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New Pertussis Vaccines: A Need
and a Challenge

Daniela Hozbor

Abstract

Effective diphtheria, tetanus toxoids, whole-
cell pertussis (wP) vaccines were used for
massive immunization in the 1950s. The
broad use of these vaccines significantly
reduced the morbidity and mortality associated
with pertussis. Because of reports on the
induction of adverse reactions, less-
reactogenic acellular vaccines (aP) were later
developed and in many countries, especially
the industrialized ones, the use of wP was
changed to aP. For many years, the situation
of pertussis seemed to be controlled with the
use of these vaccines, however in the last
decades the number of pertussis cases
increased in several countries. The loss of the
immunity conferred by the vaccines, which is
faster in the individuals vaccinated with the
acellular vaccines, and the evolution of the
pathogen towards geno/phenotypes that
escape more easily the immunity conferred
by the vaccines were proposed as the main
causes of the disease resurgence. According
to their composition of few immunogens, the
aP vaccines seem to be exerting a greater
selection pressure on the circulating bacterial

population causing the prevalence of bacterial
isolates defective in the expression of vaccine
antigens. Under this context, it is clear that
new vaccines against pertussis should be
developed. Several vaccine candidates are in
preclinical development and few others have
recently completed phaseI/phaseII trials. Vac-
cine candidate based on OMVs is a promising
candidate since appeared overcoming the
major weaknesses of current aP-vaccines.
The most advanced development is the live
attenuated-vaccine BPZE1 which has success-
fully completed a first-in-man clinical trial.
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1 Current Pertussis Vaccines

Pertussis, also known as whooping cough, is a
highly contagious respiratory disease mainly
caused by Bordetella pertussis, a Gram-negative
bacterium. This disease that causes uncontrollable
violent coughing, affects all ages, being the most
vulnerable the infants under 6 months of age
(Stefanelli et al. 2017). The best way to prevent
pertussis is to get vaccinated. The first
experimentations with vaccines began after Jules
Bordet and Octave Gengou of the Pasteur Institute
of Brussels identified the etiological agent in 1906;
these vaccines were made from killed whole-cell
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B. pertussis. In ensuing years, such type of vaccine
(whole-cell vaccine, wP) was used in children in
different countries. Thorvald Madsen was the first
to describe the use of a wP vaccine on a large scale
(Madsen 1933). Madsen’s vaccine successfully
controlled two outbreaks in the Faroe Islands,
however some deaths within 48 h of immunization
were reported (Madsen 1933). Noteworthy at that
time physicians used the vaccine as either a thera-
peutic or a prophylactic formulation and in both
cases the vaccine was given in three injections
intramuscularly or subcutaneously with intervals
of three to 4 days (Madsen 1933). Madsen T. in
his work summarized some reports that concluded
sic. . .if the vaccine is given early in the catarrhal
stage the vaccine will have a good effect; the later
the vaccine is given in the convulsive stage, the less
effect can be expected. This appears from the
reports of most of the Danish officers of Health
and also is the consensus of the Danish pediatric
society (Madsen 1933). Louis Sauer of Northwest-
ern University Medical School, Chicago,
described minor reactions to a whole-cell pertussis
vaccine being used in the United States as an
adjuvanted combined vaccine (Sauer 1948). Pearl
Kendrick of the State of Michigan Health Depart-
ment further refined wP vaccines. She and Grace
Eldering combined this improved killed vaccine
with diphtheria and tetanus toxoids to produce
the diphtheria-tetanus-pertussis (DTP) and used it
in children (Kendrick 1936). The Committee on
Infectious Diseases of the American Academy of
Pediatrics suggested in 1944 and recommended in
1947 the routine use of pertussis vaccine in the
form of the DTP combination. The use of this
vaccine was then expanded to other countries.
The coverages of pertussis vaccine were improved
when the Expanded Program on Immunization
(EPI) was established in 1974. The mission of the
EPI is to develop and expand immunization
programs throughout the world. In particular, in
1977, the goal was set to make immunization
against diphtheria, pertussis, tetanus, poliomyelitis,
measles and tuberculosis available to every child in
the world by 1990. The massive pertussis vaccina-
tion dramatically reduced the morbidity and mor-
tality associated with the disease (Table 1). After
this important achievement in the control of the
disease, unfortunately, doubts about the safety of

