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Abstract

Helicobacter pylori represents a highly suc-
cessful colonizer of the human stomach.
Infections with this Gram-negative bacterium
can persist lifelong, and although in the major-
ity of cases colonization is asymptomatic, it
can trigger pathologies ranging from chronic
gastritis and peptic ulceration to gastric cancer.
The interaction of the bacteria with the human
host modulates immune responses in different
ways to enable bacterial survival and persis-
tence. H. pylori uses various pathogenicity-
associated factors such as VacA, NapA,
CGT, GGT, lipopolysaccharide, peptidogly-
can, heptose 1,7-bisphosphate, ADP-heptose,
cholesterol glucosides, urease and a type IV
secretion system for controlling immune sig-
naling and cellular functions. It appears that
H. pylori manipulates multiple extracellular
immune receptors such as integrin-
β2 (CD18), EGFR, CD74, CD300E,
DC-SIGN, MINCLE, TRPM2, T-cell and
Toll-like receptors as well as a number of
intracellular receptors including NLRP3,
NOD1, NOD2, TIFA and ALPK1. Conse-
quently, downstream signaling pathways are
hijacked, inducing tolerogenic dendritic cells,
inhibiting effector T cell responses and

changing the gastrointestinal microbiota.
Here, we discuss in detail the interplay of
bacterial factors with multiple immuno-
regulatory cells and summarize the main
immune evasion and persistence strategies
employed by H. pylori.
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1 Introduction

Hallmarks of microbial infections are inflamma-
tion and subsequent changes in the affected tis-
sue. Generally, most infections are cleared by the
host immune system through innate and adaptive
responses. Microbial invasion can be detected by
a plethora of factors belonging to the innate
immune machinery. The well-studied pattern rec-
ognition receptors (PRRs) detect pathogen
associated molecular patterns (PAMPs) and this
interaction leads to various arms of signal trans-
duction to produce a timely response by the
immune system to control the infection (Takeuchi
and Akira 2010). In addition, inherent signals of
anti-inflammation are needed to subsequently
down-regulate the immune activity and avoid
unnecessary damage to host tissue. Many
pathogens have developed strategies to evade
host immune responses to variable degrees. For
instance, the untimely induction of both pro- and
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anti-inflammatory responses will jeopardize the
control of infection and avoid a return to homeo-
stasis. H. pylori is an example of a pathogen that
effectively manipulates the host’s immune
response upon infection. It colonizes the human
gastric mucosa and is associated with gastritis,
peptic ulcer and gastric cancer. When present,
H. pylori is effectively detected by the host innate
immune system, which in response produces pro-
and anti-inflammatory cytokines and other
inflammatory mediators (White et al. 2015).
These responses ought to be sufficient to result
in adaptive immunity against this pathogen, but
they cannot effectively clear the infection, which
allows H. pylori to colonize an individual from
childhood (when most primary infections occur)
to last an entire life span.

In 10–20% of cases, infection with H. pylori is
associated with the development of peptic ulcers
and about 1–2% develop gastric cancer or gastric
mucosa-associated lymphoid tissue (MALT)
lymphoma (Wroblewski et al. 2010; Bauer and
Meyer 2011). A major risk factor for these
H. pylori-associated diseases is local chronic gas-
tric inflammation in response to colonization
(Dunn et al. 1997; White et al. 2015; Gobert and
Wilson 2016). The immune response during
H. pylori infection is characterized by the infiltra-
tion of several types of immune cells, for instance
anti-H. pylori T-cells were found in the gastric
mucosa of infected individuals (D’Elios et al.
1997). The prolonged pathogenesis by this bacte-
rium is based on its adaptation to and survival in
the harsh conditions of the stomach, to which
H. pylori responds by differential regulation of
its gene expression during colonization (Wang
and Maier 2015; Gieseler et al. 2005). Analyzing
the bacterial gene expression of H. pylori derived
from mouse stomachs or infected cultured murine
cells showed an up-regulation of the cytotoxin-
associated gene A (cagA) encoding the CagA
effector protein and of vacA encoding the
vacuolating toxin VacA (Singh et al. 2012).
Both gene products are well-characterized viru-
lence factors of H. pylori (Posselt et al. 2013).
CagA, which was amongst the first virulence
factors to be discovered for this pathogen, can
hamper the maturation of dendritic cells (DCs),

as demonstrated using both cultured human cell
lines and a mouse model, suggesting it employs
an immune regulatory effect (Tanaka et al. 2010;
Käbisch et al. 2014). Effects on cellular vacuola-
tion, apoptosis or immune cell inhibition are
described for VacA, while the cag pathogenicity
island (PAI), encoding a type IV secretion system
(T4SS), is crucial for delivery of CagA across the
bacterial membrane into the host cells (Backert
et al. 2011; Bridge and Merrell 2013; Naumann
et al. 2017). It appears that the inflammatory
response during H. pylori infection is mainly
controlled by the cagPAI, in line with the obser-
vation that cagPAI-positive strains (which have
been designated as type-I) are more virulent com-
pared to cagPAI-negative (type-II) isolates
(Tegtmeyer et al. 2011). Later studies showed
that only strains positive for CagA and VacA
are able to drive immune cell tolerance during
infection, presumably to promote chronic persis-
tence of the pathogen (Oertli et al. 2013; Käbisch
et al. 2014). Studies investigating the impact of
H. pylori have shown that VacA can directly
interact with T-cells, B-cells, monocytes and
macrophages, which trigger both immune stimu-
latory and suppressive activities (Boncristiano
et al. 2003; Gebert et al. 2003; Singh et al. 2012).

In addition, H. pylori is able to weaken the
gastric epithelial barrier function and can induce
epithelial apoptosis (Backert et al. 2017, 2018).
Disruption of the epithelial integrity leads to
increased amounts of bacterial virulence factors
in the lamina propria, where they can interact with
immune cells (Mai et al. 1991, 1992). Disrupted
epithelial barrier function and epithelial apoptosis
can be induced by VacA, but also by the secreted
enzyme γ-glutamyl transpeptidase (GGT), which
also contributes to the virulence of H. pylori
(Cover et al. 2003; Shibayama et al. 2003).
Besides its importance during colonization as
demonstrated by in vivomodels, GGT was further
shown to promote cell cycle arrest, increase pro-
duction of reactive oxygen species and induce the
secretion of inflammatory cytokines leading to
apoptosis and necrosis of gastric epithelial cells
(Chevalier et al. 1999; McGovern et al. 2001;
Oertli et al. 2013). The enzyme GGT, which is
highly conserved between H. pylori strains,
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catalyzes the hydrolysis of glutamine to gluta-
mate and ammonia and further the hydrolysis
and transpeptidation of various γ-glutamyl
compounds (Shibayama et al. 2007; Song et al.
2011). Apart from their direct functional effect,
virulence factors can also modulate the cellular
signaling and homeostasis. For example, choles-
terol, a common constituent of the host cellular
membranes, is extracted and converted to
glucosides by cholesterol-α-glucosyltransferase
(CGT) of H. pylori, which prevents phagocytosis
and subsequent antigen presentation. Further-
more, cholesterol depletion dampened specific
cellular signaling like interferon gamma (IFNγ)
by depleting its receptors from lipid rafts
(Wunder et al. 2006; Lai et al. 2008, 2011;
Morey et al. 2018). Antigen presentation was
tightly regulated at different levels by different
mechanisms like interference on phagosome mat-
uration, downregulated expression of antigen
presenting MHC (major histocompatibility com-
plex) molecules, co-stimulatory factors, and
T-cell differentiation to regulatory phenotypes
(Molinari et al. 1998; Ramarao et al. 2000;
Allen 2007; Beswick et al. 2007; Wang et al.
2010). The interaction of H. pylori proteins like
urease subunit B (UreB), heat shock protein
60 (Hsp60) and neutrophil activating protein A
(NapA) with Toll-like-receptor 2 (TLR2) resulted
in varied responses (Amedei et al. 2006; Zhao
et al. 2007; Koch et al. 2015). Moreover, common
PAMPs like lipopolysaccharide (LPS), peptido-
glycan, DNA and RNA of H. pylori were shown
to induce various pro- and anti-inflammatory
signals through their respective PRRs (Ishihara
et al. 2004; Viala et al. 2004; Allison et al.
2009; Rad et al. 2007; Nagashima et al. 2015).
H. pylori infection also regulates the
inflammasome for the secretion of cytokines
interleukin 1β (IL-1β) and IL-18, which ulti-
mately favors bacterial survival and persistence
(Kim et al. 2013; Koch et al. 2015; Ng et al. 2016;
Pachathundikandi and Backert 2018). The induc-
tion of pro- and anti-inflammatory states in this
infection skewed for both reduction in bacterial
colonization and immune-pathologies, but never
resulted in resolution of inflammation without
prophylactic methods (Garhart et al. 2002;

Matsumoto et al. 2005; Kao et al. 2010;
Quiding-Järbrink et al. 2010; Cook et al. 2014).
Here we review the overall interplay of these
various H. pylori factors with the host’s immune
system.

