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Characterization of C. elegans
Chondroitin Proteoglycans and Their
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Heterogeneity; Evolutionary Aspects
on Structural Differences Between
Humans and the Nematode
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Abstract

Proteoglycans regulate important cellular
pathways in essentially all metazoan
organisms. While considerable effort has
been devoted to study structural and functional
aspects of proteoglycans in vertebrates, the
knowledge of the core proteins and
proteoglycan-related functions in invertebrates
is relatively scarce, even for C.elegans. This
nematode produces a large amount of
non-sulfated chondroitin in addition to small
amount of low-sulfated chondroitin chains
(Chn and CS chains, respectively). Until
recently, 9 chondroitin core proteins (CPGs)
had been identified in C.elegans, none of
which showed any homology to vertebrate
counterparts or to other invertebrate core
proteins. By using a glycoproteomic approach,
we recently characterized the chondroitin

glycoproteome of C.elegans, resulting in the
identification of 15 novel CPG core proteins in
addition to the 9 previously established. Three
of the novel core proteins displayed homology
to human proteins, indicating that CPG and
CSPG core proteins may be more conserved
throughout evolution than previously per-
ceived. Bioinformatic analysis of the primary
amino acid sequences revealed that the core
proteins contained a broad range of functional
domains, indicating that specialization of
proteoglycan-mediated functions may have
evolved early in metazoan evolution. This
review specifically discusses our recent data
in relation to previous knowledge of core
proteins and GAG-attachment sites in Chn
and CS proteoglycans of C.elegans and
humans, and point out both converging and
diverging aspects of proteoglycan evolution.
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1 Introduction

The notion of “proteoglycans” as discrete entities
first became apparent during the 1950s
(Yanagishita 1993). By isolating and analyzing
material from bovine cartilage, it was found that
glycosaminoglycan (GAG) chains were
associated with a protein component (Yanagishita
1993; Schatton and Schubert 1954). These
compounds were referred to as “mucoproteins”
although it was unclear at that time whether the
GAG-protein association involved covalent
bonds or not. In the following years, a covalent
association was indeed demonstrated between
chondroitin sulfate and serine residues (Muir
1958; Lindahl 2014). Furthermore, a
tetrasaccharide “linkage region” [Glucuronic
acid (GlcA) – Galactose (Gal) – Galactose
(Gal) – Xylose (Xyl)] was identified that cova-
lently linked the GAG chain to specific serine
residues of the corresponding core proteins
(Roden and Smith 1966). Since then, core
proteins have gradually become recognized as
distinct molecular entities, each with differences
in their protein structures and cellular functions,
as well as with differences in the number and
types of GAG chains attached (Lindahl 2014;
Murdoch and Iozzo 1993; Kjellen et al. 1989;
Lindahl et al. 2015).

The identification of proteoglycans is often
difficult from a methodological perspective,
since proteoglycan identification requires the
combined sequencing of a given core protein,
together with the characterization of which type,
and where along the amino acid sequence the
GAG chain(s) are attached. Biochemical and
immunological techniques are often hampered
by the size and heterogeneity of the GAG side
chains, which preclude effective core protein
sequencing and characterization. Molecular clon-
ing techniques offer a solution to these difficulties
by allowing the identification and sequencing of
mRNAs and protein coding genes. However,
these methods do not provide information on
any post-translational modifications, which
creates ambiguity as to the identification of a
proteoglycan (Kjellen et al. 1989; Bourdon et al.
1985). Therefore, studies on identifying

proteoglycans have earlier been focused mostly
on isolation and characterization of a single core
protein in specific model systems, whereas unbi-
ased and global characterizations of all
proteoglycans of a specific tissue or organism
have not been systematically attempted.

The number of core proteins identified in
vertebrates is limited. Less than 20 heparan sul-
fate proteoglycans (HSPGs) and about 60 chon-
droitin sulfate proteoglycans (CSPGs) have so far
been identified in humans (Lindahl 2014; Zhang
et al. 2018; Noborn et al. 2015; Nasir et al. 2016).
This is a very limited number in relation to other
types of glycoproteins, such as N- and
O-glycosylated proteins, which are counted in
their thousands (Nilsson et al. 2013; Joshi et al.
2018). We have recently developed a
glycoproteomic approach that may assist in
identifying how many and which type of
proteoglycans are indeed expressed in different
animal tissues and species. The aim was to char-
acterize linkage regions, attachment sites and
identities of CS core proteins (Noborn et al.
2015). In this approach, trypsin-treated
proteoglycans were enriched from various sample
matrices by strong-anion-exchange chromatogra-
phy, and then digested with chondroitinase ABC
to specifically reduce the CS chain lengths. The
preparations were thereafter analyzed by
nLC-MS/MS and the data from remaining linkage
regions, linked to tryptic or semi-tryptic peptides,
was processed by a novel glycopeptide search
algorithm. Analysis of human urine and CSF
resulted in the identification of 13 novel CSPGs,
many of which were previously defined as pep-
tide prohormones (Noborn et al. 2015). This
suggested that many novel proteoglycans and
proteoglycan-related functions are yet to be dis-
covered, and that new methodological approaches
may assist in such an endeavor.