wP vaccines began to arise and this led to a
decrease in the acceptance of this type of formula-
tion by the population and even in some countries
its use was rejected (Klein 2014; Romanus et al.
1987). The first published reports on irreversible
brain damage after whole-cell pertussis vaccina-
tion was described by Brody and Sorley. These
reports led to the first warnings that pertussis vac-
cine should not be administered to those with a
known neurologic disorder (Brody and Sorley
1947). In Great Britain, concerns on the safety of
this vaccine were widely publicized in the popular
press and because of that the proportion of children
vaccinated against pertussis diminished
(Kulenkampff et al. 1974). The adverse reactions
ranged from local reactions (redness, swelling, and
pain at the injection site) to systemic reactions
(fever, persistent crying and, in rare cases enceph-
alopathy) were reported in other countries (Klein
2014; Romanus et al. 1987). Concerns about safety
finally led to the development of component (acel-
lular) pertussis vaccines that are associated with a
lower frequency of adverse reactions (Sato and
Sato 1985; Edwards and Karzon 1990). These
second-generation of pertussis vaccines, referred
to as aP vaccines, are constituted of purified
B. pertussis antigens combined with diphtheria
and tetanus toxoids. The first acellular vaccine
that was developed in Japan in 1970 consisted of
two proteins: pertussis toxin (PTx) and filamentous
haemagglutinin (FHA) (Sato and Sato 1985). Field
trials showed that component vaccine was as effec-
tive as and produced less side-effects than did
conventional whole-cell vaccine (Sato et al.
1984). The vaccine has been used for mass immu-
nization in Japan since 1981 and was highly effec-
tive in preventing pertussis disease. In 1994 the
efficacy for two, three-component acellular, per-
tussis vaccines containing inactivated PTx, FHA,
and pertactin (PRN), and one five-component acel-
lular pertussis vaccine containing the same
components plus fimbriae 2 and 3 was compared
with a UK whole-cell vaccine (Olin et al. 1997).
This study demonstrated that the wP vaccine and
the five-component aP vaccine had similar efficacy
against culture-confirmed typical pertussis, defined
by at least 21 days of paroxysmal cough. The
authors also found that the three-component acel-
lular vaccine was less effective than the five-
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Table 1 Number of reported cases of pertussis and type of pertussis vaccine used in different regions of the world (data
extracted from WHO public information)

1980 2000 2017

Percentage of countries that use
whole cell or acellular pertussis
vaccines in the primary doses

African Region (Algeria, Angola, Benin,
Botswana, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic, Chad,
Comoros, Congo, Côte d’Ivoire, Democratic
Republic of the Congo, Equatorial Guinea,
Eritrea, Eswatini, Ethiopia, Gabon, Gambia,
Ghana, Guinea, Guinea-Bissau, Kenya,
Lesotho, Liberia, Madagascar, Malawi, Mali,
Mauritania, Mauritius, Mozambique, Namibia,
Niger, Nigeria, Rwanda, Sao Tome and
Principe, Senegal, Seychelles, Sierra Leone,
South Africa, South Sudan, Togo, Uganda,
United Republic of Tanzania, Zambia,
Zimbabwe)

367,961 52,008 7082

Region of the Americas (Antigua and
Barbuda, Argentina, Bahamas, Barbados,
Belize, Bolivia, Brazil, Canada, Chile,
Colombia, Costa Rica, Cuba, Dominica,
Dominican Republic, Ecuador, El Salvador,
Grenada, Guatemala, Guyana, Haiti, Honduras,
Jamaica, Mexico, Nicaragua, Panama,
Paraguay, Peru, Saint Kitts and Nevis, Saint
Lucia, Saint Vincent and the Grenadines,
Suriname, Trinidad and Tobago, United States
of America, Uruguay, Venezuela)

