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Abstract

Long-term exposure to high altitude causes
adaptive changes in several blood biochemical
markers along with a marked body mass
reduction involving both the lean and fat
components. The aim of this study was to
evaluate the impact of extended physical
strain, due to extensive trekking at high alti-
tude, on body composition, selected
biomarkers in the blood, and the protective

role of a high-protein diet in muscle dysfunc-
tion. We found that physical strain at high
altitude caused a significant reduction in
body mass and body fat, with a concomitant
increase in the cross-sectional area of thigh
muscles and an unchanged total lean body
mass. Further, we found reductions in plasma
leptin and homocysteine, while myoglobin,
insulin, and C-reactive protein significantly
increased. Creatine kinase, lactate dehydroge-
nase, and leptin normalized per body fat were
unchanged. These findings demonstrate that
high-altitude hypoxia, involving extended
physical effort, has an impact on muscle func-
tion and body composition, facilitating
sarcopenia and affecting body mass and fat
distribution. It also activates
pro-inflammatory metabolic pathways in
response to muscular distress. These changes
can be mitigated by a provision of a high-
protein diet.
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1 Introduction

The body responds to high-altitude hypoxia with
molecular, cellular, and systemic adaptations
(West 2012; Bosco et al. 2003; Cerretelli and Di
Prampero 1987; Pugh 1962) across cardiovascu-
lar (Kylhammar and Rådegran 2017; Luks et al.
2017; Verratti et al. 2015), respiratory (Beretta
et al. 2017), musculoskeletal (Bosco et al. 2010;
Doria et al. 2011), hormonal (Verratti et al. 2017;
Pelliccione et al. 2011), reproductive (Verratti
et al. 2011), and metabolic (Boos et al. 2013;
San et al. 2013) organ systems. Exercise perfor-
mance and muscle damage and regeneration in
the hypoxic condition have been extensively
studied (Sumi et al. 2018; Mancinelli et al.
2016). However, the underlying mechanisms of
muscle dysfunction and the significance of
enhanced serum creatine kinase content following
physical exercise are unsettled (Baird et al. 2012).
A combination of hypoxia and physical strain
may induce an inflammatory response, which is
reflected by enhanced serum C-reactive protein
(Li and Fang 2004; Hartmann et al. 2000). Hyp-
oxia also affects oxidative metabolism,
stimulating the process of oxygen transport and
storage to ensuring adequate tissue oxygenation
(Verratti et al. 2009; Di Giulio et al. 2006).

It is known that long-term exposure to high
altitude causes a marked reduction in body mass,
which involves both the lean and fat components
(Cacciani et al. 2008; Rose et al. 1988). Exposure
to hypobaric hypoxia changes the attitude toward
eating by decreasing appetite and food intake
(Westerterp-Plantenga et al. 1999), leading to a
negative energy balance (Richalet 2010). Another
cause of reduced appetite is a negative feedback
system between adipocytes and the hypothala-
mus, which increases leptin content and energy
expenditure (Paoli et al. 2014, 2015). Studies
show that leptin alters the neuroendocrine regula-
tion, inducing a loss of appetite and increased
energy expenditure which lead to weight loss
(Palmer and Clegg 2014; Petousi et al. 2014;
Vats et al. 2007; Tschop et al. 1998). Decreased
protein intake, associated with physical stress, is a

central anabolic stimulus for muscles, which is
conducive to sarcopenia (Yanai 2015).

In view of the phenomena above outlined, the
present study seeks to define metabolic and endo-
crine adaptations to high-altitude hypoxia,
associated with physical strain due to extensive
trekking, in an attempt to get insight into the
protective role of a high-protein diet on the
sarcopenia related to the extended exposure to
high altitude.

2 Methods

2.1 Manaslu Expedition Profile

This study describes aspects of medical research
performed during the Manaslu Himalaya expedi-
tion that has addressed a wide range of physio-
logical issues connected with the fertility,
metabolism, muscular changes, and physical per-
formance in subjects exposed to chronic high-
altitude hypoxia (Verratti et al. 2017; Doria
et al. 2011; Pelliccione et al. 2011; Verratti et al.
2011; Mariggiò et al. 2010). There were seven
healthy male climbers, members of the expedi-
tion, mean age 39 � 15 years and height
1.72 � 0.10 m, who were the subjects in the
study framework presented herein.