While proteoglycans in vertebrates has been
the focus of several structural and functional stud-
ies, the knowledge of proteoglycans in
invertebrates is still relatively scarce, even for
the otherwise well-studied nematode C.elegans.
Until recently, 5 HSPGs and 9 CPG core proteins
had been identified in the nematode (Wilson et al.
2015; Olson et al. 2006). Using our
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glycoproteomic strategy, we mapped the chon-
droitin glycoproteome of C.elegans, confirming
the identities of the 9 previously established core
proteins, but also identifying an additional
15 chondroitin core proteins (Noborn et al.
2018). Three of the novel core proteins displayed
homologies to human proteins, which was
surprising since no chondroitin core proteins
have previously been found to display homology
to human proteins, and were therefore not consid-
ered to be well-conserved throughout evolution
(Olson et al. 2006). Bioinformatic analysis of the
primary amino acid sequences was performed to
provide insights of the structural domain organi-
zation of each core protein. This analysis revealed
a previously unknown structural complexity of
CPGs in C.elegans, indicating that complex
proteoglycan-related functions may have evolved
early in metazoan evolution.

Additional glycoproteomic analyses of
proteoglycans of various animals, vertebrates as
well as invertebrates, are likely to expand our
understanding of the structural heterogeneity of
Chn and CS core proteins during metazoan evo-
lution. However, at present it is difficult to fully
appreciate the evolutionary aspects on core pro-
tein alterations in large, simply because the num-
ber of studies on core proteins in invertebrates is
too limited (and that available studies typically
focus only on a single core protein). Thus, this
review will concentrate on the recent findings of
CPGs and CSPGs in C.elegans and humans and
points to similarities and differences between core
proteins between these two evolutionary distant
species. Although core proteins are the primary
focus of this review, the initiating
GAG-biosynthetic machinery in C.elegans and
humans will also be discussed to highlight both
converging and diverging aspects of proteoglycan
evolution. References to relevant reviews relating
to structural diversity of GAGs and proteoglycans
in other organisms are given in their conceptual
contexts in the following paragraphs. Our general
and specific conclusions are summarized in
Fig. 1, exemplifying our conclusions on some
evolutionary principles of proteoglycan develop-
ment from C.elegans to Homo sapiens.

2 Proteoglycan Diversity from C.
elegans to Humans

Glycoconjugates constitute the structurally most
diverse group of organic molecules in nature.
This diversity poses a great challenge in
analyzing glycan structures and also in assigning
glycan-specific functions (Joshi et al. 2018;
Gagneux et al. 2015; Mulloy et al. 2009).
Although GAGs constitute a small subgroup of
all glycans, their structural complexity is still
considerable. GAGs are divided into four
subclasses depending on the repeating
disaccharides of the polysaccharide chains:
heparan sulfate (HS)/heparin (GlcA/IdoA-GlcN),
chondroitin sulfate (CS) /dermatan sulfate
(DS) (GlcA/IdoA-GalNAc), keratan sulfate
(Gal-GlcNAc) and hyaluronan (GlcA-GlcNAc).
The molecular heterogeneity is influenced by
large differences in polysaccharide chain length,
domain organization and unique monosaccharide
modifications, e.g. O- and N-sulfations, phosphor-
ylations, sialylations etc. All GAGs, except for
hyaluronan, are invariably attached to core
proteins to form unique proteoglycans (Hascall
et al. 2014; Weigel et al. 1997; Saied-Santiago
and Bulow 2018). This provides additional com-
plexity since different core proteins, have unique
gene coded primary, secondary and tertiary
sequences, with major consequences for where,
which type and which number of GAG chains
that are initiated, extended and modified.

Proteoglycans have a long evolutionary his-
tory and are expressed in all bilateral animals
investigated to date (Couchman and Pataki
2012). HS appeared early in metazoan organisms
and essentially all cells produce complex sulfated
HS structures (Esko and Lindahl 2001). In con-
trast, CS/DS from lower organisms have a limited
structural complexity, a complexity which
increases with evolutionary higher organisms
(Yamada et al. 2011). For extensive information
on proteoglycan diversity and GAG-specific
functions we highly recommend the following
reviews (Couchman and Pataki 2012; Iozzo and
Schaefer 2015; Kjellen and Lindahl 2018; Weiss
et al. 2017). Here, examples are selected to focus
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primarily on different aspects of CPGs in C.
elegans and are not meant to provide a compre-
hensive review on proteoglycan structure and
evolution in general. Hopefully, this review will
provide some new aspects in proteoglycan struc-
ture and perhaps inspire to novel concepts that
can be experimentally tested.

