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Direct Lineage Reprogramming
in the CNS

Justine Bajohr and Maryam Faiz

Abstract

Direct lineage reprogramming is the conver-
sion of one specialized cell type to another
without the need for a pluripotent intermedi-
ate. To date, a wide variety of cell types have
been successfully generated using direct
reprogramming, both in vitro and in vivo.
These newly converted cells have the potential
to replace cells that are lost to disease and/or
injury. In this chapter, we will focus on direct
reprogramming in the central nervous system.
We will review current progress in the field
with regards to all the major neural cell types
and explore how cellular heterogeneity, both
in the starter cell and target cell population,
may have implications for direct
reprogramming. Finally, we will discuss new
technologies that will improve our understand-
ing of the reprogramming process and aid the
development of more specific and efficient
future CNS-based reprogramming strategies.
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Abbreviations
6-OHDA 6-hydroxydopamine
Ascl1 achaete-scute family bHLH tran-

scription factor 1
BAM
factors

combination of the transcription
factors Ascl1, Brn2 and Mytl1

Brn2 POU Class 3 Homeobox 2
CHAT Choline O-Acetyltransferase
c-Myc cellular Myc
CNP 20,3’-Cyclic Nucleotide 3’

Phosphodiesterase
CNS central nervous system
CRISPR clustered regularly interspaced short

palindromic repeats
CRISPRa CRISPR activation
DAT Dopamine transporter
DDC DOPA Decarboxylase
Dlx2 Distal-Less Homeobox 2
DREADD Designer Receptors Exclusively

Activated by Designer Drugs
E47 transcription factor 3
Ezh2 Enhancer Of Zeste 2 Polycomb

Repressive Complex 2 Subunit
Fezf2 FEZ Family Zinc Finger 2
Foxa2 Forkhead Box A2
FoxG1 forkhead box G1
GABA Gamma-amino butyric acid
GLUT1 glucose transporter protein type 1
GRN gene regulatory network
Hb9 Motor Neuron And Pancreas

Homeobox 1
iPSC induced pluripotent stem cell
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Isl1 Insulin gene enhancer protein ISL-1
ITPR2 Inositol 1,4,5-Trisphosphate Recep-

tor Type 2
Klf4 Kruppel Like Factor 4
Lhx3 LIM Homeobox 3
Lmx1a LIM Homeobox Transcription Fac-

tor 1 Alpha
MBP myelin basic protein
Mecom MDS1 And EVI1 Complex Locus
miRNA microRNA
MOL6 mature oligodendrocytes expressing

Grm3 (Glutamate Metabotropic
Receptor 3) and Jph4 (Junctophilin
4)

MS multiple sclerosis
MyoD myogenic differentiation 1
Myt1l myelin transcription factor 1 like

protein
NANOG Nanog Homeobox
NeuroD1 Neurogenic Differentiation Factor 1
NFIA Nuclear Factor I A
NFIB Nuclear Factor I B
NG2 glia Neural/glial antigen 2 expressing

glial cells
Ngn2 Neurogenin 2
Nkx6.2 NK6 Homeobox 2
NSC neural stem cell
NSPC neural stem and progenitor cells
Nurr1 Nuclear receptor related 1 protein
OCT4 octamer-binding transcription factor

4
Olig1 Oligodendrocyte Transcription Fac-

tor 1
Olig2 Oligodendrocyte Transcription Fac-

tor 2
OPC oligodendrocyte progenitor cell
Pax6 Paired Box 6
ROS reactive oxygen species
S1 cortex primary somatosensory cortex
sc
RNA-seq

single cell RNA sequencing

Sox10 SRY-Box 10
Sox2 SRY-Box 2
Sox9 SRY-box 9
VMAT2 Vesicular monoamine transporter 2
VPA valproic acid
Zfp536 Zinc Finger Protein 536

1 Introduction

Historically, it was believed that cell fate was
fixed after the completion of development
(Heins et al. 2002; Barker et al. 2018; Faiz and
Nagy 2013; Vierbuchen and Wernig 2011). How-
ever, discoveries including cell fusion, somatic
nuclear transfer, and most recently
reprogramming to pluripotency (or the generation
of induced pluripotent stem cells, iPSCs) have
shown that cell fate is flexible (Faiz and Nagy
2013; Vierbuchen and Wernig 2011; Gurdon
1962; Chen et al. 2015; Graf and Enver 2009;
Blau et al. 1983, 1985; Xie et al. 2004; Takahashi
and Yamanaka 2006). In this review, we will
focus on direct lineage reprogramming, which is
the conversion of one specialized cell type to
another (Graf and Enver 2009; Xu et al. 2015;
Wang and Zhang 2018; Gascón et al. 2017a;
Masserdotti et al. 2016) (Fig. 1). This was first
demonstrated by Davis and colleagues, who
showed that overexpression of MyoD resulted in
the conversion of fibroblasts to myoblasts (Davis
et al. 1987). More recently, a number of studies
have demonstrated successful conversion of vari-
ous other cell types, both in vitro and in vivo (for
review, see (Barker et al. 2018; Chen et al. 2015;
Xu et al. 2015; Wang and Zhang 2018; Gascón
et al. 2017a; Masserdotti et al. 2016)). This
ground-breaking technology has had a significant
impact on the field of regenerative medicine, as
directly reprogrammed cells could be used to
replace those lost or damaged to disease or injury
(Barker et al. 2018; Faiz and Nagy 2013; Chen
et al. 2015; Graf and Enver 2009; Takahashi and
Yamanaka 2006; Xu et al. 2015; Wang and
Zhang 2018; Gascón et al. 2017a; Masserdotti
et al. 2016).