2 The Role of H. pylori GGT
on Immune Tolerance

H. pyloriGGT induces immune tolerance through
altering DC processes, and GGT enzymatic activ-
ity is needed for this immune regulation, as was
first demonstrated in infected mice (Oertli et al.
2013). Subsequently, by infecting human DCs
with H. pylori Käbisch and co-workers (2016)
showed that GGT promotes the progression of
naïve T-cells to regulatory T-cells. As a result of
the enzyme’s activity, levels of glutamate
increase in the stomach and these promote the
activation of glutamate receptors that are
expressed on DCs; this induces immune tolerance
duringH. pylori infection (Shibayama et al. 2007;
Käbisch et al. 2016). Recently, Wüstner et al.
(2015) have shown that activated T-cells are
highly sensitive to glutamine concentrations in
the extracellular space. In addition, previous stud-
ies have identified an inhibitory effect of insuffi-
cient glutamine levels on T-cell proliferation
(Yaqoob and Calder 1997). Moreover, the expres-
sion of transcription factors that stimulate T-cell
receptor signaling and influence their differentia-
tion and expansion is decreased in the presence of
active GGT, suggesting a hampering effect of
H. pylori GGT on the activation and proliferation
of these immune cells (Man et al. 2013; Yao et al.
2013).

Käbisch and co-workers (2016) showed, by
infecting human DCs with H. pylori wild-type
and an isogenic Δggt deletion mutant, respec-
tively, that H. pylori can suppress the secretion
of IL-6. Moreover, using glutamate receptor
inhibitors it was shown that glutamate might
have a regulatory impact on IL-6 secretion,
influencing downstream T-cell responses to the
pathogen. Conversely, insufficient glutamine
levels resulting from inactive GGT might affect
the production of IL-2 or IFNγ, indicating that by
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modulating its GGT activity H. pylori can
actively influence the secretion of specific
cytokines (Carr et al. 2010). This ability is not
restricted to H. pylori; during infection with
Helicobacter suis, supplementation with gluta-
mate showed protection against bacterial-induced
pathologies and suppression of inflammatory cell
infiltration, underlying the importance of GGT in
immune regulation (De Bruyne et al. 2016).

3 Interference of VacA
with T-Cell Receptor/IL-2
and Nuclear Factor
of Activated T-Cells (NFAT)
Signaling

Although both VacA and GGT act on T-cells and
are involved in inducing tolerance, they accom-
plish this via entirely different pathways (Fig. 1).
Various studies have shown that VacA hampers
the proliferation of T-cells, for which multiple
mechanisms have been proposed (Boncristiano
et al. 2003; Gebert et al. 2003; Sundrud et al.
2004). Differential binding and uptake of VacA
in epithelial and immune cells was described
more than 10 years ago (Gauthier et al. 2005).
In immunoprecipitation studies, the CD18 recep-
tor of human T-cells was identified to be targeted
by VacA and seemed to act as a receptor or
co-receptor for the toxin (Sewald et al. 2008).
Indeed, in human primary T-cells, CD18 expres-
sion is essential for the uptake of VacA and
subsequent cellular effects. However, a determi-
native difference between the VacA internaliza-
tion exists between human and murine T-cells,
indicating that specific pathways are responsible
for the VacA-dependent effects in the human host
(Sewald et al. 2008).

In general, T-cell receptor (TCR) activation by
antigen-presenting cells, together with
co-stimulation, is the first step for a proper
T-cell response (Zheng et al. 2008; Smith-Garvin
et al. 2009; Brownlie and Zamoyska 2013). As
summarized by others, TCR engagement causes
several phosphorylation events leading to the
recruitment of effector proteins (Roifman and
Grunebaum 2013). This results in actin cytoskel-
eton rearrangements, activation of Ras GTPase,

and calcium mobilization (Nika et al. 2010;
Roifman and Grunebaum 2013). Subsequently,
various transcription factors become activated,
such as nuclear factor of activated T-cells
(NFAT) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), which
initiate the transcription and secretion of
pro-inflammatory or pleiotropic cytokines, e.g.,
IFNγ, IL-2, or of proliferative genes, respectively
(Nika et al. 2010; Roifman and Grunebaum
2013). IL-2 represents a key mediator in the acti-
vation and proliferation of T-cells, and binds to
receptor IL-2R, which not only has a crucial role
in T-cell activation, but also promotes the pro-
gression of self-tolerance and regulates the func-
tionality of natural killer (NK) cells (Nika et al.
2010; Roifman and Grunebaum 2013).

The effect of VacA on T-cell processing was
investigated by the use of Jurkat cells, a
transformed human T-cell line. Genes associated
with apoptosis, signal transduction, NF-κB-
dependent signaling or inflammation, e.g. IL-8
and IL-2R, were found to be upregulated
(Takeshima et al. 2009). The stimulatory effect
of VacA on the local immune response of Jurkat
cells was confirmed using isogenic H. pylori
ΔvacA mutants (Takeshima et al. 2009).
Although it is well known that IL-2 stimulates
T-cell proliferation in Jurkat cells, inhibition of
proliferation was found in human CD4+ T-cells,
but these different responses are neither depen-
dent on IL-2 expression nor on NFAT activation
(Sundrud et al. 2004). In addition, a role of the
N-terminal hydrophobic domain of VacA in
mediating signaling to human T-cells and Jurkat
cells was demonstrated (Sundrud et al. 2004).
Making use of the known blocking effect of
NPPBs (non-specific chloride channel inhibitors)
on VacA activity, it was shown that VacA might
hamper T-cell activation by a channel-
independent mechanism in Jurkat cells
(Boncristiano et al. 2003). In this process, two
regions in the VacA protein, named i1 and i2,
seem to be crucial for cell type specificity; more-
over, VacA was shown to inhibit the activation of
NFAT in T-cells by preventing the nuclear trans-
location (Boncristiano et al. 2003; Gebert et al.
2003; González-Rivera et al. 2012). Further,
VacA can bind to receptors being expressed on
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T-cells beyond β-integrin, which results in the
inhibition of IL-2 secretion and decreased NFAT
activation (Sewald et al. 2008, 2011). Neverthe-
less, it was found that extracellular calcium ions
are essential for the TCR-dependent NF-κB sig-
naling. VacA is able to regulate the calcium ion
influx, forcing NF-κB activation and thus
elevating the pro-inflammatory response in
human eosinophils (Kim et al. 2007a). Thus,
H. pylori may manipulate the calcium balance
during infection, which might be responsible for
the VacA-dependent effect on NF-κB in T-cells
(Liu et al. 2016). The role of VacA in NFAT- and
IL-2R-dependent signaling is summarized in
Fig. 1.

Interestingly, CagA acts as an antagonist of
VacA with respect to NFAT activation
(Yokoyama et al. 2005). Microarray-based

analysis of CagA-transfected human gastric epi-
thelial cells demonstrated that CagA activates
NFAT signaling through induction of nuclear
translocation of cytoplasmic NFAT (Yokoyama
et al. 2005). For this, the EPIYA (Glu-Pro-Ile-
Tyr-Ala)-containing region of CagA protein is
essential, but CagA phosphorylation (which typi-
cally takes place during infection) is not required
(Yokoyama et al. 2005).