3 Structural Diversity
of Chondroitin and Heparan
Sulfate Proteoglycans
in Invertebrates

The number of CSPGs identified in humans is
around 60 (Noborn et al. 2015; Nasir et al.
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Fig. 1 Schematic illustration of evolutionary
principles bridging millions of years of proteoglycan
development from C.elegans to Homo sapiens. (I)
Divergent evolution where the GAG chain is lost but the
protein is conserved, (II) Parallel evolution conserving
both the GAG chain and the protein, (III) Convergent
evolution where conserved GAG chains are added to

novel core proteins. Note that some functional core protein
domains are conserved throughout evolution whereas
other core proteins lack such domains. The spirals/arrows
are representing the evolutionary multi-interaction steps
for the two primary constituents of proteoglycans,
i.e. GAGs and core proteins
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2016) but in invertebrates, the number of CSPGs
is even lower and the reports are restricted to only
a few species. A proteomic-based study identified
tryptic peptides from versican, neurocan
(CSPG3) and neuroglycan (CSPG4-NG2) in the
gastropoda Achatina fulica (Gesteira et al. 2011).
Since these proteins are well-establish CSPGs in
vertebrates, assumptions of their CS substitutions
were also made in A. fulica. Moreover, two
populations of CSPGs with different molecular
weights were isolated from squid skin (Ilex
illecebrosus) using a combination of
ion-exchange chromatography and ultra-
centrifugation (Karamanos et al. 1990). Biochem-
ical analysis showed different amino acid compo-
sition of these core proteins, although the exact
peptide sequences could not be resolved
(Karamanos et al. 1990). Surprisingly, informa-
tion on CSPGs is lacking in Drosophila
melanogaster, regarded as one of the most stud-
ied invertebrates in glycobiology (Zhu et al.
2019), which supports our perception that there
is a general gap of knowledge of these structures
in invertebrates.

However, earlier studies identified various
HSPGs in D. melanogaster and C.elegans which
display homologies to vertebrate core proteins.
There are 5 known HSPGs in D. melanogaster
that are all homologues of mammalian
counterparts: syndecan, 2 glypicans (dally and
dlp), perlecan (trol) and testican (cow) (Bernfield
et al. 1999; Nakato et al. 1995; Baeg et al. 2001;
Park et al. 2003; Chang and Sun 2014; Nakato
and Li 2016). Similar to these findings, five
homologues to vertebrate genes encoding for
HSPG core proteins have been identified in C.
elegans: syndecan (sdn-1), 2 glypicans (lon-2 and
gpn-1), perlecan (unc-52) and agrin (agr-1)
(Blanchette et al. 2015; Consortium CeS 1998;
Rogalski et al. 1993; Hrus et al. 2007; Hutter
et al. 2000; Blanchette et al. 2017). The unc-52
gene encodes the homologue of the vertebrate
gene perlecan, a major component of the extra-
cellular matrix, which in vertebrates is substituted
with both HS and CS (Rogalski et al. 1993;
Yamada et al. 2002; Noborn et al. 2016). There
is of course a possibility that additional HSPGs,
yet unidentified and maybe not conserved, may

exist in both Drosophila and C.elegans. Never-
theless, the findings so far indicate a high degree
of conservation of genes encoding for HSPG core
proteins throughout evolution.

Nine CPGs have previously been identified in
C.elegans, which were designated CPG-1 to
CPG-9 (Olson et al. 2006). In contrast to the
HSPGs, none of these core proteins showed
homology to vertebrate proteins or to proteins in
other invertebrates such as Drosophila
melanogaster (Olson et al. 2006). Two of the
CPGs (CPG-1 and CPG-2) in C.elegans contain
chitin-binding domains and were therefore
assumed to interact with the chitin layer in the
cuticle (Wilson et al. 2015). Detailed functional
analysis showed that CPG-1 and CPG-2 are
indeed important for the hierarchical assembly
of the egg shell layer during embryogenesis,
resulting in an outer vitelline layer, a middle
chitin layer and an inner CPG-1 and CPG-2
layer (Olson et al. 2012). This specific function
confers to the classical notion of CSPGs as struc-
tural components in cartilage and other connec-
tive tissues. Since vertebrate CSPGs display a
wide range of functional diversity, we argued
that additional CPG core proteins are likely pres-
ent in C. elegans, which not only relate to extra-
cellular matrix formation, but may also
accommodate more specialized functions.

Indeed, in our investigation of the chondroitin
glycoproteome of C.elegans, we found 15 novel
core proteins that were designated CPG-10
through �24, in accordance with previous
introduced terminology (Olson et al. 2006). Six
of the 15 novel core proteins were previously
uncharacterized proteins, and were only
annotated in UniProt based on the open reading
frame (ORF) names (e.g. Protein C45E5.4/CPG-
18) (Noborn et al. 2018). The other novel CPGs
have previously been assigned names based on
phenotypes in mutation studies (e.g. High inci-
dence of males, isoform b/CPG-14), or based on
sequence similarities to vertebrate proteins
(e.g. FiBrilliN homolog/CPG-16). The identified
core proteins displayed a wide range in their
molecular weights, from 7.1 kDa (CPG-9) to
568 kDa (high incidence of males, isoform b/
CPG-14). The number of chondroitin attachment
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sites also varied depending on the core protein,
from one (e.g. CPG-3, CPG-5) to four sites
(CPG-4). Moreover, bioinformatics analysis of
the primary amino acid sequences revealed that
the core proteins contained a broad range of func-
tional domains, assuming their involvement in a
wide-range of physiological functions. In total,
19 unique domains were retrieved form the
24 core protein sequences. Apart from the
expected chitin-binding domains on CPG-1 and
CPG-2, additional domains were identified that
indicate their involvement in extracellular matrix
formation, such as fibronectin type-III domain
(CLE-1A protein/CPG-10) and collagen domain
(COLlagen/CPG-11). Other identified domains
indicate a role in more specialized functions,
such as thrombospondin type-1 domain (Papilin/
CPG-17) and endostatin domain (CLE-1A pro-
tein/CPG-10), both of which are known to be
involved in axon guidance and neuronal develop-
ment (Adams and Tucker 2000; Ackley et al.
2001). Notably, 9 core protein sequences did not
retrieve any hits and displayed only low complex-
ity/disordered domains.