Direct lineage conversion uses the delivery of
specific factors to induce the conversion of cells
without the need for a pluripotent intermediate
(Graf and Enver 2009; Xu et al. 2015; Wang
and Zhang 2018; Gascón et al. 2017a;
Masserdotti et al. 2016). Typically, transcription
factors have been used, but the feasibility of using
small molecules (Hu et al. 2015; Li et al. 2015),
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microRNAs (Yoo et al. 2011; Victor et al. 2014),
and CRISPRa (Chakraborty et al. 2014; Black
et al. 2016) (Fig. 1) has also been demonstrated.
To date, most studies have identified
reprogramming factors based on their role in
specifying a target cell fate during development,
and/or uniquely high gene expression in a target
cell. For example, Najm and colleagues used
microarray data from different central nervous
system (CNS) cells to identify a pool of genes
that were exclusively upregulated in oligoden-
drocytes (Najm et al. 2013). These genes were
then tested for their ability to convert fibroblasts
to oligodendrocytes (Najm et al. 2013).

Many studies have focused on identifying
“core” factors that are needed for cellular conver-
sion using a reductionist-additive approach
(Ninkovic and Götz 2018). In this paradigm, one
factor is removed at a time until the “necessary”
factor(s) are found (Ninkovic and Götz 2018).
Additional factors are then added back until a
desired phenotype or efficiency is achieved
(Ninkovic and Götz 2018). For example, follow-
ing confirmation that a cocktail of eleven
reprogramming factors was able to reprogram
fibroblasts to motor neurons, Son and colleagues
removed one transcription factor at a time and
analyzed its effect on the conversion (Son et al.

2011). This allowed them to determine that Ascl1
or Lhx3 were crucial for fibroblast to neuron
conversion (Son et al. 2011). Then, to determine
the optimal combination of transcription factors
for a motor neuron phenotype, they added back
single transcription factors and identified a “core
set” of seven (Ascl1/Brn2/Myt1l/Lhx3/Hb9/Isl1/
Ngn2) (Son et al. 2011). This approach suggests
that an end goal is to achieve reprogramming with
the smallest number of factors. Indeed, the semi-
nal study by Davis and colleagues used only
MyoD – highlighting the feasibility of a single
factor for direct lineage reprogramming (Davis
et al. 1987). One transcription factor for
reprogramming may be favorable for future clini-
cal applications, both in terms of feasibility of
delivery and patient safety and tolerability.
While it has been argued that single-factor
reprogramming results in immature cell
phenotypes (Morris 2016), neuronal
reprogramming strategies using only one factor
have resulted in the generation of mature and
functional neurons, albeit at times with a slower
maturation rate (Chanda et al. 2014; Zhu et al.
2018; Heinrich et al. 2010; Guo et al. 2014).

Interestingly, single-factor lineage
reprogramming highlights the ability of certain
reprogramming factors to behave as “pioneers”

Fig. 1 Direct lineage
reprogramming. Direct
lineage reprogramming is
the conversion of one
specialized cell type (Cell
A) to another (Cell B)
without the need for a
pluripotent intermediate. It
can be initiated by a variety
of methods (small
molecules, microRNAs),
but is typically achieved by
the overexpression of
transcription factors.
Illustrated by Kayla
Hoffman-Rogers
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(Ninkovic and Götz 2018). Pioneer factors can
bind to closed areas of chromatin and recruit
supporting transcription factors that may be
needed to initiate the reprogramming process
(Ninkovic and Götz 2018). Further, it has been
suggested that the feasibility and efficiency of
conversion using single factors may be due to
their pioneer activity (Ninkovic and Götz 2018).
For example, the pioneer factor Ascl1, may
endogenously recruit other factors beneficial for
fibroblast to neuron conversion, such as Brn2 and
Myt1l (Ninkovic and Götz 2018). This ability to
bind to closed areas of chromatin demonstrates
one way in which a starting cell state can be
overridden; as in development, the genes
regulating alternate cell fates are epigenetically
repressed via chromatin modifications (Ninkovic
and Götz 2018). Although a valuable insight into
how reprogramming is initiated, many of the
mechanisms that drive direct reprogramming
have yet to be fully elucidated. It has been
suggested that this is a complex process, depen-
dent on many variables, including chromatin
remodeling (Ninkovic and Götz 2018; Wapinski
et al. 2017) and metabolic changes (Gascón et al.
2016, 2017b), amongst others (see (Xu et al.
2015; Wang and Zhang 2018; Gascón et al.
2017a, b; Masserdotti et al. 2015, 2016; Gascón
et al. 2016) for a comprehensive review).

While the mechanisms of reprogramming
remain unclear, the applicability of direct
reprogramming technology is unmistakable. Direct
lineage conversion has been used in many tissue
systems and provides a novel therapeutic option for
drug-resistant diseases or diseases with no current
treatment options (Xu et al. 2015; Berninger 2010).
In this review we will use the neural lineage as a
model system to explore direct lineage
reprogramming. Most studies have focused on
direct reprogramming to neurons (reviewed in
(Chen et al. 2015; Xu et al. 2015; Wang and
Zhang 2018; Gascón et al. 2017a; Masserdotti
et al. 2016)), because of the significant loss or injury
to these cells in most neurological conditions. How-
ever, other neural lineage cells, for example,
oligodendrocytes, may also be of interest. We will
discuss the progress and current state of the field of
direct lineage reprogramming with regards to all the

major CNS cell types. We will explore how cellular
heterogeneity, both in the starter cell population and
the target cell type, may have implications for direct
reprogramming. Finally, we will discuss new
technologies that will improve our understanding
of direct reprogramming and development of future
conversion strategies.