4 Activities of VacA on Dendritic
Cells and Macrophages

The apoptotic response of gastric epithelial cells
and eosinophils upon exposure to VacA, as well
as its immune regulatory effect on T-cells, have
been well characterized (Calore et al. 2010; Kim

Fig. 1 H. pylori GGT- and VacA-mediated responses in
immune cells of the host. GGT was found to activate the
glutamate receptor on DCs and T-cells by increasing the
glutamate concentration in the microenvironment through
conversion of glutamine to glutamate. This interaction
suppressed the secretion of pro-inflammatory cytokine
IL-6 and induced tolerance in DCs. Moreover,
GGT-primed tolerant DCs co-cultured with CD4+ T-cells
differentiated into Treg cells. It was also reported that

GGT can manipulate T-cell proliferation through inducing
cell cycle arrest. VacA binds to the CD18 receptor on
T-cells for cellular entry and this inhibits the NFAT sig-
naling and subsequent IL-2 production, which ultimately
suppresses proliferation. Altogether, tolerated DCs, sup-
pression of T-cells expansion and production of Tregs
during interaction with H. pylori factors pave the way for
immune tolerance and persistent H. pylori infection
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et al. 2010; Käbisch et al. 2016). However, VacA
is also known to affect the maturation of DCs
(Kim et al. 2011; Oertli et al. 2013). The
manipulating effect of H. pylori VacA on DCs
and the role in immune cell tolerance is
schematically shown in Fig. 1. Immature DCs
are located in peripheral tissue where they can
be activated to undergo maturation by various
antigens, including microbial peptides (Zanotti
et al. 2002). Mature DCs can initiate an immune
response by activating other immune cells. One of
the earlier reports showed that expression of
cagPAI or vacA genes was not required for the
activation and maturation of DCs duringH. pylori
infection (Kranzer et al. 2005). However, in
murine bone-marrow and splenic DCs derived
from infected animals, the STAT3 (signal trans-
ducer and activator of transcription-3) pathway is
activated (Kao et al. 2010; Oertli et al. 2012;
Rizzuti et al. 2015). In this model, stimulation
by H. pylori and its secreted virulence factors
result in increased levels of the pro- and anti-
inflammatory cytokines IL-1β and IL-10, respec-
tively, comparable in strength to induction by
Escherichia coli LPS (Kao et al. 2010; Oertli
et al. 2012; Rizzuti et al. 2015). This suggests
that these cytokines affect STAT3 regulation dur-
ing H. pylori infection. Moreover, chemical or
genetic inhibition of STAT3 led to an
up-regulated DC maturation, indicating that
STAT3 inhibits DC activation (Melillo et al.
2010). Since IL-10 promotes STAT3 activation,
increasing the amount of secreted IL-10 would
hamper the activation of DCs (Braun et al. 2013).
These authors have shown that in addition to
IL-10, IL-6 can activate the STAT3 pathway.
Furthermore, it was shown that IL-6 mediated
STAT3 activation leads to a transient
pro-inflammatory response, while IL-10 based
effects might continuously act anti-inflammatory
(Braun et al. 2013). It can be concluded that a
cytokine imbalance results from various H. pylori
virulence factors that might alter activation or
maturation of DCs.

Contrasting findings have been reported
regarding the apoptotic effect of H. pylori viru-
lence factors on DCs. In monocyte-derived DCs

exposed to H. pylori, the induction of apoptosis
was not detected (Galgani et al. 2004). However,
analyzing the direct effect of VacA on human
DCs, Kim et al. (2015a) identified that VacA
can induce endoplasmic reticulum (ER) stress
which can lead to apoptosis. Moreover, ER stress
seems to occur earlier than the induction of apo-
ptosis, so that ER stress might be the critical
inducer for the regulation of apoptotic processes
in DCs (Kim et al. 2015b). Regarding the devel-
opment of tolerogenic DCs, H. pylori infection
experiments performed in vitro and in vivo have
demonstrated promoting effects, but the host cell
mechanisms behind these observations remain
currently unclear (Calore et al. 2010; Necchi
et al. 2009).

Apart from affecting DC maturation, H. pylori
virulence factors including VacA are further
known to act on monocytes and macrophages
during infection. As Allen (2007) already
summarized, a variable ability of human
monocytes or macrophages to kill H. pylori was
experimentally shown. Compared to monocytes,
macrophages exhibit a reduced capacity to kill
H. pylori (Allen 2007; Borlace et al. 2008) for
as yet unknown reasons. To investigate a possible
protective effect by CagA or VacA against kill-
ing, primary human monocytes and macrophages
were infected with strains of H. pylori differing in
their CagA expression and VacA activity; how-
ever, after 48 h of infection no correlation was
found between the number of viable bacteria and
thus the cell’s ability to kill H. pylori, and CagA
expression or VacA activity (Borlace et al. 2008).
The cagPAI plays no role in survival of the bac-
teria inside phagocytic cells (Odenbreit et al.
2001) and the vacA status of the bacteria is
non-determinative for the phagosome fusion in
human monocytes (Rittig et al. 2003). In contrast,
other studies have indicated that VacA is crucial
for intracellular survival and phagosome matura-
tion (Petersen et al. 2001; Terebiznik et al. 2006).
A link between urease activity and VacA for the
survival in macrophages was indicated by
Schwartz and Allen (2006). Infection of the
monocytic cell line THP-1 by H. pylori for 8 h
revealed an elevated amount of oncostatin M
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(belonging to the group of IL-6 cytokines) in the
supernatant, indicative of a pro-inflammatory
response (Zeaiter et al. 2011). However, using
isogenic deletion mutants it was shown that this
pro-inflammatory response is independent of
VacA, CagA or T4SS (Zeaiter et al. 2011).
Thus, other virulence factors of H. pylori can be
postulated to affect the pro- and anti-
inflammatory cytokine secretion in monocytes
and macrophages, but their nature remains to be
investigated in future studies.

5 GGT Manipulates T Cell
Proliferation and Cell Cycle
Progression

Various studies described an H. pylori-associated
inhibitory effect on cell growth leading to cell
cycle arrest (Lew et al. 1991; Wagner et al.
1997; Chiou et al. 2003). Both CagA and VacA
inhibit T-cell activation, while proliferation of
these cells can also be inhibited by incubation
with bacterial supernatants or purified VacA
(Gebert et al. 2003; Sundrud et al. 2004). More-
over, as discussed above, infection with H. pylori
leads to inhibition of T-cell proliferation by
initiating apoptotic pathways (Wang et al.
2001). However, studies by Gebert and
co-workers (2003) have shown that deletion of
vacA did not hamper the effect on T-cell prolifer-
ation. In contrast, Sewald et al. (2008) have deter-
mined that VacA binds only to active human
T-cells, leading to internalization of the virulence
factor, whereas it does not bind to non-activated
T-cells (Sewald et al. 2008). Moreover, this func-
tional uniqueness of human T-cells compared to
murine humanized T-cells indicates an important
specificity of H. pylori VacA to host immune
cells (Sewald et al. 2008). Since it was shown
that during infection with H. pylori the prolifera-
tion of T-cells is inhibited by inducing cell cycle
arrest, virulence factors other than CagA or VacA
may be responsible for this phenotype (Gerhard
et al. 2005).

Apart from its well-characterized importance
for colonization in vivo, GGT has been shown to

play a role in H. pylori-mediated apoptosis by
mitochondrial pathways in epithelial cells (Kim
et al. 2007b). In addition, it was demonstrated that
H. pylori GGT is linked to blockage of T-cell
proliferation and function, leading to immune
evasion (Wüstner et al. 2015). It had previously
been described that GGT is involved in prolifera-
tion of T-cells and in initiation of G1 arrest
(Schmees et al. 2007). Using H. pylori isogenic
Δggt deletion mutants, it was shown that the gene
is crucial to suppress the proliferation of antigen-
stimulated primary human T-cells and this effect
could be replicated with recombinant H. pylori
GGT, but not by mammalian GGT (Schmees
et al. 2007). By incubating AGS gastric epithelial
cells with recombinant H. pylori protein, GGT
inhibition of cell cycle progression at G1 to S
phase transition was demonstrated (Wüstner
et al. 2015). These authors suggested that the
arrest might depend on the growth characteristics
of the target cells. Additionally, H. pylori seems
to alter the expression of cell-cycle specific
mediators, which would result in a dysregulated
cell cycle progression during H. pylori infection
(Wüstner et al. 2015). However, the exact
mechanisms behind these processes require fur-
ther investigation.