There were several successive stages of the
experimental procedure performed at variable alti-
tude. The high-altitude stage was carried out in
Nepal. After arriving in Kathmandu (1,300 m
above sea level), the subjects were taken to the
Buri Gandaki valley for the initiation of
procedures. From there, an acclimatization trek
was carried out along the Buri (Budhi) Gandaki
River for 13 days, arriving at the Manaslu base
camp at 5,000 m. Once at the camp, the subjects
stayed there for 22 days without oxygen enrich-
ment. During this time, they climbed Camp
1 (5,900 m) and then to Camp 2 (6,400 m) without
oxygen. Finally, they took an 8-day trek back from
the base camp to Kathmandu via an exceptionally
difficult Larke Pass (5,135 m), covering in all
about 450 km by the end of the expedition (Fig. 1).
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2.2 Anthropometry and Body
Composition

The anthropometric characteristics such as body
weight (BW), body mass index (BMI), waist cir-
cumference (WC), body fat (BF%), total lean
body mass, and the thigh cross-sectional area
(CSA) were obtained before and after the expedi-
tion in the Exercise Physiology Laboratory of
Chieti-Pescara University in Italy, located at the
altitude of 110 m above sea level. BF% and total
lean body mass were estimated from the measure-
ment of the subcutaneous skinfold thickness
(Durnin and Womersley 1974). CSA was calcu-
lated from the equation:

CSA ¼ (4.68 � thigh circumference
in cm) � (2.09 � anterior thigh skinfold
in mm) � 80.99 derived from the multiple regres-
sion analysis performed in a study of Housh et al.

(1995) for estimation of thigh muscle CSA. Thigh
circumference was measured approximately at a
third of the trochanter-patella distance. These
measurements were based on the previously
elaborated methods available in the literature.

2.3 Blood Biomarkers

Venous blood samples were drawn at sea level
before (SLB) and 2 days after (SLA) returning to
Kathmandu, which ended the expedition. Sam-
pling was performed at 8 am, after fasting for
12 h. The serum was collected for the measure-
ment of biomarkers, and it was frozen in liquid
nitrogen until use. The samples were immediately
placed on ice and centrifuged for 10 min at
3000 rpm. The following biomarkers were
measured leptin, insulin, C-reactive protein,

Fig. 1 Profile of the Manaslu expedition that lasted for 43 days, September 8–October 20, 2008
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homocysteine, and creatine kinase, myoglobin,
and lactate dehydrogenase. Blood analysis was
performed with the ADVIA CentaurⓇ CP Immu-
noassay System (Siemens Healthcare, Milan,
Italy) in the Laboratory of Clinical Pathology of
Teramo Hospital in Italy.

2.4 Dietary Intervention

The subjects did not follow any individualized
dietary program before the expedition, except
the instruction of a dietary intake of 2,000 kcal/
day, with the following macronutrients content:
carbohydrates 49%, proteins 25%, and lipids
26%, which was based on the software
WinFood®-Medimatica-Italy. During the expedi-
tion, the subjects were instructed to consume
about 3,600 kcal/day consisting of carbohydrates
50%, protein 30%, and fat 20% (Table 1).

2.5 Statistical Elaboration

Data were presented as means �SD. Data distri-
bution was checked with the Kolmogorov-
Smirnov test. Differences between the baseline
measurements of indices and those after the expe-
dition were compared with a two-tailed paired t-
test or Wilcoxon’s test. A p-value <0.05 defined
statistically significant changes. The analysis was
performed with a commercial Statistica v8.0
package for Windows (StatSoft; Tulsa, OK).

3 Results

We found that chronic physical strain at high
altitude caused substantial reductions in body
mass and fat components assessed, with a simul-
taneous increase in CSA (Table 2). A total lean
body mass remained unchanged.

Plasma level of leptin decreased by 38% after
the stay at high altitude compared with the base-
line level before the expedition, from 37.2 � 11.8
to 23.0� 10.1 ng/mL, respectively, p < 0.05. This
effect lost significance after normalization for FM
due to a large spread of data, although a decreas-
ing trend in leptin was there, from 1.8 � 1.0 to
1.3 � 0.5 ng/mL/kg of FM. Likewise, homocys-
teine decreased by 39%, from 4.74 � 1.52 before
to 2.89 � 0.57 μmol/L after the expedition,
p < 0.03 (Fig. 2).

In contradistinction, myoglobin, insulin, and
C-reactive protein showed increased significantly
by 29%, 49%, and 26%, from 16.9 � 3.4 to
21.8 � 2.4 ng/mL, from 5.3 � 2.1 to 7.9 � 2.1
mcU/mL, and from 0.8� 0.2 to 1.0� 0.3 mg/dL,
respectively, p < 0.05 for all (Fig. 3). Creatine
kinase and lactate dehydrogenase decreased from
138.1 � 60.9 to 117.1 � 43.0 U/L and from
68.4 � 40.8 to 47.7 � 27.1 U/L; the decreases
failed to reach statistical significance.