2 Direct Reprogramming
to a Neural Cell Fate

2.1 Overview

The first report of direct reprogramming to cells
of the neural lineage used the transcription factor
Pax6 to convert astrocytes to neurons in vitro
(Heins et al. 2002). Subsequent studies showed
that the delivery of other transcription factors,
such as Ascl1 (Chanda et al. 2014), Brn2 (Zhu
et al. 2018) and Ngn2 (Heinrich et al. 2010),
could also convert astrocytes to neurons in vitro.
Direct conversion has also been used to generate
other neural cells such as oligodendrocytes (Najm
et al. 2013; Yang et al. 2013; Mokhtarzadeh
Khanghahi et al. 2018) and astrocytes (Caiazzo
et al. 2015; Tian et al. 2016). It has also been
shown that a wide variety of cell types, including
those of a non-neural lineage, can be converted to
the neural lineage. Fibroblasts and hepatocytes,
two examples of non-neural cells, were success-
fully reprogrammed to neurons using a combina-
tion of Brn2/Mytl1/Ascl1 (Vierbuchen et al. 2010;
Marro et al. 2011). There are both advantages and
disadvantages in using cells that belong to
non-neural lineages as a source population for
reprogramming. Veritably, it broadens the poten-
tial scope of direct reprogramming, as it does not
limit choice of a starting cell type. Conversely,
neural lineage cells, such as astrocytes, may
already have relevant epigenetic marks and active
transcription factors, that may result in easier
reprogramming (Faiz and Nagy 2013; Ninkovic
and Götz 2018). Thus, future studies must include
a functional comparison of cells that are
generated from neural versus non-neural starter
populations.
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Following initial in vitro studies, a number of
reports demonstrated in vivo reprogramming in
the brain and spinal cord. This is of particular
interest for brain repair, as it enables the targeted
generation of new cells at the site of injury and
circumvents the need for transplantation of exog-
enous cells and the associated risks, namely
immune-rejection and the potential for cell muta-
genesis from long-term cell culture (Faiz and
Nagy 2013; Xu et al. 2015; Gascón et al.
2017a). It also provides an alternative to
strategies using endogenous neural stem cells
that reside within the brain and spinal cord.
Attempts to generate neurons from these neural
stem cells have resulted in low differentiation into
the proper mature neuronal phenotypes, and poor
long-term survival (Barker et al. 2018; Gascón
et al. 2017a; Arvidsson et al. 2002; Thored et al.
2007).

In 2005, Buffo and colleagues demonstrated
for the first time in the CNS that the manipulation
of transcription factors could alter cell fate in vivo
(Buffo et al. 2005). They converted NG2 glia into
cells of a neuronal phenotype by inhibiting the
expression of Olig2 (Buffo et al. 2005). This
inhibition was achieved through the specific
delivery of the dominant negative form of Olig2
to NG2 glia (Buffo et al. 2005). In vivo direct
conversion has now been shown in the healthy
brains of both young and old mice (Niu et al.
2013; Rouaux and Arlotta 2013). Of clinical rele-
vance, the success of in vivo direct
reprogramming has also been demonstrated in a
number of models of CNS injury and disease,
including stroke (Faiz et al. 2015), stab wound
injury (Chen et al. 2015; Guo et al. 2014;
Heinrich et al. 2014), spinal cord injury
(Su et al. 2014), Alzheimer’s disease (Chen
et al. 2015; Guo et al. 2014) and Parkinson’s
disease (Rivetti di Val Cervo et al. 2017). Inter-
estingly, it has been suggested that aspects of the
injured/diseased environment, such as the
increase of beneficial growth factors, increased
plasticity of glial cells and increased glycolysis
may actually enhance the reprogramming process
(Gascón et al. 2017a; Guo et al. 2014; Grande
et al. 2013). These disease-induced changes could
explain why some reprogramming paradigms

have encountered success in an injury context,
but no conversion (or a significantly reduced con-
version) was observed when the same transcrip-
tion factor(s) were delivered to the uninjured
brain (Heinrich et al. 2014; Grande et al. 2013).
Conversely, it has also been noted that an
increased production of reactive oxygen species
(ROS) during injury could be deleterious to
newly generated cells and explain the discrepancy
in conversion success between in vitro and in vivo
studies (Gascón et al. 2017a). A better under-
standing of the mechanisms that underlie each
particular injury or disease model will allow for
reprogramming strategies that are tailored and
optimized for different applications.

2.2 Target Cell Type

Many neurological disorders or conditions have
at their core, a significant loss or injury to the cells
of the CNS. However, not all disorders implicate
the same cells and as such, it is important to
generate specific cell types that are needed for a
particular disorder. The versatility of direct line-
age reprogramming technology is clear – studies
have shown the generation of all the main cell
types of the CNS, including certain subtypes and
progenitors.

2.2.1 Neurons

Generating Neurons In Vitro
Neurons are affected in a wide variety of neuro-
logical conditions, and thus direct lineage
reprogramming strategies have mainly been
focused on regenerating these cells. Since their
seminal Pax6 study, work from Magdalena
Götz’s lab has also demonstrated that a combina-
tion of Ascl1/Dlx2 or Ngn2 results in the conver-
sion of astrocytes to GABAergic and
glutamatergic neurons, respectively (Vierbuchen
and Wernig 2011; Xu et al. 2015; Heinrich et al.
2010). Simultaneously, work done by Vierbuchen
and colleagues established the ability of the com-
bination of Ascl1/Brn2/Mytl1 (referred to as BAM
factors) to induce glutamatergic neurons from
fibroblasts (Vierbuchen et al. 2010). The
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conversion of glial cells (both astrocytes and NG2
glia) to neurons using NeuroD1 by Gong Chen’s
lab further demonstrated that transcription factors
involved in later stages of neuronal development
could also be used to regenerate neurons (Guo
et al. 2014).