Bioinformatic analysis was also conducted on
human CSPGs, previously identified in human
samples with the same approach. The analysis
retrieved 40 unique domains for 28 core proteins
sequences (Noborn et al. 2015; Nasir et al. 2016).
Certain domains were found in both species, such
as collagen domain and the Kunitz domain. Of the
50 unique domain structures identified in the two
species, 31 were uniquely found in human
CSPGs, 10 uniquely found in C. elegans CPGs,
and 9 found in both species. Moreover, sequences
that only display disordered domains were also
found in humans, although to a lesser degree than
in C.elegans. Three of 28 human core proteins
(10.7%) displayed this characteristic, compared
to 9 out of 24 (37.5%) in C.elegans. This may
indicate a selection process where core proteins
with functional domains are conserved through-
out evolution. A certain amount of research bias
regarding detection of functional domains in the
data base (e.g. more information of human
proteins), may however also explain the higher
incidence of known domains in human. Never-
theless, this analysis suggests a great structural

and also functional diversity of CPGs in C.
elegans and indicates that some, but not all,
functions overlap with those of human CSPGs.
Furthermore, this indicates that also specialized
CS proteoglycan-mediated functions may have
evolved early in metazoan evolution.

4 Evolutionary Aspects of CS
Biosynthesis in C.elegans
and Humans

Although C.elegans is a well-studied model
organism with regard to genomics, proteomics
and certain aspects of glycosylation (Consortium
CeS 1998; Antoshechkin and Sternberg 2007;
Shim and Paik 2010; Schachter 2004), informa-
tion on CS proteoglycans and proteoglycan-
mediated functions is limited. This is unfortunate
since C.elegans is often used to study the influ-
ence of genes and proteins in evolutionary
conserved processes (Maduro 2017; Vuong-
Brender et al. 2016). Such processes,
e.g. morphogen distribution in embryogenesis of
e.g.D. melanogaster, have been shown to involve
HS proteoglycans which fine tunes the cellular
response (Nakato and Li 2016; Bishop et al.
2007). Structural information of CS
proteoglycans in C.elegans would therefore prob-
ably assist to our functional understanding of
these processes in the worm.

The CS (and GAG) biosynthesis is always
initiated by the transfer of a Xyl to a serine resi-
due in the core protein. The xylosylation typically
occurs at certain serine residues with a glycine
residue at the carboxyl-terminal side (-SG-), and
with a cluster of acidic residues in close proximity
(Esko and Zhang 1996). This motif was initially
observed for vertebrate core proteins and a similar
motif has also been suggested for C.elegans
(Olson et al. 2006). The chondroitin sulfate bio-
synthesis continues with the addition of two
galactose (Gal) and one glucuronic acid (GlcA)
residue, completing the formation of the consen-
sus tetrasaccharide linkage region. The biosyn-
thesis then continues with polymerization of the
chain through the addition of alternating units of
N-acetylgalactosamine (GalNAc) and GlcA
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residues. The individual enzymes for each step in
the chondroitin biosynthesis in C.elegans have
been well established. In a mutagenesis experi-
ment, eight mutations that perturb vulval devel-
opment in the growing embryo were identified
(designated sqv or squashed vulva). All eight
mutations (sqv-1 to 8) produced similar
phenotypes, such as a defective vulval epithelial
invagination and for some mutations oocyte
development was also affected (Wilson et al.
2015; Herman et al. 1999). Moreover, all sqv
genes showed homology to vertebrate enzymes
and were found to be involved in different aspects
of the GAG-biosynthesis. Biochemical analysis
showed that sqv-6, sqv-3, sqv-2, and sqv-8 encode
for vertebrate homologues of glycosyltransferases
required for the formation of the tetrasaccharide
linkage regions, whereas sqv-1, sqv-4, and sqv-7
encode proteins that have roles in nucleotide
sugar metabolism and transport (Wilson et al.
2015; Herman and Horvitz 1999; Bulik et al.
2000; Berninsone et al. 2001; Hwang and Horvitz
2002; Hwang et al. 2003; Izumikawa et al. 2004).
Taken together, all components required for the
initial part of the biosynthesis is highly conserved
between C.elegans and humans, including nucle-
otide sugar precursors and their transport into the
Golgi, as well as enzymes required for linkage
formation and chain polymerization (Olson et al.
2006).

In vertebrates, the chondroitin polysaccharide
undergoes extensive modifications of
sulfotransferases and chondroitin-specific
epimerases (Mizumoto et al. 2013; Ly et al.
2011). This results in complex yet defined
CS/DS structures that may interact with various
protein ligands with different degree of
specificities (Le Jan et al. 2012; Mizumoto et al.
2015; Sugiura et al. 2016). In contrast, chondroi-
tin in C.elegans is considerably less complex and
the general view was, until recently, that the nem-
atode only produces non-sulfated chondroitin
(Yamada et al. 1999; Toyoda et al. 2000). This
was puzzling since C.elegans, which belongs to
Ecdysozoa clade, appeared to be an exception to
other animals within the same clade, such as
D. melanogaster, which was known to produce
sulfated structures (Toyoda et al. 2000).