6 Function of the Neutrophil
Activating Protein NapA

Recently, a correlation between the H. pylori vir-
ulence factor NapA and H. pylori-associated pep-
tic ulcer disease was determined, although no
correlation between other H. pylori associated
diseases such as gastritis could be detected, nei-
ther for NapA nor for the virulence factors CagA,
VacA, UreA, or UreB (Oktem-Okullu et al.
2015). It was already known that NapA is crucial
for activation of neutrophils, which seems to pro-
mote damage of stomach tissue (Dundon et al.
2001). As recently reviewed elsewhere, NapA
interacts with TLRs during infection (Amedei
et al. 2006; Pachathundikandi et al. 2015). This
TLR signaling induces neutrophil trans-
endothelial migration and is involved in complex
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host cell processes, and in the case of H. pylori
this results in persistent colonization and chronic-
ity of infection (Brisslert et al. 2005). Using
purified recombinant H. pylori NapA or bacteria
secreting the protein, these authors were able to
show that treatment induces transendothelial
transmigration of neutrophils in a CagA- and
VacA-independent manner (Brisslert et al.
2005). The continuous recruitment of neutrophils
to the site of infection had already been shown by
others (Go 1997; Del Giudice et al. 2001). It is
likely, however, that other chemotactic effector
molecules, in addition to NapA, are involved in
the migration of neutrophils (Satin et al. 2000;
Brisslert et al. 2005). An additional role for NapA
was shown in the T-cell dependent immune
responses (Amedei et al. 2006). The effects of
NapA on transmigration of neutrophils and the

role in reactive oxygen species release are
summarized in Fig. 2.

Previously, it was shown that iron can be
stored in the cavity of NapA, although crystal
structure analyses failed to detect iron (Tonello
et al. 1999; Zanotti et al. 2002). The presence of
high amounts of basic residues typically present
in chemokines or cytokines might be crucial for
the neutrophil activating function of NapA (Col-
laborative Computational Project, Number
4 1994; Yang et al. 1994; Zanotti et al. 2002).
NapA and urease both seem to be important for
the recruitment of neutrophils to the site of infec-
tion and may be involved in the response to
oxidative stress (Wang et al. 2006). In a further
study, expression of NapA and the outer mem-
brane protein (Omp) 18, which is expressed in a
limited number of H. pylori strains, correlated

Fig. 2 Neutrophil immunity control during H. pylori
infection. NapA of H. pylori is named for its role in the
recruitment and activation of neutrophils during infection.
NapA-induced activation of neutrophils leads to the pro-
duction of reactive oxygen species and related tissue
injury, which supports chronic inflammation. In addition,

NapA can bind to TLR2 on neutrophils and monocytes to
induce pro-inflammatory cytokine production and further-
more induces a pro-inflammatory Th1 phenotype. There-
fore, NapA-mediated above effects ultimately result in
epithelial barrier disruption and increased inflammatory
reactions
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with IFNγ-mediated immune response (Shan
et al. 2015). During infection with a Δomp18
deletion strain, NapA expression was upregulated
when the cells were co-incubated with IFNγ,
suggesting NapA expression might be modulated
by Omp18 in an IFNγ-dependent manner (Shan
et al. 2015). However, the immune regulatory
mechanisms behind the Omp18-dependent effect
on NapA expression and neutrophil activation
remained as yet unclear.

7 Role of Cholesterol in H. pylori
Interactions with Immune Cells

Cholesterol is an important component of mam-
malian cellular membranes and has physiological
roles in fat metabolism. In contrast, the
membranes of many prokaryotes do not contain
cholesterol, and most bacteria do not possess the
genes required for cholesterol synthesis. H. pylori
has evolved mechanisms to extract cholesterol
from the host’s cellular membranes and converts
into glucosides by using a specific enzyme, CGT
(Wunder et al. 2006). It was a remarkable finding
that a common component of host membranes is
utilized by a pathogen, to employ for virulence.
Cholesterol acquisition appears to be essential for
H. pylori survival in the human host and for
prevention of effective host immune attacks
(Wunder et al. 2006). H. pylori cells exhibit a
high affinity for cholesterol and the chemotactic
bacteria follow a cholesterol gradient, even
responding to 20 times lower cholesterol concen-
tration than are normally present in serum. It has
been shown that the bacteria extract cholesterol
from cell membranes when co-cultured with epi-
thelial cell lines and convert to α-glucosides such
as cholesteryl-α-glucoside, cholesteryla-
cyl-α-glucoside or cholesteryl-phosphati-
dyl-α-glucoside by means of the CGT
glucosyltransferase (encoded by gene HP0421,
also known as cgt or capJ). This enzyme is nec-
essary for prevention of phagocytosis by
macrophages. However, when the bacteria were
artificially loaded with high levels of cholesterol,
this actually increased phagocytosis rates,
indicating that only a high enough ratio of

metabolized α-glucosides per cholesterol (uncon-
verted) prevents engulfment. In addition, choles-
terol glucosylation was also found to reduce the
T-cell responses against H. pylori (Wunder et al.
2006). A recent study supported the role of cho-
lesterol acquisition and its modification in
H. pylori virulence. A murine macrophage cell
line was used to show that phagocytosis of wild-
type bacteria was delayed and phagosome matu-
ration in infected cells was inhibited, but not
when the cells were infected with a knock-out
Δcgt/capJ mutant. The interference in phagocy-
tosis and phagosome trafficking was dependent
on lipid raft formation and phosphoinositide-3-
kinase (PI3K) signaling (Du et al. 2016).

It was further reported that CagA
co-fractionates with redistributed MARK2/Par1b
in the detergent-resistant membrane fraction of
infected AGS cells (Zeaiter et al. 2008). In addi-
tion to CagA, VacA was reported to be
co-localizing in the lipid raft regions during infec-
tion and cholesterol depletion disrupted this local-
ization (Nakayama et al. 2006; Lai et al. 2008).
The methyl-β-cyclodextrin mediated cholesterol
depletion disrupted CagA translocation and phos-
phorylation in infected cells. CagA-induced cel-
lular elongation and IL-8 secretion were also
severely affected in this process. This shows that
the capacity to bind and extract cholesterol acts as
a point of delivery for virulence factors in the
lipid raft regions of infected cells. However, the
overall adherence of the bacteria to epithelial cells
is not affected by cholesterol depletion; this can
be explained by the presence of other cholesterol-
independent adherence factors of H. pylori (Lai
et al. 2008).

A study involving various N-terminal and
C-terminal truncation mutants of CagA revealed
that the EPIYA containing C-terminal domain
may directly interact with cholesterol to induce
IL-8 secretion (Lai et al. 2011). Mutation of the
capJ gene prevented CagA phosphorylation,
c-Src and FAK (focal adhesion kinase-1) dephos-
phorylation and the subsequent elongation of
H. pylori infected AGS cells. By complementa-
tion with CapJ or supply of exogenous CGs (cho-
lesterol glucosides), the CagA function in the
capJ mutant was restored. Infection with wild-
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type H. pylori showed that lipid raft components
were recruited to the site of attachment and exog-
enously supplied fluorescence tagged cholesterol/
CGs co-localized in this area (Wang et al. 2012).

The cholesterol acquisition and its subsequent
conversion were thought to be independent pro-
cesses, but the discovery of the flotillin-like pro-
tein (HP0248) in detergent resistant membrane
fractions of H. pylori changed that view.
HP0248 was found to be important for cholesterol
sequestration, as infection with a ΔHP0248
mutant severely affected cholesterol accumula-
tion in the bacterial membrane (Hutton et al.
2017). This mutation also affected CagA translo-
cation, cell scattering and IL-8 secretion, which
indicates the protein has an important role in
virulence, and this was confirmed using a mice
model of infection (Hutton et al. 2017). More-
over, it was shown that the T4SS pilus protein
CagL interacts with the host cell receptor α5β1
integrin during CagA delivery (Kwok et al. 2007;
Conradi et al. 2012; Barden et al. 2013). This α5β1
integrin co-localizes with cholesterol-rich micro-
domains within the membrane, which supports
the concept of CagA delivery in a cholesterol-
dependent manner. In addition, α5β1 integrin in
cholesterol-rich micro-domains is required for the
delivery of peptidoglycan to NOD1 (nucleotide
binding oligomerization domain containing 1)
recognition and NF-κB activation. The depletion
of cholesterol from cell surfaces with
methyl-β-cyclodextrin resulted in reduced
NF-κB activation and IL-8 secretion in H. pylori
infected epithelial cells (Hutton et al. 2010).