A number of other starter cell types have also
been successfully converted to neurons.
Non-neural cell types, such as pericytes, have
been reprogrammed to glutamatergic and
GABAergic cells (Karow et al. 2018) and the
BAM factors have been used to reprogram
hepatocytes to glutamatergic-like neuronal cells
(Marro et al. 2011). Additionally, it has been
shown that microglia can be converted to func-
tional neurons with the delivery of NeuroD1
alone (Matsuda et al. 2019).

Importantly, the type of neuron lost or affected
in a particular disease is often of a specific sub-
type (i.e.: dopaminergic neurons in Parkinson’s
disease and motor neurons in Amyotrophic Lat-
eral Sclerosis), and differs across various neuro-
logical conditions (Faiz and Nagy 2013; Chen
et al. 2015; Xu et al. 2015; Wang and Zhang
2018; Masserdotti et al. 2016). As such, the gen-
eration of a random assortment of neuronal
subtypes, or the ability to generate only one spe-
cific subtype would likely be of minimal thera-
peutic benefit. For example, generating
cholinergic neurons in Alzheimer’s disease is
likely to confer more benefit than in Parkinson’s
disease, where dopaminergic neurons are needed.
Direct reprogramming must therefore reliably
generate subtype specific cell types appropriate
for the neurological deficit in question (Faiz and
Nagy 2013; Chen et al. 2015; Xu et al. 2015;
Wang and Zhang 2018; Masserdotti et al. 2016).
Accordingly, in vitro studies have shown the
generation of dopaminergic (Rivetti di Val
Cervo et al. 2017; Kim et al. 2011; Caiazzo
et al. 2011; Sheng et al. 2012), motor (Son et al.
2011), serotonergic (Vadodaria et al. 2016), and
cholinergic (Liang et al. 2018; Liu et al. 2013)
neurons, amongst others (see (Masserdotti et al.
2016) for in depth review) using specific
combinations of transcription factors.

In summary, direct lineage reprogramming
in vitro is clearly feasible, customizable and reli-
able in generating new neurons. However, in vitro
lineage conversion still requires transplantation
into the brain.

Generating Neurons In Vivo
One of the most exciting features of direct
reprogramming is the ability to target endogenous
cells at their source. Thus, in vivo studies
generating novel populations of neurons are of
particular interest to the field. Work performed
by a number of groups has shown the reliable
generation of new neurons in vivo using direct
reprogramming in healthy and injured
environments, and has been extensively reviewed
elsewhere.(Chen et al. 2015; Xu et al. 2015;
Wang and Zhang 2018; Gascón et al. 2017a;
Masserdotti et al. 2016) What is lacking and of
significant interest however, is a systematic com-
parison of different transcription factors and
delivery strategies in various models of disease
and injury (Gascón et al. 2017a). Although the
transcription factors used in these studies (Sox2
(Niu et al. 2013; Heinrich et al. 2014), BAM
factors (Torper et al. 2013), NeuroD1 (Guo et al.
2014) and Ascl1/Lmx1a/Nurr1 (Torper et al.
2015)) correspond to in vitro studies, there is
variation with regards to the delivery system
used. It has been proposed that the choice of
delivery system may affect the reprogramming
paradigm, as there is variance in their temporal
kinetics (Gascón et al. 2017a). As such, clear
conclusions on the “best” direct reprogramming
paradigm for a particular starting cell type, target
cell type or disease state cannot yet be made with
certainty. Nonetheless, these newly generated
neurons are capable of surviving, maturing and
integrating into the pre-existing neural circuitry,
as shown by electrophysiological and functional
assays (Guo et al. 2014; Niu et al. 2013; Heinrich
et al. 2014; Torper et al. 2013, 2015).

One hurdle that remains with regards to in vivo
neuronal reprogramming is subtype specific neu-
ronal regeneration. Success seen in in vitro stud-
ies of neuronal subtype generation has not been
replicated to the same extent in vivo, even with
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the use of the same transcription factors (Chen
et al. 2015; Xu et al. 2015; Wang and Zhang
2018; Gascón et al. 2017a; Masserdotti et al.
2016). The reasons for this are unclear, but as
discussed above, could be attributed to the delete-
rious environment that results from injury (Gas-
cón et al. 2017a). A more complex in vivo
environment may require multiple transcription
factors and/or a combination of both transcription
factors and small molecules or microRNA to gen-
erate specific neuronal sub-types. In fact, Rivetti
di Val Cervo and colleagues successfully
obtained a novel population of dopaminergic
neurons from astrocytes in vivo when they used
a combination of both NeuroD1/Ascl1/Lmx1a and
the microRNA miR218 (Rivetti di Val Cervo
et al. 2017).

Neuron to Neuron Reprogramming
While most studies have focused on converting
non-neuronal cells to neurons, reports of neuron
to neuron reprogramming show that there is cell
fate flexibility even within this population. In the
cortex, Rouaux and Arlotta were able to success-
fully convert layer 2/3 callosal projection neurons
into layer 5/6 corticofugal projections using only
the transcription factor Fezf2 (Rouaux and Arlotta
2013). More recently, Niu and colleagues used a
combination of Sox2/Nurr1/Foxa2/Lmx1a paired
with valproic acid (VPA) to reprogram striatal
neurons to dopaminergic neurons (Niu et al.
2018). Interestingly, they showed that these
newly induced dopaminergic cells arise directly
from the striatal neurons, without passing through
a progenitor stage (Niu et al. 2018). These studies
beg the question of whether a shared identity
(i.e. neuron) between the starting and target cell
is an important consideration for easily generating
specific neuronal subtypes in vivo.