Moreover, even animals in the evolutionary
older phylum of Cniderians, containing simple
organisms such as hydrozoans, produce CS
(Yamada et al. 2011). This paradox was recently
settled when two separate groups demonstrated
that Chn may indeed be sulfated in C.elegans,
although to a smaller extent (Dierker et al. 2016;
Izumikawa et al. 2016). So far only one single
sulfotransferase, which catalyzes the GalNAc 4-O
sulfation has been identified in C.elegans. How-
ever, the presence of both 4-O and 6-O sulfated
GalNAc residues was shown by MS/MS analysis
of CS disaccharides, and indicated that at least
one additional sulfotransferase should be
expressed in the nematode (Dierker et al. 2016).
In contrast, C.elegans seems to lack the
chondroitin-specific epimerases present in
vertebrates and no DS structures have yet been
detected in this nematode. Taken together, apart
from the epimerase, all the components required
for CS biosynthesis are highly conserved between
C.elegans and humans, demonstrating an essen-
tial role for CS throughout metazoan evolution
(Olson et al. 2006; Yamada et al. 2002;
Berninsone et al. 2001).

5 Glycosaminoglycan Diversity
from C.elegans to Human

However, not all aspects of GAG-evolution
seems well conserved. Hyaluronan (HA), a
non-sulfated GAG composed of long repeating
units of GlcNAc and GlcA disaccharides, seems
to have appeared quite late in evolution (Csoka
and Stern 2013). The genome in C.elegans does
not contain the necessary synthases for HA and
there is no structural evidence of HA in the nem-
atode (Yamada et al. 1999; Stern 2003). HA has
various biological roles and is a prominent com-
ponent of hydrated matrices in the extracellular
matrix. Since Chn/CS only contains a few percent
of sulfated disaccharides in C.elegans (Dierker
et al. 2016), the large majority of the chains are
therefore likely non-sulfated structures. Apart
from their sizes, chondroitin and HA are rela-
tively similar in structure with differences only
in the isomeric identities of the HexNAc residues
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(GalNAc vs GlcNAc). It has been suggested that
chondroitin in C.elegans is a possible HA ances-
tor, carrying out functions in C.elegans that are
assigned to HA in vertebrates (Stern 2003). While
vertebrates have evolved two different GAG
structures, CS and HA, to accommodate separate
cellular functions, one may speculate that this
structural-functional specialization also occurs in
C.elegans to a certain extent. It is thus possible
that non-sulfated chondroitin accommodate
HA-like functions (e.g. provide hydrated matri-
ces); whereas sulfated chondroitin structures
accommodate more specialized functions
(e.g. provide binding motifs to specific ligands).

Typically, a “GAG-perspective” or a “core
protein perspective” is applied when studying
the role of proteoglycans in various pathophysio-
logical settings. This structural and conceptual
separation is natural, given their vast structural
heterogeneity and the limited number of analyti-
cal methods that provides integrated
GAG-protein characterization. However,
integrating structural information on the GAG
chains, their attachment sites and the potential
functional domains of the corresponding core
protein, will likely provide new perspective
when studying proteoglycan-related functions.
For instance, the effect of chondroitin on neuronal
migration in C.elegans has been studied by
targeting two proteins in the chondroitin biosyn-
thetic pathway: the chondroitin synthase (SQV-5)
and a UDP-sugar transporter (SQV-7) (Pedersen
et al. 2013). Worms with hypomorphic alleles in
these proteins showed aberrant migration of
hermaphrodite-specific neurons (HSN) (Pedersen
et al. 2013). Although a functional relationship
between reduced Chn synthesis and impaired
neuronal migration was established, the molecu-
lar involvement of the corresponding core protein
(s) remains unclear. Different scenarios are possi-
ble: the migration requires free Chn, or the migra-
tion requires Chn attached to a specific core
protein, or even the active involvement of both
Chn and a specific core protein. In fact, it was
recently shown that neurexin, an essential com-
ponent in synapse organization, was modified
with HS (Zhang et al. 2018). The binding of
neurexin to its post-synaptic partner, neuroligin,

involved an intrinsic mode of interaction, which
required both the HS chain and the protein
domain of neurexin. This underlines the impor-
tance of site-specific characterization to further
delineate GAG-mediated functions in all
organisms.

6 Chondroitin Sulfate and Core
Proteins

The selective binding of specific protein ligands
to structural variants of GAG chains regulates a
diverse set of biological- and pathological pro-
cesses (Kjellen and Lindahl 2018; Salanti et al.
2015; Kreuger et al. 2006; Sarrazin et al. 2011).
Determining the fine-structure of binding
domains or, when possible, intact GAG chains is
therefore essential for understanding
GAG-protein interactions and their down-stream
cellular events. As C.elegans was recently found
to have CS structures (Dierker et al. 2016;
Izumikawa et al. 2016), characterization of the
sulfate distribution on the polysaccharides will
likely improve our understanding of CSPG- and
CPG-related functions.