H. pylori growth in the presence of cholesterol
substantially increased its resistance to
antimicrobials, although phosphorylation of
lipid-A played a major role in this process
(McGee et al. 2011). A recent study discovered
another important aspect of cholesterol
glucosylation in the immune response against
H. pylori. Wild-type but not Δcgt/capJ bacteria
blocked IFNγ signaling through decreased phos-
phorylation of Janus kinase (JAK) and STAT1 in
infected primary gastric cells and gastric epithe-
lial cell lines (Morey et al. 2018). The disruption
of IFNγ signaling was due to the destruction of
lipid rafts (mediated by cholesterol depletion),

while cholesterol coating of infected cells
regained the signaling activation. It was found
that H. pylori infection disrupted the distribution
of receptors IFNGR1 and IFNGR2 in lipid rafts,
which provides an explanation for these
observations. Lipid raft disruption also inhibited
the responses to IFNβ, IL-6 and IL-22 and
subsequent signaling (Morey et al. 2018).
Cytokine-induced hBD3 (human-β-defensin 3)
expression was also downregulated during
H. pylori infection. Infection of cells with wild-
type or Δcgt/capJ H. pylori induced almost iden-
tical changes in gene expression. However, cho-
lesterol depletion by wild-type bacteria
suppressed the immune responses in infected
cells, while non-infected cells (thereby not
suffering from cholesterol depletion) in the vicin-
ity may get inflamed by increased cell signaling,
induced by bacterial factors that were released in
the microenvironment (Morey et al. 2018). The
above data show that cholesterol acquisition from
host cell membrane helps H. pylori to deliver
virulence factors, interferes with phagocytosis
and also contributes in the manipulation of impor-
tant host cell signaling mechanisms for the benefit
of survival and persistence.

8 H. pylori Manipulates Antigen
Presentation and Bacterial
Recognition

Infecting bacteria are normally subject to phago-
cytosis, but many reports have shown that
H. pylori interferes with this defensive process.
In one of the earlier reports, Ramarao and
co-workers (2000) showed that H. pylori inhibits
the phagocytic function of neutrophils and
monocytes, an inhibition that was dependent on
proteins VirB7 and VirB11 of the T4SS. It was
also documented that phagocytosis of H. pylori
type-I strains by macrophages got delayed,
whereas type-II strains were easily phagocytosed
(Allen 2007). In addition, H. pylori prevented
phagosome maturation and instead resulted in
formation of a hybrid phagosome-endosome-
lysosome with no or strongly reduced degradation
(Borlace et al. 2011). This is a clear indication for
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reduced antigen epitope production and MHCII
presentation and provides an example of a suc-
cessful bacterial adaptive response at the most apt
time to avoid infection clearance. H. pylori VacA
can inhibit CD74 (Ii)-dependent MHCII antigen
presentation, but not the independent pathway of
recycling MHCII presentation (Molinari et al.
1998). Moreover, CD74 is up-regulated on the
surface of gastric cells during H. pylori infection
and was reported to act as a receptor for H. pylori
urease. CD74 is well known for its role in antigen
presentation as it directs MHCII molecules to the
endosomes, where it is partly digested to relieve
the cleft of the MHCII molecule for peptide load-
ing. It is plausible that CD74 binding to H. pylori
urease interferes with MHCII localization and
antigen loading for activation of adaptive immu-
nity (Beswick et al. 2005; Beswick and Reyes
2009).

At least in mice, the important role of TLRs in
the development of adaptive immunity against
H. pylori infection is evident from several reports
(reviewed by Pachathundikandi et al. 2015,
summarized in Fig. 3). One of the major findings
was the TLR-mediated MyD88 (myeloid differ-
entiation-88) signaling on antigen presentation
and co-stimulation in infected DCs for develop-
ment of an adaptive immune response against
H. pylori infection (Rad et al. 2007). In contrast,
it was also found that at the initial phase of infec-
tion H. pylori can reside and replicate in
macrophages, DCs or epithelial cells inside
double-membrane auto-phagosomes, which later
fuse with lysosomes and are almost fully
degraded at 48 h of infection (Wang et al. 2009,
2010). H. pylori infection reduced the cell surface
expression of MHCII, CD80 and CD86 instead
these molecules were co-localized with the
H. pylori containing vacuoles, which supports
the interference on antigen loading and trafficking
to the cell surface. Moreover, formalin-fixed bac-
teria exhibited the same effect. However, in
infected DCs, MHCI expression was enhanced
(Wang et al. 2010). These authors found that
TLR2 and TLR4 are necessary for the interfer-
ence on MHCII trafficking and subsequent anti-
gen presentation, which suggests an important

role of H. pylori LPS in this mechanism (Wang
et al. 2010).

Recently, it was also reported that miR-30b
was upregulated in patients with chronic
H. pylori infection and was targeting autophagy
proteins ATG12 (autophagy related protein 12)
and BECN1 (Beclin 1). The control of autophagy
in H. pylori infected cells resulted in increased
intracellular survival and bacterial replication
(Tang et al. 2012). This shows a different-level
control on autophagy and intracellular growth of
H. pylori, which ultimately influences the antigen
presentation. Furthermore, CD300E was
identified as a new factor involved in H. pylori
mediated interference on antigen presentation
(Pagliari et al. 2017). Differentiation of
monocytes to macrophages normally reduces the
expression of CD300E, however, H. pylori infec-
tion increased the expression of this protein by
down-regulating miR-4270, a miRNA that targets
CD300E mRNA. This increased expression and
activation of CD300E by H. pylori alone and
agonistic antibody treatment drastically reduced
the expression of MHCII molecules, thereby
reducing antigen presentation and that prevented
activation of T-cells (Pagliari et al. 2017). The
above studies clearly affirm the interference on
antigen presentation in H. pylori infection.

The interference on antigen presentation could
be responsible for both the reduced recognition of
antigens by T-cells and the ineffective adaptive
immune response against H. pylori. DC matura-
tion is an important step in the transition from
antigen-capturing to antigen presentation, which
is necessary for T-cell priming and activation.
VacA suppresses DC maturation by
downregulating the surface expression of
MHCII, CD40, CD80 and CD86, apart from
reducing migratory power of DCs (Molinari
et al. 1998). The increased expression of
PD1-L1 (Programmed cell death protein ligand-
1)/B7-H1 in gastric epithelial cells was reported
in H. pylori infection, which is independent of the
virulence factors CagA, VacA or urease, but is
enhanced by IFNγ (Das et al. 2006). In addition,
gastric epithelial cells are expressing MHCII and
co-stimulatory molecules such as CD80 and
CD86, and this antigen presenting capacity
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helps to activate naïve T-cells at the epithelial
contact site. This presumably leads to clonal dif-
ferentiation to enable well-developed adaptive
responses against bacterial infection. However,
H. pylori induced expression of PD1-L1 and the
binding of this to PD1 on T-cells led to the sup-
pression of antigen-specific T-cells, while it
supported the maintenance of FoxP3+ Treg cells
(Beswick et al. 2007; Zhang et al. 2016). Induced
expression of PD1-L1 in gastric epithelial cells
along with other factors appears to maintain the
Treg pool reported in gastric mucosa of H. pylori
infected individuals (Cook et al. 2014; Hussain
et al. 2016).