2.2.2 Oligodendrocytes
Oligodendrocytes play crucial roles in
maintaining proper cell signaling in the CNS
and many diseases result from their widespread
loss or malfunction. Oligodendrocyte death and
subsequent de-myelination is characteristic to the

pathology of multiple sclerosis (Lassmann et al.
2012; Reich et al. 2018; Sawcer et al. 2014), and a
reduction in myelin is seen in multi-system atro-
phy (Burn and Jaros 2001). Oligodendrocytes
have also been implicated in Alzheimer’s disease.
Although traditionally thought of as a grey matter
disease, Alzheimer’s disease presents with white
matter disruption, impaired myelination patterns
and decreased oligodendrocyte and oligodendro-
cyte progenitor gene expression (Desai et al.
2009, 2010; Roth et al. 2005). Interestingly, a
mouse model of Alzheimer’s disease showed
that impaired myelination and decreased CNPase
and MBP expression precedes the onset of tau
and amyloid pathology (Desai et al. 2009).
Finally, white matter damage and oligodendro-
cyte dysfunction have been proposed as a risk
factor and predictor of stroke (Kuller et al.
2004) and of schizophrenia (Cassoli et al. 2015).

Given the significant implication of oligoden-
drocytes in disease, strategies to restore or replen-
ish damaged or lost oligodendrocytes are needed.
Yet, there is a clear disparity in the number of
studies investigating direct reprogramming to
neurons versus oligodendrocytes. Only three
studies to date have looked at using direct
reprogramming to generate new populations of
oligodendrocytes and their precursors. Work
done by Najm and colleagues, as well as Yang
and colleagues produced oligodendrocyte pro-
genitor cells (OPCs) and oligodendrocytes from
fibroblasts in vitro using combinations of tran-
scription factors involved in OPC development
and oligodendrocyte function (Sox10/Olig2/
Nkx6.2 and Sox10/Olig2/Zfp536, respectively)
(Najm et al. 2013; Yang et al. 2013). The
oligodendrocytes generated from both these stud-
ies expressed characteristic OPC and oligoden-
drocyte markers and showed myelination
capability in transplantation experiments (Najm
et al. 2013; Yang et al. 2013). More recently,
Khanghahi and colleagues reported that both
in vitro and in vivo delivery of Sox10 alone to
astrocytes in cuprizone induced de-myelinated
mice results in the generation of new
oligodendrocyte-like cells (Mokhtarzadeh
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Khanghahi et al. 2018). Cells transduced in vitro
expressed markers of OPC and oligodendrocyte
lineage and were transplanted into the corpus
callosum of the cuprizone mice (Mokhtarzadeh
Khanghahi et al. 2018).

Although promising, there are significantly
fewer studies of oligodendrocyte reprogramming
in comparison with neuronal reprogramming.
Future work examining oligodendrocyte genera-
tion and the optimal factors involved are
warranted.

2.2.3 Astrocytes
Most reprogramming studies have focused on
astrocytes as the starter cell type, rather than the
target cell type. Nonetheless, a few reports have
shown the feasibility of generating astrocytes.
From a pool of 14 genes involved in determining
astrocyte fate, Caiazzo and colleagues found that
the combination of NFIA/NFIB/Sox9 could suc-
cessfully reprogram fibroblasts to astrocytes
(Caiazzo et al. 2015). Similarly, work by Tian
and colleagues demonstrated that a cocktail of
6 small molecules generated functional astrocytes
from fibroblasts (Tian et al. 2016). Given the
recent knowledge that a subset of astrocytes, A2
cells, are neuroprotective and conducive to recov-
ery following injury, future studies examining
conversion of a starter cell to a beneficial astro-
cyte subtype, such as the A2 phenotype, may be
of interest (Liddelow and Barres 2017; Liddelow
et al. 2017; Zamanian et al. 2012; Toft-Hansen
et al. 2011).

2.2.4 Stem/Progenitor Cells
To date, studies have generated both neural stem
cells and glial progenitors that can give rise to
mature neurons and glia. Researchers in the
Wernig lab demonstrated that the use of two
transcription factors, FoxG1 and Brn2, that are
important for neural stem cell (NSC) fate, could
convert fibroblasts into tripotent NSCs (Lujan
et al. 2012). Not only were these NSCs capable
of further differentiation into functional neurons,
astrocytes and oligodendrocytes, but they also
demonstrated clear proliferative capacity, capable
of being passaged up to 17 times, without loss of
function (Lujan et al. 2012). Additionally, other

studies by Han and colleagues, as well as Ring
and colleagues have shown conversion of
fibroblasts to NSCs using a combination of
Brn2/Sox2/Klf4/c-Myc/E47 and Sox2 alone,
respectively (Xu et al. 2015; Han et al. 2012;
Ring et al. 2012). Similarly, astrocytes have also
been successfully converted to NSPCs through
delivery of both single factors (OCT4, SOX2 or
NANOG) (Corti et al. 2012) and combination of
factors (Foxg1/Sox2/Brn2) (Ma et al. 2018).
Finally, OPCs have also been generated in the
Tesar lab using a combination of the transcription
factors Sox10/Olig2/Nkx6.2 (Najm et al. 2013).
The pathophysiology of a particular disease may
determine whether it is advantageous to induce
progenitor populations or mature cell types.
Given this, future studies comparing the func-
tional outcomes of direct reprogramming to
progenitors versus mature cells will be of interest.