123,734 18,888 10,237

Eastern Mediterranean Region (Afghanistan,
Bahrain, Djibouti, Egypt, Iran (Islamic
Republic of), Iraq, Jordan, Kuwait, Lebanon,
Libyan Arab Jamahiriya, Morocco, Oman,
Pakistan, Qatar, Saudi Arabia, Somalia, Sudan,
Syrian Arab Republic, Tunisia, United Arab
Emirates, Yemen)

171,631 2112 2012

European Region (Albania, Andorra,
Armenia, Austria, Azerbaijan, Belarus,
Belgium, Bosnia and Herzegovina, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Georgia, Germany,
Greece, Hungary, Iceland, Ireland, Israel, Italy,
Kazakhstan, Kyrgyzstan, Latvia, Lithuania,
Luxembourg, Malta, Monaco, Montenegro,
Netherlands, Norway, Poland, Portugal,
Republic of Moldova, Romania, Russian
Federation, San Marino, Serbia, Slovakia,
Slovenia, Spain, Sweden, Switzerland,
Tajikistan, The former Yugoslav Republic of
Macedonia, Turkey, Turkmenistan, Ukraine,
United Kingdom of Great Britain and Northern
Ireland, Uzbekistan)

90,546 53,675 63,037

(continued)
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component-vaccine and the whole-cell vaccines
against culture-confirmed pertussis when all cases
irrespective of the duration of severity of cough,
were included in the analysis (Olin et al. 1997).
Thus, though there was no compelling evidence to
support that wP vaccines should not be used, the
aP vaccines began to be broadly accepted because
of their lower reactogenicity, especially in
industrialized countries where wP vaccines of the
primary series (3 doses in infancy) was replaced by
aP vaccine (Table 1). Currently, US and most of
the EU countries use only aP vaccines (Table 1).
The aP formulations restored people’s confidence
in pertussis-containing vaccines, and the infection
was controlled for several years. Notwithstanding,
during the last decades the epidemiology of per-
tussis has changed (Clark 2014; Tan et al. 2015)
with several major outbreaks occurring, the inci-
dence of which not only indicated a waning immu-
nity but also demonstrated that the wP vaccines
gave children a longer lasting immunity than aP
(Klein et al. 2013; Witt et al. 2012; Sheridan et al.
2012). Furthermore, the risk of pertussis was
increased in schoolchildren and adolescents
vaccinated exclusively with aP compared to those
receiving at least one wP dose (Witt et al. 2013;
Sheridan et al. 2012). This difference could result
from the weaker immune response induced by aP

vaccines (Mills et al. 2014): while aP vaccines
mainly induce a Th2-skewed response (Ryan
et al. 1998), wP vaccines induce a robust Th1
profile and the proliferation of respiratory tissue-
resident memory CD4 T cells (Brummelman et al.
2015; Wilk and Mills 2018). Therefore, the aP
vaccine induced immunity shows a more rapid
decay and possibly a reduced impact on transmis-
sion compared with currently available wP
vaccines (Tartof et al. 2013; McGirr et al. 2013).
In addition to the waning of immunity induced by
vaccination, in particular with aP vaccines
(Koepke et al. 2014; McGirr and Fisman 2015),
pathogen adaptation to escape vaccine induced
immunity (King et al. 2001; Mooi et al. 2001;
Mäkelä 2000; David et al. 2004; He et al. 2003;
Bottero et al. 2007; Gzyl et al. 2004; Bowden et al.
2016), and the failure of pertussis vaccines, in
particular aP vaccines, to prevent infection and
spread of B. pertussis were also proposed to
explain the resurgence of the disease. Regarding
pathogen evolution, the first reports were related to
polymorphism in genes coding for proteins
included in the vaccine (PRN and PTx among
others) (Mooi et al. 1998) and later in the pertussis
toxin promoter (ptxP) (Advani et al. 2011;
Kallonen et al. 2012). Recently, there has been an
increase in B. pertussis isolates that do not produce