In our glycoproteomic approach, the Chn and
CS chains are depolymerized with chondroitinase
ABC, generating free disaccharides and a residual
hexameric structure composed of the linkage
region and a GlcA-GalNAc disaccharide,
dehydrated on the terminal GlcA residue (Noborn
et al. 2015; Noborn et al. 2018). This strategy
reduces the complexity of the analysis signifi-
cantly, but at the same time structural information
towards the non-reducing end is omitted. Our
analysis of CPGs in C.elegans did not however
reveal any sulfate groups on the residual
hexasacharide structure, although the method is
fully capable of detecting such modifications
(Noborn et al. 2015). This may suggest that the
sulfate groups are located further out on the
chains, or in quantities below the present limit
of detection. Regardless of their position, one
may speculate whether the sulfate modifications
are evenly distributed between the 24 different
CPGs, or if only a subset of CPGs carries sulfated
structures. Regulation of GAG-biosynthesis is
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believed to be largely cell-specific as for instance
GAG-structures from one mouse tissue differ
from those of other mouse tissues (Kjellen and
Lindahl 2018; Ledin et al. 2004). Cell-specific
co-expression of GalNAc 4-O sulfotransferase
and certain CPGs may thus result in CS chains
on only a subset of core proteins, in a cell specific
manner. Moreover, the modification pattern may
also involve type of core proteins, although such
reports are relatively scarce (Li et al. 2011). Apart
from these two principles of regulation, the
sulfation pattern may also be lineage specific, in
that the sulfation varies in response to develop-
mental stages and possibly disease states (Shao
et al. 2013).

If sulfate groups are limited to a subset of
CPGs, one may speculate which CPGs that car-
ries sulfated structures. Three homologues to
human proteins were found in C.elegans;
CLE-1A protein/CPG-10, FiBrilliN/CPG-16 and
Papilin/CPG-17. The CLE-1A protein/CPG-10 is
encoded by the cle-1 gene which produces three
developmentally regulated protein isoforms
(CLE-1A-C), which are expressed predominantly
in neurons (Ackley et al. 2003). The CLE-1A
protein is the homologue to human collagen
alpha-1 XV/XVIII (Ackley et al. 2003). Interest-
ingly, we recently found that the human collagen
XV alpha-1 chain is substituted with CS in human
tissue fluids (Noborn et al. 2015) and this is to our
knowledge the first example of an invertebrate
chondroitin core protein that shows homology to
a vertebrate counterpart. Since all vertebrate core
proteins carry CS chains, one may thus speculate
that the three vertebrate homologues are likely
candidates to be substituted with CS. Moreover,
each of the CPG-vertebrate homologues contains
functional domains that assume involvement in
specialized proteoglycan-mediated functions. As
mentioned previously, CLE-1A/CPG-10 contains
an endostatin domain and deletion of this domain
resulted in worms with defects in cell migration
and axon guidance (Ackley et al. 2001, 2003). In
vertebrates, CS inhibits nerve regeneration upon
binding to the receptor protein tyrosine phospha-
tase sigma (RPTPσ), an interaction that requires
uniform distribution of sulfate groups along the
CS chain (Shen et al. 2009; Coles et al. 2011;

Katagiri et al. 2018; Sakamoto et al. 2019). Given
that advanced functions, such as neurogenesis,
require CS with certain sulfate distribution in
vertebrates, it is plausible that this is also a
requirement in C.elegans. Moreover, Papilin/
CPG-17 is also claimed to be involved in
neurogenesis in C.elegans, regulating and
forming specific nerve tracts, although this poten-
tial role of the Chn or CS chain is unclear
(Ramirez-Suarez et al. 2019). Regardless of the
in vivo situation, future structural studies, using
site-specific sequencing of longer GAG chains,
will likely determine which core proteins (all or a
subset) that indeed carry sulfated structures. We
recently showed site-specific sequencing of lon-
ger chains in perlecan (8-mer and 10-mers),
indicating that a similar approach is feasible also
for CSPGs/CPGs (Noborn et al. 2016).

7 Attachment Motifs in C.elegans
and Humans

The composition and sequence of certain amino
acid in defined motifs influence whether a given
serine residue is selected for GAG-biosynthesis.
This attachment motif was originally observed for
vertebrates core proteins and may assist in the
prediction of potential GAG-sites (Esko and
Zhang 1996; Zhang and Esko 1994). Large scale
analysis of attachment motifs in invertebrates is
still lacking and it is unknown to which degree
invertebrate motifs conform to the vertebrate
counterpart. We prepared a frequency plot of the
neighboring amino acids in the region from �9 to
+9 of the glycosylated serine residue in C.
elegans. As a comparison we aligned 20 human
CS-sites that we previously identified in human
urine and CSF, identified with the same analytical
procedure (Noborn et al. 2015; Noborn et al.
2018). The analysis showed that the C.elegans-
attachment motif was similar to the vertebrate
counterpart, although with certain exceptions. In
both species, the glycosylated serine residue was
characteristically flanked by a glycine residue in
the C-terminal direction and acidic residues were
present in proximity to the attachment site. How-
ever, a more stringent motif was seen in C.
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elegans in the immediate N-terminal direction. A
large portion of the sequences (80%) had “Glu” or
“Asp” at the �2 position and “Gly” or “Ala” at
the �1 position ([ED] � [GA] � S – G). Two
vertebrate xylosyltransferases (XT-I and XT-II)
have been identified, whereas only a single
xylosyltransferase has been found in the nema-
tode (Wilson 2004). One may speculate that the
less stringent motif in humans reflect the activities
of two different xylosyltransferases, each with
slightly different specificities with regard to the
amino acid motifs that are required for the
enzymes to bind and initiate the first step in the
GAG-linkage region. The mouse XT-1 and XT-II
display different tissue-specific expression pat-
tern: XT-I is highly expressed in mouse testis,
kidney, and brain, while XT-II is highly
expressed in mouse liver (Ponighaus et al.
2007). Our frequency plot of the human motif
was based on CS-sites found in both urine and
CSF thereby representing a mixture of CSPGs
from different tissues. Preparing separate plots
based on which tissue the CSPGs derives from,
different CS-attachment motifs may emerge,
which would probably represent differences in
XT-I and XT-II specificities.