2.2.5 Cell Heterogeneity
It is now clear that neurons are not the only cell
type in the CNS with delineated subtypes com-
prising different roles, with recent work
demonstrating intra-cellular differences in oligo-
dendrocyte populations. Using single-cell RNA
sequencing (sc RNA-seq), Marques and
colleagues found unique transcriptome profiles
according to the age and region of oligoden-
drocytes and progenitors in mice (Marques et al.
2016). In addition, they noted a novel population
of cells (ITPR2+) hypothesized to be involved in
periods of rapid myelination (Marques et al.
2016). Furthermore, they noted that varying
regions of the CNS were associated with differing
forms of mature oligodendrocytes, such as MOL6
oligodendrocytes specific to the S1 cortex and
corpus callosum (Marques et al. 2016).
Differences in mature oligodendrocytes in the
CNS are also present in the context of disease.
Work by Jäkel and colleagues showed that not
only is there a similar heterogeneity of oligoden-
drocytes in humans, but that MS patients had a
unique loss of certain mature oligodendrocyte
populations (OLIG1+) when compared to
controls (Jäkel et al. 2019). These findings will
be of particular importance when considering
transcription factor cocktails used to create
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functional, myelinating oligodendrocytes and
how the transcription factor combinations may
vary based on disease need.

2.3 Starting Cell Type

When performing direct lineage reprogramming,
genetic systems with cell specific promoters can
allow for targeting of a precise cellular population
(Wang and Zhang 2018). Traditionally, starter
cell populations have been chosen based on their
developmental closeness to the target cell type
(Gascón et al. 2017a; Masserdotti et al. 2016;
Waddington 1957). However, developmental
closeness may not be the only, or even “best”
reason for choosing a particular starting cell
type. In the context of injury or disease, it may
be more relevant to choose a starting cell based on
the role of that cell at the time of reprogramming.
For example, cells that contribute to ongoing
neuronal death and therefore disease pathology
may be the most clinically relevant choice for
reprogramming.

2.3.1 Developmental Closeness
The Waddington model, used to explain normal
cell fate determination, denotes a linear differen-
tiation and restriction pattern of cell type during
development (Waddington 1957). It was
hypothesized that more closely related starter
and target cells would be easier to convert and
reprogram (Gascón et al. 2017a; Masserdotti et al.
2016). Initial studies using starting cell
populations that belonged to a non-neuronal line-
age, such as fibroblasts, required a combination of
transcription factors (Son et al. 2011; Vierbuchen
et al. 2010; Kim et al. 2011; Caiazzo et al. 2011;
Sheng et al. 2012) for conversion to neurons. In
contrast, starting cell populations within the neu-
ral lineage, such as astrocytes, could be success-
fully converted with just one transcription factor
(Gascón et al. 2017a; Heinrich et al. 2010; Guo
et al. 2014; Niu et al. 2013). However, more
recent work has demonstrated the use of single
factors to convert non-neural cells neurons.
Chanda and colleagues demonstrated the genera-
tion of neurons from fibroblasts using only Ascl1

(Chanda et al. 2014) and MYT1L alone has been
shown to reprogram pericytes into mature cholin-
ergic neurons (Liang et al. 2018). Given these
findings, a new model of reprogramming has
been proposed – the Cook’s Island model
(Masserdotti et al. 2016; Sieweke 2015). In this
analogy, the starting cell is a boat and target cell
types are the various islands to which the boat can
travel (Masserdotti et al. 2016; Sieweke 2015).
The boat may face various challenges or hurdles
depending on the proximity of the island, but all
are potentially accessible (Masserdotti et al. 2016;
Sieweke 2015).

2.3.2 Cellular Heterogeneity
Cell heterogeneity within the starter cell popula-
tion is of particular interest to direct lineage
reprogramming. One specific subtype of astro-
cyte, for instance, may be especially conducive
to generating a particular subtype of neuron
(Fig. 2). Conversely, as we broaden our scope of
potential cells that can be generated by
reprogramming, it will be important that those
generated are of the correct subtype for the par-
ticular disease or injury at hand.

Astrocytes
Recent work by Liddelow and colleagues has
shown that astrocytes have at least two defined
functional states in the context of disease/injury,
termed A1 and A2 (Liddelow and Barres 2017;
Liddelow et al. 2017). A1 cells are present in many
disease states, including Alzheimer’s Disease,
Huntington’s Disease, Parkinson’s Disease and
Multiple Sclerosis (Liddelow and Barres 2017;
Liddelow et al. 2017). Furthermore, A1 astrocytes
lose many normal astrocytic functions, such as
phagocytic capacity and the promotion of synaptic
formation and become toxic, killing neurons and
oligodendrocytes, and impairing oligodendrocyte
progenitor cell (OPC) differentiation (Liddelow
and Barres 2017; Liddelow et al. 2017). Con-
versely, A2 cells are thought to be neuroprotective
(Liddelow and Barres 2017). They upregulate a
number of neurotrophic factors, cytokines and
thrombospondins that may help repair and rebuild
lost synapses (Liddelow and Barres 2017;
Zamanian et al. 2012). In addition, it has also
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been postulated that there are many more astrocyte
subtypes that have yet to be characterized
(Liddelow and Barres 2017).