Table 1 (continued)

1980 2000 2017

Percentage of countries that use
whole cell or acellular pertussis
vaccines in the primary doses

South-East Asia Region (Bangladesh, Bhutan,
Democratic People’s Republic of Korea, India,
Indonesia, Maldives, Myanmar, Nepal, Sri
Lanka, Thailand, Timor-Leste)

399,310 38,510 33,976

Western Pacific Region (Australia, Brunei
Darussalam, Cambodia, China, Cook Islands,
Fiji, Japan, Kiribati, Lao People’s Democratic
Republic, Malaysia, Marshall Islands,
Micronesia (Federated States of), Mongolia,
Nauru, New Zealand, Niue, Palau, Papua New
Guinea, Philippines, Republic of Korea, Samoa,
Singapore, Solomon Islands, Tonga, Tuvalu,
Vanuatu, Viet Nam)

829,173 25,282 27,624
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some of the vaccine antigens (Lam et al. 2014;
Barkoff et al. 2019). It has been proposed that the
loss of this vaccine antigen probably provides a
selective advantage for bacterial survival in
populations vaccinated with aP vaccines (Martin
et al. 2015). Commercial aP vaccines containing
PTx, PRN and FHA are not as effective as
expected in controlling the infection caused by
the recent circulating bacteria that do not express
PRN (Hegerle et al. 2014). Moreover, recently it
was demonstrated in a mixed infection mouse
model that PRN deficient B. pertussis strain
colonizes the respiratory tract of aP immunized
mice more effectively than the PRN positive strain
(Safarchi et al. 2015).

Under this context, in 2015 the Strategic Advi-
sory Group of Experts on immunization
expressed concerns regarding the resurgence of
pertussis in certain industrialized countries
despite high aP-vaccine coverage (Meeting of
the Strategic Advisory Group of Experts on
immunization 2015). The switch from wP to aP
for primary infant immunization was proposed as,
at least partially responsible for that resurgence
(Table 1, see reported cases of European Region).
The World Health Organization (WHO) therefore
recommended that the switch be considered only
if, in the national immunization schedules, large
numbers of doses including several boosters can
be assured. Countries currently using aP vaccines
may continue using them, but should consider the
need for additional booster doses and strategies to
prevent early-childhood mortality upon pertussis
resurgence. In fact, the WHO published a position
paper on this subject and wrote the following:

A switch from wP to aP vaccines for primary infant
immunization should only be considered if the
inclusion in the national immunization schedules
of additional periodic booster or maternal immuni-
zation can be assured and sustained (Pertussis
vaccines: WHO position paper, August 2015—
Recommendations 2016).

National programmes currently using aP vaccine may
continue using this vaccine but should consider the
need for additional booster doses and strategies to
prevent early childhood mortality such as maternal
immunization in case of resurgence of pertussis (Per-
tussis vaccines: WHO position paper, August 2015—
Recommendations 2016).

2 New Pertussis Vaccines

Pertussis vaccines are currently on the agenda due
to the worrying increase of pertussis cases
detected in different countries. There are an
estimated 24.1 million cases of the disease and
approximately 160,700 deaths occurring world-
wide every year in children younger than 5 years
of age (Yeung et al. 2017). It is very clear that the
non-use of the current pertussis vaccines would
lead to an even more challenging epidemiological
scenario and for this reason the current vaccine
administration and surveillance of the disease
should be improved while new vaccines are
being developed. The development of a new per-
tussis vaccine is a difficult task to achieve since
no absolute correlate for protection exists, how-
ever there are enough data from animal models
and human studies showing that although
antibodies may mediate protection, Th1 and
Th17 cellular responses and tissue resident mem-
ory (TRM) response are responsible for long-
lasting protection (Mills et al. 2014). To induce
or drive a Th1, Th17 and TRM response, different
approaches have already been proposed (Allen
and Mills 2014; Mielcarek et al. 2006; Dias
et al. 2013). In the next section, the main
approaches used so far for the development of
new vaccines are discussed.