9 TLR Signaling in Immune Cells
Induced by H. pylori

TLRs constitute a group of host cell surface and
subcellular transmembrane proteins, which detect
intruding microbes or microbial products outside
the cells through their varied presence on the cell
surface (TLR1, TLR2, TLR4, TLR5, and TLR10)
or in intracellular compartments (TLR3, TLR7,
TLR8, and TLR9) (Beutler 2009). These type I
transmembrane glycosylated protein receptors are
germ line encoded proteins composed of an
ectodomain containing leucine-rich repeats, a
transmembrane region, and an intracytoplasmic
Toll/IL-1 receptor (TIR) domain. TLRs sense
the presence of various PAMP or MAMP
(microbe associated molecular patterns) and can
thus detect bacteria, viruses, or fungi, which leads
to the induction of downstream signals. TLR sig-
naling can be divided into MyD88 dependent and
TRIF (TIR domain containing adaptor inducing
interferon-β) dependent signaling, both of which
ultimately leads to activation of NF-κB, AP-1 and
interferon regulatory factors (IRFs) for the pro-
duction of chemokines, cytokines and type I
interferons that activate the host immune system
to control an infection (Pachathundikandi et al.
2011, 2015).

Early studies reported the difference on
H. pylori LPS activation of NF-κB through
TLR4 in epithelial cells and monocytes (Ishihara
et al. 2004). In uninfected individuals, TLR4

expression was noticed only in lamina propria
mononuclear cells, but H. pylori infection
induced the expression of TLR4 and MD2 in
gastric epithelial cells as well. Gastric epithelial
cell lines expressing TLR4 and MD2 did not
activate NF-κB when treated with H. pylori
LPS, whereas THP1 cells responded with a robust
activation (Ishihara et al. 2004). TLR4 and CD14
were involved in the activation of NF-κB in
infected THP1 monocytes but not in the
MKN45 gastric epithelial cell line. Mouse
macrophages with a point mutation in their
TLR4 gene showed decreased activation of
NF-κB and TNFα (tumor necrosis factor-α) secre-
tion upon H. pylori infection compared to wild
type macrophages. Moreover, incubating
monocytes with H. pylori culture supernatant
resulted in NF-κB activation, but bacterial contact
or a functional cagPAI was necessary for activa-
tion of epithelial cells (Maeda et al. 2001). Our
studies showed that infection of THP1 cells with
H. pylori increased the expression of TLR2 and
TLR5 as well as secretion of IL-8 and TNFα in a
cagPAI dependent manner (Pachathundikandi
et al. 2011). In contrast, IL-8 production in
mouse macrophages was mediated through
TLR4 in response to H. pylori LPS, whereas
intact bacterial cells of H. pylori, Helicobacter
hepaticus or Helicobacter felis resulted in a
response mediated through TLR2. These bacterial
infections also induced IL-6 expression in a
TLR2 dependent manner (Mandell et al. 2004).

Apart from LPS, at least three H. pylori
proteins have been identified that can activate
TLR2. H. pylori Hsp60 (also called GroEL) was
shown to induce IL-8 secretion mediated by
MAPK signaling in a human monocytic cell line
(Zhao et al. 2007). NapA induced the production
of IL-12 and IL-23 in primary neutrophils and
monocytes and induced a Th1 response in T-cell
clones prepared from healthy donors, while it
shifted the Th2 response to Th1 in cells obtained
from allergic donors (Amedei et al. 2006). More-
over, T-cell clones prepared from gastric mucosa
of infected patients were found to be of the cyto-
toxic Th1 phenotype and produced TNFα
(Amedei et al. 2006). Further, H. pylori UreB
could activate TLR2, resulting in an increased

88 N. Blaser et al.



expression of NLRP3 (NOD-like receptor pyrin
domain-containing-3) and inflammasome assem-
bly, while ΔureB mutant bacteria inhibited
caspase-1 activation in murine and human DCs
(Koch et al. 2015). Thus roles for HSP60, NapA
and UreB in TLR2 activation have all been
demonstrated (summarized in Figs. 3 and 4).

H. pylori infection of mouse DCs induced the
expression of IL-12 and IL-10 through TLR4/
MyD88 signaling, whereas secretion of IFNα
was increased substantially in myd88 deficient
cells. Moreover, IL-6 and IL-1β expression was
decreased in tlr2 deficient cells infected with
H. pylori (Obonyo et al. 2007). We found that
HEK293 cells stably expressing TLR2 (HEK293-
TLR2) differentially expressed IL-1β but not IL-6
during infection with H. pylori, however, TNFα
expression was induced in both HEK293-TLR2
and HEK293-TLR10 cells after infection
(Pachathundikandi and Backert 2016). H. pylori

LPS activated HEK293 cells jointly
overexpressing TLR2 and TLR10 to induce
NF-κB signaling for IL-8 and TNFα expression
(Nagashima et al. 2015). We have also shown
highly induced expression of TLR10 in THP1
monocytes infected with H. pylori
(Pachathundikandi and Backert 2016). It was
reported that induction of pro-IL-1β expression
in DCs by H. pylori depends on TLR2 and
NOD1, while infected tlr2 deficient cells
suppressed pro-IL-1β expression more than
nod1 deficient cells (Kim et al. 2013). Moreover,
this work demonstrated a cumulative effect in
tlr2-nod1 double deficient cells, which suggests
that these two receptors have redundant roles in
pro-IL-1β expression during H. pylori infection
(Kim et al. 2013).

Mice deficient in myd88 produced decreased
gastric inflammation in response to H. pylori
infection, but the gastric colonization levels

Fig. 3 The pro- and anti-inflammatory signaling through
different PRRs during H. pylori infection. H. pylori is
reported to interact with various PRRs such as TLRs and
DC-SIGN during infection with host cells. This ultimately
leads to the induction of various signaling pathways to
activate or modify functions of transcription factors such

as NF-κB, AP-1 and IRFs. These multiple induction and
modification mechanisms resulted in the production of
pro- and anti-inflammation states in H. pylori infection.
Thus, different signaling mediated variation in immune
responses may ultimately determine the outcome of
associated diseases
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were increased (Rad et al. 2007). The secretion of
pro-inflammatory IL-6 and IL-12p40 cytokines
by murine DCs infected with H. pylori lysates
was largely dependent on TLR2 activation,
whereas infection with live bacteria induced
anti-inflammatory IL-10 secretion in a TLR2-
dependent manner. H. pylori DNA or RNA was
able to induce strong cytokine secretion in
wildtype and tlr2/4 deficient DC cells, an effect
that was completely abrogated in tlr2/4/9 defi-
cient cells. However, tlr9 deficient cells showed
equivalent amounts of cytokines secretion when
compared to wild type cells upon exposure to
bacterial DNA or RNA (Rad et al. 2007).
H. pylori RNA detection by DCs was dependent
on TLR8 alone or possibly in combination with
TLR7. In addition, exposure of DCs to H. pylori

RNA resulted in type-I IFN production that was
independent of TRIF or MyD88 but dependent on
RIG1 activation (Rad et al. 2009).

The production of Treg cells (CD25+Foxp3+)
in response to H. pylori presence is also proposed
to be mediated through TLR involvement (Rad
et al. 2006). TLR2-mediated activation of B-cells
in mice infected with H. felis prevented immuno-
pathology and pre-neoplastic changes through the
production of a Treg cell population (Sayi et al.
2011). Instead, the adoptive transfer of H. felis-
specific effector T-cells aggravated the immuno-
pathology to produce pre-neoplastic changes and
reduced colonization in infected tcrβ/rag1 knock-
out, immune-deficient mice. However,
co-transfer of effector T-cells and Treg cells to
these infected mice exhibited alleviation of

Fig. 4 TLR2- and NOD2-mediated inflammasome acti-
vation during H. pylori infection. It was found that
H. pylori UreB activated TLR2 signaling for NLRP3
expression and assembly of the inflammasome in mice.
However, pro-IL1β expression was induced by LPS

through TLR4 signaling. The inflammasome induced acti-
vation of caspase-1 resulting in the production of active
IL-1β and IL-18 and exerted various effects described in
the text

90 N. Blaser et al.



symptoms in tcrβ deficient mice, but not in rag1
deficient mice, which suggests B-cells are
involved in this process. H. felis induced the
activation of TLR2 in B-cells which led to an
increased expression of co-stimulatory molecules
CD40, CD80, CD86 and secretion of IL-10, IL-6,
TNFα, and antibodies (Sayi et al. 2011). When
murine DCs deficient in tlr2 were infected with
H. pylori, the cells produced more IFNγ and less
IL-17 and IL-10 compared to wild type DCs. In
addition, tlr2 deficient mice expressed more IFNγ
in vivo and less FoxP3, IL-10 and IL-17A in their
infected gastric mucosa compared to infected
wild type animals. These observations may
explain the increased gastritis and lower coloni-
zation of bacteria in infected tlr2 deficient mice.
TLR2 mediated signaling during H. pylori infec-
tion produced tolerogenic DCs that dampened the
immuno-pathological Th1 response and allowed
higher colonization levels to be reached (Sun
et al. 2013).