Given the heterogeneity of astrocytes, it may
prove advantageous to reprogram astrocyte
subtypes that are detrimental to disease outcome
or progression (such as A1 cells), over
reprogramming protective subtypes (such as A2
cells) that could lead to worse disease outcomes
(Liddelow and Barres 2017; Liddelow et al. 2017;
Zamanian et al. 2012; Toft-Hansen et al. 2011).
Furthermore, it would be worthwhile
investigating whether A1 neurotoxic astrocytes
could be reprogrammed to their more beneficial
A2 counterparts. This has been suggested in work
done by Gong Chen’s lab, which noted that
astrocytes transduced in their NeuroD1 mediated
astrocyte to neuron paradigm showed a reduction
in A1 gene expression prior to their conversion to
neurons (Zhang et al. 2018).

Microglia
Microglia have also been shown to have at least
two distinct subtypes, termed M1 and M2, with
more recent work suggesting that many
sub-classes, or even a continuum of microglial
states may exist (Liddelow and Barres 2017;

Boche et al. 2013; Tang and Le 2016). These
subtypes pertain to activation states that corre-
spond with particular functions: M1 microglia
are pro-inflammatory and potentially damaging
to neighboring cells, whereas M2 microglia are
involved in tissue repair and are immunosuppres-
sive (Liddelow and Barres 2017; Boche et al.
2013). Interestingly, this activation pattern is
thought to be dependent on the particular injury
or disease state (Boche et al. 2013). In fact, work
by Tang and Le have shown that changes in M1
and M2 microglia phenotype correspond to dif-
ferent stages of disease (Tang and Le 2016). This
knowledge may be of particular relevance in
future clinical applications of direct
reprogramming, allowing for tailored paradigms
based off disease progression.

2.4 Direct Reprogramming:
Readouts

In order to ensure the clinical relevance and fea-
sibility of direct reprogramming, there is a need to
generate mature cells that can integrate into
existing host circuitry, have long-term survival
and perform proper cell functions (Barker et al.

Fig. 2 Cellular heterogeneity. Heterogeneity of both the
starting and target cell populations is an important consid-
eration for direct lineage reprogramming. Diversity of the
starting cell population may determine what types of target
cell types are generated. All subsets of starting cells may

give rise to one only type of target cell (a). Alternately,
specific subtypes of starting cells may only give rise to
specific subtypes of target cells (b). Or, only one type of
starting cell may generate all target cell subtypes (c).
Illustrated by Kayla Hoffman-Rogers
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2018; Xu et al. 2015; Wang and Zhang 2018;
Gascón et al. 2017a; Berninger 2010; Yang
et al. 2011). If the cells generated fail to meet
these conditions, it is unlikely that they could be
utilized as a novel therapy for neurological
diseases.

2.4.1 Characterization of Target Cells
To characterize newly reprogrammed cells, many
studies have examined the expression of cell type
specific proteins and patterns of global gene
expression that correspond to native cells (Barker
et al. 2018; Faiz and Nagy 2013; Xu et al. 2015;
Gascón et al. 2017a; Masserdotti et al. 2016;
Yang et al. 2011). Some studies have also used
a lack of gene/protein expression, of cells of
unwanted lineages or of cells of the starting pop-
ulation to be indicative of proper cell conversion.
For example, Niu and colleagues demonstrated
that reprogrammed dopaminergic neurons
expressed cell-type specific markers [DDC
(DOPA Decarboxylase), VMAT2 (Vesicular
monoamine transporter 2) and DAT (Dopamine
transporter)], but also confirmed that the
reprogrammed cells did not express markers
associated with other neuronal subtypes (cholin-
ergic or glutamatergic, using CHAT and GLUT1,
respectively) (Niu et al. 2018).

Functional assays specific to the desired cell
type are also important (Barker et al. 2018; Xu
et al. 2015; Wang and Zhang 2018; Gascón et al.
2017a; Berninger 2010; Yang et al. 2011)
(Fig. 3). For neurons, there are both general and
subtype specific means of assessing neuronal
function and integration (Yang et al. 2011).
Patch-clamp recording can demonstrate whether
reprogrammed neurons exhibit electrophysiologi-
cal characteristics of neurons – their ability to fire
action potentials and their synaptic patterns (Chen
et al. 2015; Wang and Zhang 2018; Yang et al.
2011). Most studies to date have demonstrated
mature, electrically active neurons, both in vivo
and in vitro. The firing patterns of reprogrammed
cells can also be compared to the expected firing
patterns of native cells to assess similarity in
function, as was done by Niu and colleagues
(Niu et al. 2018). Furthermore, fluorescent
reporters can be used to trace reprogrammed

cells and assess the extent of their integration
into host circuitry (Chen et al. 2015; Torper
et al. 2015). For example, Torper and colleagues
noted that in a mouse model of Parkinson’s dis-
ease, newly generated neurons did not migrate to
alternate regions of the CNS, but rather integrated
locally (Torper et al. 2015).

For oligodendrocytes, the ability to myelinate
is key. To characterize the reprogrammed OPCs
or oligodendrocytes, studies have used mouse
models of demyelination or impaired myelination
(Najm et al. 2013; Yang et al. 2013;
Mokhtarzadeh Khanghahi et al. 2018; Chernoff
1981; Blakemore 1972; Matsushima and Morell
2001). The Shiverer mouse, for example, lacks
myelin basic protein (MBP) and consequently,
the ability to form compact myelin (Chernoff
1981). It has been used in studies such as those
done by Najm and colleagues to demonstrate the
generation of MBP+ myelin following transplan-
tation of OPCs that were directly reprogrammed
from fibroblasts (Najm et al. 2013).