3 Live Attenuated Vaccine

The most advanced novel pertussis vaccine can-
didate is that developed by Locht et al. in Lille,
France (Thorstensson et al. 2014; Mielcarek et al.
2010; Feunou et al. 2010; Skerry et al. 2009).
This vaccine candidate, referred as BPZE1, and
consisting in a live attenuated bacterial strain,
(Locht 2014) was shown to be immunogenic
and protective in mice and baboons after intrana-
sal administration (Locht 2016, 2017). In mice a
single nasal administration of BPZE1, but not a
high dose of current commercial aP vaccine,
induced B. pertussis-specific secretory IgA in
the nasal cavity, and transfer of the nasal IgA
was able to protect recipient mice against nasal
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colonization after B. pertussis challenge (Solans
and Locht 2018). Though no protection
experiments have yet been performed with
BPZE1 against circulating bacteria, other interest-
ing findings have already reported. It was
detected that BPZE1 vaccine was able to induce
CD4+CD69+CD103+ TRM cells in the nasal
mucosa of mice, and these cells produced high
levels of IL-17 and appreciable levels of IFN-γ.
Thus, BPZE1 protects mice against nasal infec-
tion by virulent B. pertussis via an IL-17-depen-
dent and sIgA-mediated mechanism (Solans and
Locht 2018; Fedele et al. 2011). Moreover,
recently a double-blind, placebo-controlled,
dose-escalating study of BPZE1 given intrana-
sally for the first time to human volunteers was
performed as the first trial of a live attenuated
bacterial vaccine against pertussis. In this study,
12 subjects per dose group received different
quantities of colony-forming units as droplets
with half of the dose in each nostril and
12 subjects received the diluent (control group)
(Thorstensson et al. 2014). Local and systemic
safety and immune responses were assessed dur-
ing 6 months, and nasopharyngeal colonization
with BPZE1 was determined with repeated
cultures during the first 4 weeks after vaccination.
In this trial, the vaccine candidate was found safe
in young human adults, able to transiently colo-
nize the human nasopharynx, and to induce
antibodies to PTx, FHA, PRN and fimbriae after
a single nasal administration (Thorstensson et al.
2014). This vaccine candidate is currently enter-
ing a clinical phase II trial.

4 Less Reactogenic Whole Cell
Vaccine

The major cause of wP vaccine reactions is
associated to the endotoxin which is a lipo-
oligosaccharide (LOS) and because of that
attempts were made to detoxify wP vaccines.
Researchers at the Institute Butantan in São
Paulo, Brazil, diminished the endotoxicity of the
wP vaccine by performing a chemical extraction
of LOS from the outer membrane (Dias et al.
2013). Chemical extraction of LOS resulted in a

significant decrease in endotoxin content without
affecting the integrity of the product. This devel-
opment, however, raises doubts because with the
LOS extraction the adjuvant capacity associated
with this molecule would also be decreasing.
Other alternative strategies to LOS removal are
being sought, specifically a consortium of
researchers proposed to work on structural
changes of the molecule (on the LipidA) in
order to retain de beneficial effects induced by
the molecule but eliminating its reactogenicity.
The results on this strategy have not yet been
disclosed.

