-term toxic
effects of implantable devices (Eliaz 2019;
Nasakina et al. 2019). Furthermore, at present it
is not known with certainty whether there is a
“critical concentration” of the metallic
components which, if exceeded, can be expected
to cause consequential damage to health. Nitinol,
by far the most commonly used alloy for intracar-
diac devices, appears to have a number of good
properties especially during implantation and
durability in long-term treatment. On the one
hand, it is highly malleable, which is of enormous
importance in the context of implantation
(Stoeckel et al. 2004; Henderson et al. 2011;
Maleckis et al. 2018); on the other hand, it is
considered to be extremely durable with overall
good tolerance (Eliaz 2019).

We know from numerous preliminary reports
that as a result of intracardiac positioning,
endothelialization on nitinol surfaces is expected
to occur after only a few weeks (Zahn et al. 2001;
Sigler et al. 2005a; Schwartz et al. 2010) and
depends on numerous factors, such as the size of
the device or, in the case of occluders, the primary
interventional outcome (Granier et al. 2018).
Incomplete endothelialization could lead to
complications at site of the implantation, such as
thrombus formation (Sigler et al. 2005b; Sellers
et al. 2019). Moreover, patient-specific factors
must be taken into consideration. For instance,
there are known cases of patients with multiple
allergies where excessive endothelialization was
found in the autopsy (Kypta et al. 2016). Vice
versa, it seems conceivable that endothelialization
processes or the healing phase can be negatively
influenced by the intake of immunosuppressive
substances such as glucocorticoids (Radovsky
et al. 1988) or TNF-α inhibitors (Sandberg et al.
2012). The same is conceivable for patients in
whom cytotoxic substances or radiation therapies
are used (Hopewell 1990). As a wide overall
variation in anatomic conditions is to be expected
in PFO, ASD, or LAA occlusions, positional con-
trol by transesophageal echocardiography appears
essential (Krizanic et al. 2010; Saw et al. 2016).

Intracardiac pacemakers are a special case in
this context, as no endothelial surface usually
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forms over the implanted cardiac device due to
direct contact with the blood flow (Jana 2019).
According to the manufacturers, the devices
should only be anchored to the endocardium at
their base, while the majority of the device should
remain floating in the blood flow. However, there
are now several published cases reporting the
contrary. Namely, a complete or at least partial
endothelialization/encapsulation of the device in
the right ventricular wall (Candinas et al. 1999;
Esposito et al. 2002; Tjong et al. 2015; Keiler
et al. 2017). Interestingly, there are also reports
from autopsies where histological processing has
shown a clear evidence of inflammatory pro-
cesses around the encapsulated pacemaker
(Dvorak et al. 2012). Exact knowledge of any
expected endothelialization is of enormous clini-
cal relevance, since an influence on the stimula-
tion threshold is at least conceivable through the
encapsulation (Stokes et al. 1991). There are also
issues of what to do in the event of battery
exhaustion. An extraction, as originally intended
by the developers, seems unlikely in the case of
complete encapsulation. It remains to be seen
whether the limited space at the surface of the
inner heart is sufficient to safely implant an addi-
tional device. For the Micra pacemaker, it could
be shown in an animal model that up to three
devices can be implanted without any problems
(Omdahl et al. 2016).

Another major uncertainty is the importance of
allergies in long-term use. Nitinol is an alloy
which consists of 45–50% nickel (Eliaz 2019), a
relevant allergen. Nickel allergies are type IV
allergies, that is, a contact allergy caused by
long-term exposure, usually after 24 h to a few
days (Tramontana et al. 2020), and are relatively
common with a prevalence of approximately 8%
to 19% in adults (Diepgen et al. 2016). Whether
the allergenic potential within the blood flow is
particularly high, or whether a weakening occurs
once endothelialization has been achieved,
remains completely unclear to date. Allergies are
also known to occur with exposure to titanium,
which is the other component of the nitinol alloy
(Fage et al. 2016). However, the incidence is

significantly lower for titanium; consequently
therefore the clinical relevance is probably of
secondary importance (Grosse Meininghaus
et al. 2020). In case of a confirmed allergy, it is
possible to coat the device with a less/nonaller-
genic substance such as gold, which has already
been done in individual cases (Kypta et al. 2015).
The measurement of any metal released from
cardiac devices has already been performed
(Ries et al. 2003; Saylor et al. 2018). An open
question for the future will be whether there are
measurable parameters that can be used to esti-
mate the degree of endothelialization. For exam-
ple, it is conceivable that the metallic components
could be measured as nanoparticles in peripheral
blood, but their concentration would decrease
during the healing phase. It may also be assumed,
that with complete endothelialization achieved,
the metal content might fall below the detection
limit, which in turn provides important additional
information for the estimated duration of the
healing process.

6 Conclusion

In summary, we conclude that the vast majority of
intracardiac devices meet very high safety
standards from a hemostasiological point of view,
and that there is currently no evidence of any
therapy-limiting toxic effects in long-term treat-
ment. Nitinol, as a component of many devices,
is of particular importance in this context. How-
ever, there are currently gaps in knowledge for
patients who are under immunosuppressive medi-
cation. Moreover, the impact of an optimal implan-
tation technique on the initial healing phase and
endothelialization phase has not been fully under-
stood in many cases.

For these reasons, it seems indispensable to us
that patients continue to be treated at the respec-
tive healthcare center after primary implantation
and are followed up by means of imaging, so that
individualized coagulation management can be
determined if necessary.
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7 Limitations

We could only include devices which are already
in broad clinical use. Nevertheless, a number of
less-established devices in the field of interven-
tional cardiology might already have received
market approval or might be in the preclinical
testing phase. However, in our opinion, the cur-
rent knowledge of the established devices provide
a fundamental basis for the above review and the
obtained conclusions.
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