The attachment motif ([ED] � [GA] � S � G)
defined in C.elegans was further used to investi-
gate if additional potential CPGs may be present
in the nematode. A search against the Swiss-prot
data base for sequences containing this motif
resulted in the identification of 19 additional
potential CPGs, indicating that the chondroitin
glycoproteome in C.elegans may probably
expand even further with future studies (Noborn
et al. 2018). Notably, since Swiss-prot is a curated
data base, additional hits may be retrieved when
searches are made against a more general data
base, such the NCBI protein database. Neverthe-
less, additional CPGs are likely to be identified
and this bioinformatic strategy may be useful for
identifying potential CPGs/CSPGs also in other
model organisms, such as Danio rerio and Dro-
sophila melanogaster.

Inspection of the attachment motifs in relation
to the functional domains, demonstrated that all
motifs were present in disordered regions of the
core proteins. A similar observation was made for

mucin-type O-glycans (King et al. 2017),
suggesting that glycosylation in disordered
regions is a general phenomenon in metazoan
organisms. Further, some of the attachment
motifs in our study of C.elegans were found in
close proximity to a functional domain (e.g. on
Papilin/ CPG-17), while others were found in
disordered regions distant, in the primary
sequence, from any functional domains (e.g on
FiBrilliN homologue/CPG-16). It is unclear how
the distance to a functional domain affects the
specificity of the xylosyltransferase at a given
attachment motif. In vertebrates, several
proteoglycans have been identified that have a
time-dependent presence of GAGs, so-called
part-time proteoglycans which vary their degree
of occupancy at specific sites (Iozzo and Schaefer
2015; Nadanaka et al. 1998; Aono et al. 2004;
Oohira et al. 2004). Sometimes, this is regulated
by the synthesis of splice variants lacking or
presenting a GAG-attachment motif (Wight
2002; Pangalos et al. 1995). However, one may
speculate that positioning of the attachment motif
and its distance to a functional domain, may
influence the efficiency of the biosynthesis and
thereby contribute to the glycosylation heteroge-
neity seen in proteoglycans.

8 Evolutionary Aspects when
Comparing Chondroitin Sulfate
Proteoglycans (CSPGs)
and Heparan Sulfate
Proteoglycans (HSPGs)

Several HSPGs in C.elegans display homology to
vertebrate core proteins. In line with these
findings, neurexin, which was recently defined
as a HSPG in mouse brain tissue, also displays a
high degree of similarity between distant species
(Zhang et al. 2018). The HS site is conserved in
all vertebrate neurexin genes from zebrafish to
human. C.elegans also contains a homologue to
the vertebrate neurexin gene, corroborating the
notion that HSPGs are highly conserved through-
out evolution. Although the primary sequence of
neurexin is more divergent in C.elegans, the nem-
atode has a consensus HS site approximately in
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the same region as that of the mouse protein
(Zhang et al. 2018). Other HSPG core proteins
in C.elegans also display this degree of similarity
to vertebrate HSPGs. For instance, mouse
perlecan has three SG repeats in close proximity
to the N-terminal domain
(62-DDASGDGLGSGDVGSGDFQMVYFR-
85), all of which are modified with HS (Noborn
et al. 2016). The nematode-homologue (unc-52)
has also several potential HS attachment sites in
the primary sequence, but none of these is located
in the N-terminal domain. As mentioned previ-
ously, the large majority of CPG core protein in
C.elegans do not display homology to vertebrate
counterparts. However, we found a chondroitin
modification on CLE-1A protein/ CPG-10
(Q9U9K7) which display homology to the
human CSPG collagen α-1 (XV) chain
(P39059). These proteins display a high degree
of sequence similarity regarding functional
domains and their order of organization. How-
ever, the Chn or CS attachment site is different
in the nematode compared to the human protein,
as well as the sequence and composition of amino
acids surrounding the attachment site, thus prin-
cipally displaying a similar degree of conserva-
tion as found for HSPGs. Furthermore, we
recently identified several novel human CSPGs
in tissue samples, that had previously been
defined as prohormones (Noborn et al. 2015).
Cholecystokinin, a peptide hormone of the gut
and central nervous system, was found to be
modified with CS in its propeptide region. Align-
ment of mammalian cholecystokinins shows a
relatively low degree of sequence homology for
the CS-site. For instance, the sequences of mouse
and cat contain a proline instead of a serine resi-
due at the attachment site, thereby excluding the
possibility of CS-modification. Taken together,
this indicates that certain CPGs/CSPGs are
conserved throughout evolution to the same
extent as HSPGs, whereas others display a very
short evolutionary history.