5 Acellular Pertussis Vaccines
Containing Recombinant
Inactivated Pertussis Toxin

The safety and superior immunogenicity of 9 K/
129G genetically detoxified PTx (rPT) was
demonstrated long time ago (Rappuoli 1999;
Podda et al. 1993). Under this context, BioNet-
Asia developed a new rPT-expressing
B. pertussis strain (Buasri et al. 2012). This strain
generated increased amounts of rPT compared to
wild type strain and strains used in vaccine pro-
duction and the purified rPT did not show any
toxicity (Buasri et al. 2012). Thus, Bionet
formulated a new acellular vaccine containing
the recombinant genetically detoxified Pertussis
Toxin (PTgen), FHA and PRN and presented the
results of the first clinical study of this recombi-
nant aP vaccine formulated alone or in combina-
tion with tetanus and diphtheria toxoids. For the
phase I/II trial, 60 subjects (20 per each vaccine
group) were enrolled and included in the safety
analysis. This first-in-human study showed that
BioNet’s PTgen-containing vaccine has a similar
reactogenicity and safety profile than the
Adacel® acellular vaccine. Moreover, the high
immunogenicity of PTgen in adults was
demonstrated Sirivichayakul et al. (2016). The
results were consistent with previous studies that
demonstrated high and sustained efficacy of
rPT-containing aP vaccines in infants (Seubert
et al. 2014). Recent findings on the ability of
rPT-containing acellular vaccine to induce
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memory response make a significant difference
with current acellular vaccines that include chem-
ically detoxified components in terms of long-
term protection. Specifically, the authors reported
that the boosting of aP-primed adolescents with
recombinant-aP induced higher anti-PTx and
PTx-neutralizing responses than the current aP
vaccine and increased PTx-specific memory B
cells (Blanchard Rohner et al. 2018). These new
acellular vaccines can thus overcome one of the
weaknesses of current acellular vaccines: the
rapid loss of induced immunity. However, it
remains to study the protection capacity of this
vaccine against current circulating bacteria and
the selection pressure that this type of vaccine
would exert on the circulating bacterial popula-
tion. This last aspect, in principle, would not be
solved with the recombinant acellular vaccine,
since it is constituted by the same few
immunogens as the current acellular vaccines.

6 New Antigens and Adjuvants
for aP Formulations

The incorporation of novel antigens derived from
B. pertussis to improve the current aP vaccines
has also been explored. The B. pertussis
adenylate cyclase toxin (Cheung et al. 2006), the
serum-resistance autotransporter protein BrkA
(Marr et al. 2008) and the iron-regulated
B. pertussis proteins (Alvarez Hayes et al. 2013)
among others, have been proposed as a protective
antigen. Though none of these antigens alone
offered significant protection against B. pertussis
infection in an intranasal challenge model, when
combined with acellular pertussis vaccine, they
conferred improved protection over the acellular
vaccine alone. The combination of all these
immunogens together with the current acellular
vaccines could be an attractive proposal to reduce
the selection pressure of the current acellular
vaccines by offering a greater number of epitopes.

Improvements of the acellular vaccines could
also be achieved by using novel adjuvants for
pertussis. Combination of aP vaccine with
adjuvants that are able to drive Th1 and Th17
responses would be expected to enhance

protection. Cyclic di-GMP, MF59 emulsions,
the combination of aluminium hydroxide with
the TLR-4 agonist monophosphoryl lipid A,
have been shown to enhance Th1 type immune
responses however the impact in protection of
these adjuvants was not deeply investigated
(Geurtsen et al. 2007; Allen et al. 2018). The
B. pertussis lipoprotein BP1569, a TLR-2 ago-
nist that activates murine dendritic cells and
macrophages has recently been shown to possess
adjuvant properties (Dunne et al. 2015).
Recently it was reported that this protein in
combination with c-di-GMP synergistically
induces the production of IFN-β, IL-12 and
IL-23, and maturation of dendritic cells (Allen
et al. 2018). Parenteral immunization of mice
with an experimental aP vaccine formulated
with this combined adjuvant promoted Th1 and
Th17 responses and conferred protection against
lung infection with B. pertussis. Interestingly,
intranasal immunization with this vaccine
induced potent B. pertussis-specific Th17
responses and IL-17-secreting respiratory
tissue-resident memory (TRM) CD4 T cells, and
conferred a high level of protection against nasal
colonization (sterilizing immunity) as well as
lung infection. Furthermore, long-term protec-
tion against nasal colonization with B. pertussis
was observed. This formulation would thus pro-
long the duration of the protective response but it
is not clear that it is capable of overcoming the
deficiencies of the current acellular vaccines
against the circulating bacterial population.
More research must be done in this regard.