4 Discussion

Surprisingly, considering the reduction of FM in
the climbers, it is interesting to note that insulin
level increased. This increase could be secondary
to FM reduction since the energy expenditure was

Table 1 Breakdown of nutritional components by percentage before and during the expedition at high altitude

Nutritional components Before expedition During expedition

Proteins (%) 25 30
Lipids (%) 26 20
Carbohydrates (%) 49 50
Oligosaccharides/total carbohydrates (%) 25 25
Saturated fat/total (%) 25 43
Animal protein/total (%) 77 75
Vegetable proteins/total (%) 23 25
Total fiber/1000 kcal (g) 11 13
Calories (kcal) 2009 3584
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not adequately compensated by the caloric intake
during the trek. The FM reduction may have
stimulated the release of a liposynthetic hormone,
such as insulin, in an attempt to balance off a loss
of fat. Larsen et al. (1997) have shown that
healthy subjects exposed to hypobaric hypoxia
at high altitude have hyperinsulinemia that
persists for 1 week but reverts with the time of
adaptation to low oxygen pressure. The literature
suggests that a decrease in BW is generally

associated with a decrease of leptin, while the
opposite is true for BW excess (Benso et al.
2007; Broglio et al. 2006). In line with that
notion, in this study we found a significant
decrease in leptin content of about 38% compared
with the baseline level before the expedition. A
consistent decreasing trend of about 28%
remained when leptin content was normalized
for FM, even though it lost significance due to a
large data spread.

Table 2 Anthropometric measurements performed at sea level before (SLB) and after (SLA) chronic high-altitude
physical strain

Parameters SLB SLA p Effect size

Reductions BW (kg) 79.3 � 15.3 76.0 � 12.2 < 0.05 0.23
BF% 26.3 � 4.5 23.2 � 4.1 < 0.01 0.72
BMI (kg/m2) 26.7 � 3.3 25.6 � 2.6 < 0.05 0.93
WC (cm) 93.2 � 11.0 89.5 � 9.2 < 0.01 1.27

Increase CSA (cm2) 158 � 20 172 � 17 < 0.001 0.75

BW body weight, BF% percentage of body fat, BMI body mass index,WC waist circumference, CSA cross-sectional area

Fig. 2 Decreases in plasma level of leptin and homocysteine assessed at sea level before (SLB) and 2 days after (SLA)
chronic high-altitude physical strain. Data are means �SD

Fig. 3 Increase in plasma
level of insulin, myoglobin,
and C-reactive protein
(CRP) assessed at sea level
before (SLB) and 2 days
after (SLA) chronic high-
altitude physical strain.
Data are means �SD
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In this study we found an increase in
C-reactive protein, a marker of inflammation,
while lactate dehydrogenase was unchanged. In
addition, creatine kinase was unchanged,
although we would have expected an increase in
its content. The creatine kinase-related manifesta-
tion of muscle damage due to intensive trekking
strain could possibly be masked by a short half-
life of creatine kinase, amounting to about 1 day
and a half. Creatine kinase increases in the first
12 h after onset of rhabdomyolysis, peaks within
3 days, returning to the baseline level in 3–5 days
(Zhang 2012). Concerning homocysteine, the
amino acid appreciably decreased by about 39%.
Since a high-protein diet, in and by itself, does not
alter fasting plasma total homocysteine content
(Verhoef et al. 2005), it seems a reasonable
assumption that a decrease in homocystein
would reflect the exposure to chronic hypoxia.
Bailey et al. (2000) have reported a decrease in
homocysteine after hypoxic as opposed to
normoxic physical training. An increase in the
myoglobin level we demonstrate in this study is
a normal adaptive response to training at high
altitude. However, a persisting myoglobin
enhancement may be a foretelling sign of muscle
damage and dysfunction. This finding is consis-
tent with the data reported by Nedergaard et al.
(2013) and Hoppeler and Vogt (2001). In addi-
tion, high level of myoglobin is found in the
populations living at high altitude, which proba-
bly belongs to the compensatory mechanisms of
chronic exposure to hypoxic environment (Moore
et al. 2002). A diet rich in calories, with a 30%
protein content, has been highlighted as a funda-
mental nutritional intervention in sarcopenia
(Woo 2018). On the other side, an increase in
CSA of lower limbs with unchanged total lean
body mass, we noticed in this study, is difficult to
explain. We believe it might likely be the edema-
forming redistribution of body fluids during
chronic physical strain at high altitude. Trekkers
are known to suffer from a moderate lower
extremities edema that reverts on return to a
lower altitude (Hultgren 1978).

In conclusion, the results of this study demon-
strate that long strenuous trekking at high altitude
is conducive to inflammatory response and exerts

pro-cachexic and pro-sarcopenic effects. Degra-
dation of muscle proteins, if sustained, may be a
presage of muscular failure. These changes, in all
likelihood, reflect the effects of exposure to
chronic hypobaric hypoxia. A high caloric intake,
in general, and a high protein diet, in particular,
may at least partially counteract such untoward
effects of high altitude hypoxia.
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