One might question why HSPGs are generally
more conserved throughout evolution compared
with CSPGs. The difference in conservation may
reflect differences in physiological functions, as
HSPGs and CSPGs often induce opposite effects

on similar cellular events. In neurogenesis, CS
and HS have a dual mode of action for regulating
neuronal outgrowth, where both GAGs compete
for the same binding sites on RPTPσ-receptors.
CS chains inhibit nerve regeneration upon bind-
ing to RPTPσ-receptors, whereas HS promotes
nerve regeneration upon binding to the same
receptors (Shen et al. 2009; Coles et al. 2011;
Katagiri et al. 2018; Sakamoto et al. 2019).
Given this proteoglycan-switch, it is conceivable
that HSPGs work in strict regulation with other
promoting factors to navigate the growing axon
along a precisely defined path. In contrast,
CSPGs, which have a negative regulatory role,
may be less specific in its action, providing fore-
most an outer perimeter for the process. A clinical
example is the potential use of chondroitinase
ABC in the treatment of spinal cord injury. At
the injured site, axons fail to regenerate due to the
formation of a glial scar, which is composed of
extracellular matrix components including
CSPGs (Bradbury et al. 2002). Intrathecal admin-
istration of chondroitinase ABC degrades the CS
chains and thereby increases neuronal plasticity
(Hu et al. 2018). Therefore, CSPG-mediated
functions may display less stringent spatiotempo-
ral requirements compared to HSPGs. To exert a
particular CSPG-mediated function a CS chain is
likely necessary, but its exact attachment site
along the complete amino acid sequence, or
even the exact identity of the core protein may
have less importance, as long as the CS chain is
presented in its functional context. This would
impose an evolutionary selection pressure to con-
serve the mechanisms for CS biosynthesis and
attachment motifs, but not to the same extent to
a particular core protein.

A wide range of microbial pathogens uses
GAG-specific interactions for their adhesion to
host tissues and invasion of target cells (Bartlett
and Park 2010). In nature, C.elegans is found in
microbe-rich environments, such as rotting plant
matter, containing a multitude of microbial
antagonists to the nematode (Schulenburg and
Felix 2017). As parasites and pathogens reduce
host fitness they often impose high selective pres-
sure on their hosts. The nematode’s natural biotic
environment has therefore been suggested to have
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strong impact on C.elegans evolution and of great
importance for understanding its biology
(Schulenburg and Felix 2017). Given that GAGs
serve as an entry point for different pathogens,
changes in the underlying genomic characteristics
to introduce additional chondroitin-attachment
motifs on different core proteins, may have
served as a strategy to evade infections for C.
elegans throughout evolution. A more divergent
chondroitin glycoproteome may present more
‘decoy sites’ for chondroitin-binding pathogens,
thereby reducing pathogen attachment and entry
to specific target cells. Indeed, the complexity of
glycans has been suggested to be driven by an
evolutionary arms race due to the exploitation of
host glycans by parasites and pathogens
(Gagneux et al. 2015). One may speculate that
other invertebrates, whose natural habitats present
lower microbe-induced selective pressure, would
have less CSPGs. Regardless of the in vivo situa-
tion, full appreciation of the functional roles and
evolutionary perspectives of CPGs/CSPGs
warrants further studies in C.elegans and in
other invertebrates. Taken together, our findings
suggest that several aspects regarding chondroitin
and chondroitin sulfate proteoglycan biosynthesis
are conserved throughout evolution. This
includes the glycosylation motif, the mechanisms
for saccharide initiation and polymerization and
in some cases also the splicing and the presenta-
tion of core protein domains. However, since the
majority of core proteins seems not to be
conserved between the species, our findings
point to both converging and diverging selective
forces during the proteoglycan evolution.

9 Conclusions

Our use of a novel glycoproteomic method for
identifying CS-glycopeptides enabled the identi-
fication of several novel core proteins in C.
elegans and in humans. Bioinformatic analysis
of the primary amino acid sequence revealed
great structural and also functional diversity of
CPGs in the nematode and indicates that some,
but not all, functions overlap with those of human
CSPGs. Moreover, three of the novel core

proteins display homology to vertebrate
counterparts, indicating that CPG / CSPGs may
be more conserved throughout evolution than
previously perceived. The future use of similar
glycoproteomic strategies may thus be helpful in
identifying CPG / CSPGs also in other important
model organisms, such as Drosophila
melanogaster and Danio rerio. This will likely
expand the number of identified core proteins and
may also provide new perspectives on
proteoglycan-mediated functions and how these
have persisted or developed throughout evolu-
tion. Further, obtaining global information on
attachment sites and core protein identities will
likely assist in assigning CPG/CSPG specific
functions, both in vertebrates and in invertebrates.
In addition, novel methods to site-specifically
analyze the structures of extended CS chains
may also be important to better understand the
structure-function relationship of CPG/CSPG-
mediated functions.
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