7 Outer Membrane Vesicles
as Vaccine Candidates Against
B. pertussis Infections

All Gram-negative bacteria that have been
investigated so far are able to naturally release
spherical structures originated from the outer
membrane (referred to as outer membrane vesicles,
OMVs). Although OMVs formation seems to be a
common feature of Gram-negative bacteria, the
knowledge of their biogenesis and biological
roles remains limited. OMVs naturally contain
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multiple native surface-exposed antigens as well as
immunostimulatory molecules. Based on their
aforementioned immunogenic potency and on pos-
itive examples of the OMV-derived vaccines
against Neisseria meningitides serogroup B, we
initiated several studies over the last years to ana-
lyze the potential of OMVs derived from
Bordetella pertussis as vaccine candidates (Hozbor
et al. 1999; Roberts et al. 2008; Asensio et al.
2011). We characterized the composition of the
pertussis nanoparticles at >200 protein
components—including the virulence factors PT,
PRN, fimbriae, FHA, and adenylate-cyclase
(Hozbor 2016). The presence of a high number
of immunogens in the vaccine formulation is
essential since they may avoid the high selective
pressure conferred by a single or a few protective-
vaccine antigens. To date, we have obtained
almost 50 batches of B. pertussis–derived OMVs
with robust results. Our OMV-based vaccine is
safe and exhibits an adequate protection capacity
against different B. pertussis genetic backgrounds,
including those not expressing the vaccine antigen
PRN (Gaillard et al. 2014).

The OMVs derived from B. pertussis represent
an attractive acellular pertussis vaccine candidate
(Hozbor 2016; Ormazabal et al. 2014; Asensio
et al. 2011; Roberts et al. 2008) not only because
of its safety and ability to induce protective Th1,
Th17 cells (Mills et al. 1993; Ryan et al. 1997;
Raeven et al. 2014; Warfel and Merkel 2013;
Ross et al. 2013) and TRM cells, but because it
contains a greater number of immunogens in
conformations close to those found in pathogen,
when compared with the current aP vaccines
(Hozbor 2016; Advani et al. 2011). Consistent
with previous reports (Hegerle et al. 2014;
Safarchi et al. 2015), we found that immunization
with commercial aP vaccine does not protect
against PRN deficient isolate as effectively as
against B. pertussis Tohama strain (PRN+).
Since the PRN deficient isolate is not isogenic to
B. pertussis Tohama strain (PRN+) and contains
polymorphisms at other loci that may affect the
fitness of these bacteria, we have also examined
the protection of the OMV based vaccine against
a PRN defective mutant derived from B. pertussis
Tohama strain. We found that the commercial aP

vaccine but not the OMV based vaccine exhibits
lower level of protection against the PRN defi-
cient strain when compared with the parental
PRN(+) positive strain. These results clearly
showed the impact of the absence of PRN expres-
sion in the effectiveness of aP vaccine against
B. pertussis when comparisons are made on
strains that contain the same genetic background
(submitted manuscript).

The results obtained here clearly showed that
the OMVs vaccine is more effective than a cur-
rent commercial aP vaccine against PRN deficient
strains. Therefore, the OMV formulation appears
as an attractive vaccine candidate that could
replace the current aP without causing concern
on the reactogenicity associated with wP vaccines
because of the proven safety of the OMVs
vaccines (Bottero et al. 2016). Since major
limitations of the current aP are their strong selec-
tion pressure exerted on the circulating bacterial
population and their failure to induce sustained
protective immunity, the OMV-based vaccine,
that contains high number of antigens and that
induces INF-γ and IL17-secreting TRM cells, has
the potential to replace the current aP vaccine.
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