2.4.2 Functional Outcomes
Ultimately, the goal of direct reprogramming is to
be a clinical treatment option for neurological
diseases. Therefore, it is crucial to employ animal
models of disease to determine whether
reprogramming can induce functional recovery,
slow disease progression or reverse disease pro-
gression/impairments all together (Chen et al.
2015; Xu et al. 2015). To date, there has been
limited study of the outcomes of reprogramming
with regards to disease progression or prevention
in disease models. The first report of functional
recovery was by Rivetti di Val Cervo and
colleagues in a unilateral 6-hydroxydopamine
(6-OHDA) mouse model of Parkinson’s disease
(Rivetti di Val Cervo et al. 2017). Following
astrocyte reprogramming to dopaminergic
neurons, newly generated neurons were capable
of rescuing gait deficits and dopamine-deficient
circling behaviors (Rivetti di Val Cervo et al.
2017). A second report by Chen and colleagues,
showed improvement in motor and fear memory
deficits following ischemia (Chen et al. 2018).
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2.4.3 Application of New Technologies
Many exciting and novel technologies have
recently emerged that will benefit our understand-
ing of the reprogramming process and cellular
outcomes. A new tool for analyzing
reprogrammed cell identity is the CellNet data-
base (Xu et al. 2015). It identifies gene regulatory
networks (GRNs) in reprogrammed cells, and
therefore enables confirmation of reprogramming
factor expression in target cells and the compari-
son of gene expression profiles of experimental
and naive cells (Xu et al. 2015; Cahan et al. 2014;
Morris et al. 2014). Most striking, however, is the
utility of CellNet in predicting how

reprogramming paradigms could be improved,
which is based on incorrect expression of GRNs
(Xu et al. 2015; Morris et al. 2014).

In a pioneering study by Cadwell and
colleagues, electrophysiological and single cell
RNA-seq readouts were combined to create
Patch-seq technology (Cadwell et al. 2016). This
technique results in the simultaneous acquisition
of cell transcriptomes (sc RNA-seq) and electro-
physiological information (Patch-clamp
readings), thereby correlating changes in cell
function and the transcriptome within a single
cell (Cadwell et al. 2016). This is of particular
interest, as changes in cell function can be

Fig. 3 Functional target cells. The goal of direct lineage
reprogramming is to generate functional cells for repair or
regeneration. Newly generated cells must recapitulate the
function of their endogenous counterparts (blue neurons,
red oligodendrocytes). After astrocyte to neuron conver-
sion, new neurons (yellow) must fire action potentials,

form synapses and integrate into the exiting host circuitry
(blue neurons) (a). Similarly, new oligodendrocytes (yel-
low) must generate myelin and ensheath existing neurons
like native oligodendrocytes (red) (b). Illustrated by Kayla
Hoffman-Rogers
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predicted based on particular transcriptome
patterns or modifications (Cadwell et al. 2016).
This technology has already been used to identify
and predict populations of highly functional
reprogrammed neurons generated from iPSCs
(Bardy et al. 2016). The application of Patch-seq
in direct reprogramming studies is thus greatly
warranted, as it would enable a more tailored
approach for the creation of specific cell types
by identifying reprogramming factors that pro-
duce bonafide reprogrammed cells.

CRISPR is another new technology that can be
used to determine genes that are involved in cell
fate changes and therefore, elucidate optimal tran-
scription factor combinations for direct
reprogramming paradigms (Liu et al. 2018).
This strategy has unveiled novel factor(s) that
result in the conversion of fibroblasts to neurons,
such as Ezh2/Mecom, which were not tradition-
ally thought to be key proneural genes, (Liu et al.
2018). As the field strives for subtype specific cell
generation, as well as tailorable and translatable
therapies, utilizing the power of CRISPR may be
of great interest.

Finally, optogenetics and pharmacogenetics
provide novel means by which to target
populations of cells and manipulate their activity
(Deisseroth 2011; Amamoto and Arlotta 2014;
Steinbeck and Studer 2015). This technology
can be used to specifically analyze whether
newly generated cells directly contribute to func-
tional recovery (Amamoto and Arlotta 2014;
Steinbeck and Studer 2015). It can also be
employed to potentiate the activity of
reprogrammed cells (Amamoto and Arlotta
2014; Steinbeck and Studer 2015). Indeed, in a
study done by Dell’Anno and colleagues, a
DREADD pharmacogenic system was used to
selectively activate reprogrammed dopaminergic
neurons to enhance their activity (Dell’Anno et al.
2014). Researchers noted that upon activation of
these cells, dopamine levels were increased, even
up to 5 weeks following reprogramming,
supporting the use of chemogenetics as an adjunct
strategy to direct reprogramming (Dell’Anno
et al. 2014).

3 Conclusions and Future
Directions

The field of reprogramming is still in its infancy.
Although significant progress has been made in
our understanding of direct reprogramming in the
CNS since the pioneering work done by Heins
and colleagues (2002), new research into the
mechanisms underlying direct reprogramming
will allow us to tailor better strategies for brain
repair. Studies that will determine the optimal
starting cell types that are needed for the genera-
tion of functional target cells, as well as
experiments that systematically compare the effi-
cacy of different reprogramming paradigms are
needed. Moreover, research into the impact of
cellular heterogeneity in reprogramming will
result in better designed reprogramming
strategies that cater to a specific disease or injury
state. Our progress will only become faster with
the implementation of the novel, cutting
technologies, such as CellNet and Patch-seq.
Given the integrative and multi-faceted nature of
direct reprogramming, it seems only fitting to
employ an interdisciplinary approach as we
move forward.
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