H. pylori infection increased the IRAK-M
expression in tlr2 deficient DCs. Infection of
these DCs induced a more pronounced
pro-inflammatory response through higher
expression of MHCII, TNFα and MIP2 and
reduced IL-10 expression, although Treg and
Th17 responses were comparable to those seen
in wild-type mice (Shiu et al. 2013). TLR9
expression in the gastric tissue was increased
after H. pylori infection in mice and this elevated
expression was mostly observed in macrophages,
DCs and CD3+ cells. The tlr9 deficient mice
showed increased myeloperoxidase (MPO),
TNFα and IFNγ expression during initial phase
of H. pylori infection, but colonization levels
were similar in wild type and deficient mice.
The treatment of exogenous recombinant IFNα
reduced the pro-inflammatory changes in the
infected tlr9 deficient mice (Otani et al. 2012).

The reports summarized here demonstrate that
TLR activation plays a crucial role in innate and
adaptive immune responses againstH. pylori. The
above data show that immune cell signaling in
H. pylori infection is mainly carried out through
TLR2, TLR4 and TLR9 receptors, with minor
roles for TLR7, TLR8 and TLR10 (summarized

in Figs. 3 and 4). These receptors are expressed at
epithelial and immune cells alike, which are the
two major cell types H. pylori interacts in the
gastric mucosa. The most striking feature of this
interaction is the dual role of TLR2 on activating
both pro-inflammatory and anti-inflammatory
responses, which may partly explain the varied
disease outcome of infected individuals.

10 Pro- and Anti-inflammatory
Signaling by H. pylori

The interaction between bacteria and their host
leads to the activation of various pro- and anti-
inflammatory signal transduction pathways from
various PRRs, resulting in the activation of num-
ber of transcription factors in the host cells
(Backert and Naumann 2010; White et al. 2015).
Gastric epithelial cells, interacting with H. pylori,
respond with various signals to initiate an inflam-
matory process in an attempt to control the infec-
tion. Several studies reported the involvement of
different pathways in this process (summarized in
Fig. 3). H. pylori T4SS has been shown to func-
tion as the conduit for entry of different factors
such as effector protein CagA, heptose
1,7-bisphosphate (HBP), ADP-heptose, peptido-
glycan as well as bacterial DNA, which ulti-
mately activate these pathways (Backert et al.
2000; Viala et al. 2004; Varga et al. 2016; Gall
et al. 2017; Pfannkuch et al. 2018). Some earlier
studies ruled out the involvement of CagA in the
NF-κB pathway, although it was reported that
CagA can potentiate the NF-κB response through
a protein interaction cascade of
Grb2! Ras!Raf!Mek! Erk for IL-8 secre-
tion (Brandt et al. 2005). The transgenic CagA
expression in mice, induced the PAR1 mediated
IκB (Inhibitor kappa B) sequestering to lower the
NF-κB threshold for activation (Suzuki et al.
2015). It was experimentally shown that outer
membrane vesicles (OMVs) from H. pylori
could deliver peptidoglycan to the cytosol of
exposed cells, resulting in NOD1 mediated
NF-κB activation and IL-8 and CXCL2 produc-
tion (Kaparakis et al. 2010). Moreover, H. pylori
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induced NOD1-dependent IFNβ secretion in turn
activated the expression of IFN-stimulated gene
factor 3 (ISGF3) and CXCL10; which protected
the mice from infection (Kaparakis et al. 2010).

Activation of NOD1 by H. pylori resulted in
responses that were augmented by IFNγ to pro-
duce various chemokines such as IL-8, CXCL10,
CCL2, CCL3, CCL4, and CCL5. H. pylori infec-
tion further activated phosphorylation of IFNγ
signaling factor STAT1 and expression of IRF1
via a NOD1-dependent mechanism. Furthermore,
infection activated the production of Th1 cells
and elevated the secretion of high amounts of
IFNγ, which amplified the NOD1 response in a
feedback manner. This synergistic action of
NOD1 and IFNγ exacerbated the immune
responses in the gastric mucosa during H. pylori
infection; an observation in line with the finding
that gastric cancer patients display upregulated
expression of NOD1, IRF1 and IL-8 (Allison
et al. 2013). In contrast, NOD1 activation by
H. pylori suppressed the transcription factor
CDX2 (caudal homeobox 2) in both normal and
cancerous gastric epithelial cells; this factor is
involved in intestinal metaplasia (Asano et al.
2016). Bile duct epithelial cells responded to
H. pylori through NOD1 and MyD88 pathways
to produce activation of NF-κB and IL-8 secre-
tion, which was inhibited by pre-treatment with
antibodies against α5β1 integrin (Boonyanugomol
et al. 2013). Trans-epithelial neutrophil migration
was reported to be dependent on NOD1 mediated
IL-8 secretion in H. pylori infection (Kim et al.
2015a). Finally, a recent study reported that α5β1
integrin- and Src-mediated JNK/ERK signaling
for NF-κB and AP-1 activation following
H. pylori infection was independent of NOD1
and CagA, but required active CagL (Gorrell
et al. 2013).

HBP is a bacterial metabolic intermediate of
LPS biosynthesis. It was proposed that HBP can
enter the cytosol of infected epithelial cells via the
T4SS, and activates a novel signaling cascade
involving alpha-kinase 1 (ALPK1) and the
phosphorylation-dependent oligomerization of
the TNF-α receptor-associated factor (TRAF)-
interacting protein with forkhead-associated
domain (TIFA) for NF-κB activation. TIFA

deficiency or HBP mutants of H. pylori almost
completely abrogated NF-κB mediated IL-8 pro-
duction in infected epithelial cells. The major
difference between H. pylori activated ALPK1-
mediated TIFA signaling platform from that
observed with other bacteria is the presence of
TRAF2 instead of TRAF6 for the NF-κB activa-
tion (Stein et al. 2017; Gall et al. 2017;
Zimmermann et al. 2017). However, very recent
studies indicate that the translocated metabolite
activating NF-κB may not be HBP, but
ADP-heptose, produced downstream by the
same LPS biosynthesis pathway (Zhou et al.
2018; Pfannkuch et al. 2018).

H. pylori infection can also activate EGFR
(epidermal growth factor receptor) signaling for
COX2 (cyclooxygenase 2) expression and PGE2
(prostaglandin E2) secretion in a cagPAI-depen-
dent manner. Egfr deficiency reduced this COX2
induction and PGE2 expression in infected
murine cells. Likewise, H. pylori-induced COX2
expression increased the survival of epithelial cell
lines; this would suggest the existence of an
EGFR mediated pro-cancerous signaling axis
(Sierra et al. 2013). In addition, EGFR signaling
is also involved in the pro-inflammatory reaction
and epithelial DNA damage in H. pylori infection
(Sierra et al. 2018). Furthermore,
non-phosphorylated CagA activated two other
transcription factors such as SRF (serum response
factor) and ELK1 (ETS domain containing pro-
tein) (Hirata et al. 2002). ELK1 and SRF activa-
tion induced the intestinal cell specific marker
Villin expression in H. pylori infected gastric
epithelial cells (Rieder et al. 2005). Apart from
that, H. pylori infection of gastric cancer cell lines
increased the expression of SIAH2 (seven in
absentia homologue 2) through the ETS2 (E26
oncogene homolog 2) and TWIST1 (twist related
protein 1) transcription factors. The stable expres-
sion of SIAH2 increased the invasiveness and
migration capacity of gastric cancer cells (Das
et al. 2016).

H. pylori can also induce host anti-
inflammatory responses, whose role is to dampen
the ability to clear an infection, which is some-
how essential for general inflammation control by
the pathogen. The binding of H. pylori LPS to
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DC-SIGN, a c-type lectin receptor (CLR),
resulted in the signaling which blocked Th1 cell
development and decreased production of IL-12
and IL-6 (Bergman et al. 2004; Gringhuis et al.
2009). DC-SIGN signaling can revert the TLR
mediated pro-inflammatory cytokine expression
to favor an anti-inflammatory cytokine IL-10 pro-
duction through Raf1, however Raf1 deficiency
did not suppress IL-10 expression in H. pylori
infection (Gringhuis et al. 2007, 2009). When
human DCs (derived from monocytes) were
infected with H. pylori, it produced IL-10 in a
DC-SIGN, TLR2 and TLR4 dependent manner,
and interestingly all these receptors were reported
to bind bacterial LPS (Chang et al. 2012). It was
observed that, p38 signaling mediated NF-κB
activation led to histone modification for
upregulated expression of IL-10 in H. pylori
infection (Chang et al. 2012). However, it was
observed that IL-10 and CD40 expression
reduced in H. pylori infected DCs obtained from
gastric cancer patients, while infected T-cells
exhibited decreased IL-17 expression (Chang
et al. 2012). Recently, it was found that
H. pylori can induce Th2 response through
DC-SIGN mediated activation of an atypical
NF-κB pathway. DC-SIGN interaction with
fucose-containing moieties from H. pylori and
Schistosoma mansoni induced the phosphoryla-
tion of LSP1 (lymphocyte specific protein 1) for
IKKε activation to effect nuclear translocation of
Bcl3 (B-cell lymphoma encoded protein 3) and
association with p50 NF-κB subunit. This path-
way resulted in the downregulation of
pro-inflammatory cytokine production and
upregulation of anti-inflammatory cytokine
IL-10 and chemokines for specific recruitment
of Th2 cells (Gringhuis et al. 2014).

Anti-inflammatory responses through CLR
during H. pylori infection are not limited to
DC-SIGN signaling, as MINCLE (macrophage
inducible C-type lectin) is reported to induce
IL-10 production in infected human
macrophages; it was found that LPS can function
as the ligand for this induction (Devi et al. 2015).
The induced expression of small RNA
miR-223–3p as well as secreted IL-10 in infected
human immune cells were found to significantly

downregulate the expression of inflammasome
forming NLRP3, and this can interfere with the
production of pro-inflammatory active IL-1β
(Pachathundikandi and Backert 2018). The
IL-25 (IL-17E) signaling induced Th2 response
significantly reduced the inflammation in mice
during infection with H. pylori, while IL-23 sig-
naling increased this inflammation (Horvath Jr
et al. 2012, 2013). Moreover, it was reported
that H. pylori could induce HO-1 (heme
oxygensase 1) expression through phospho-
CagA dependent p38 signaling and nulcear factor
E2-related factor 2 (NRF-2) activation. The HO-1
expression was found to be upregulated in tissue
from infected patients as well as from infected
mice (Gobert et al. 2014). Furthermore, defi-
ciency of hmox1 exacerbated the inflammation
through increased M1 macrophage, Th1 and
Th17 responses, which resulted in reduced
H. pylori colonization (Gobert et al. 2014). Simi-
larly, deficiency in trpm2 (transient receptor
potential cation channel subfamily M member
2), a calcium channel protein, increased gastric
inflammation and reduced the bacterial coloniza-
tion in infected mice (Beceiro et al. 2017).
TRPM2 deficient macrophages had altered cal-
cium levels and produced more inflammatory
mediators like IL-12, IL-6, IL-1β and TNFα.
The oxidative stress was also increased, which
attributed to the high expression of NADPH oxi-
dase and iNOS due to enhanced MAPK signaling
in TRPM2 deficiency. In addition, TRMP2 defi-
ciency polarized the macrophages to a more
pro-inflammatory M1 phenotype (Beceiro et al.
2017). Transgenic mice lacking Nogin, the BMP
(bone morphogenetic protein) signaling inhibitor,
showed exacerbated expression of
pro-inflammatory cytokines during H. pylori
infection, which suggests for an anti-
inflammatory role of BMP in this infection
(Takabayashi et al. 2014). H. pylori arginase
(encoded by rocF) was found to suppress the
expression of NF-κB family transcription factors
and their corresponding cytokine genes. Infection
with ΔrocF mutants induced more IL-8 in epithe-
lial cells than wild type bacteria, which confirms a
role for immunosuppression during infection
(Kim et al. 2012). The gastric tissue TGFβ and

Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology 93



its receptor levels were both decreased in patients
infected with H. pylori, which is known to have
anti-inflammatory activities through suppression
of T-cells, B-cells, macrophages and NK cells
(Shih et al. 2005; Jo et al. 2010). Furthermore,
the model proposed by Li and co-workers (2015)
incorporated decreased TGFβ and receptors in
acute H. pylori infection, while chronic infection
increased their signaling activity. In conclusion,
the above described pro- and anti-inflammatory
signaling mechanisms and their timely or
untimely induction would by and large determine
the outcome of H. pylori infection.

11 Inflammasome Activation
Through TLR2 and NOD2
Signal Transduction

The formation of the inflammasome is an impor-
tant aspect of the innate immune response,
constituting multiprotein scaffolds for the recruit-
ment of zymogen pro-Caspase 1 to become
activated through proximity induced auto-
proteolysis and subsequent production of active
IL-1β and IL-18. Proteins belonging to the family
of Nod-like receptors (NLRs) are the major
contributors in this process. In particular, NLR
pyrin domain containing 1 (NLRP1), NLRP3 and
NLR card domain containing 4 (NLRC4) are the
three major and best studied inflammasome
forming proteins. The inflammasome can also
form by activity of non-NLR factors; AIM2
(absent in melanoma 2) is the major non-NLR
inflammasome forming factor for active IL-1β
and IL-18 production. Other NLR proteins have
also been implicated for the formation of the
inflammasome, however, the mechanistic details
of these are yet to be discovered (Backert 2016).

As could be expected, H. pylori infection
activates the formation of the inflammasome
both in mouse and human cells (summarized in
Fig. 4). The production of active IL-1β and IL-18
have multiple roles in the fine tuning of the host’s
immune responses against the bacteria. Apart
from its known role as a pyrogen, IL-1β can
recruit and activate different leukocytes and result
in production of multiple mediators of

inflammation. IL-18 is involved in the modula-
tion of T-cell responses, which depends on the
presence of other mediators of inflammation. For
instance, IL-18 can turn the fate of T-helper cells
into either Th1 or Th2 phenotype and counter the
pro-inflammatory response induced by IL-1β
(Dinarello 2009). The activation of an
inflammasome requires the optimal expression
of crucial components such as NLRs,
pro-Caspase 1, IL-1β and IL-18. Generally, TLR
signaling activation of NF-κB induces the expres-
sion of these proteins. In case of H. pylori infec-
tion, TLR2 signaling was reported to be the rate-
limiting step in the activation of NLRP3
inflammasome (Koch et al. 2015). A study using
a transposon mutant library of H. pylori revealed
that urease deficient bacteria were no longer able
of such activation in DCs (Koch et al. 2015).
Infection of DCs with specific ΔureA and
ΔureB mutants pinpointed the role of UreB in
this activation (Koch et al. 2015). However, pro-
IL-1β expression was induced through H. pylori
LPS mediated activation of TLR4, as particular
LPS mutants failed to do so. This shows the need
for concerted action of TLRs in the activation of
the inflammasome in H. pylori infection. The tlr2
and nlrp3 deficient mice showed an increase in
IFNγ producing CD4+ cells and reduced coloni-
zation of H. pylori (Koch et al. 2015). Mice
deficient in either casp1, il18, or il18r genes
also revealed lower H. pylori colonization rates.
This shows that TLR2 mediated NLRP3
inflammasome activation in mice benefits
H. pylori colonization and persistence. Wild-
type mice infected with ΔureB mutants had
more IFNγ producing CD4+ cells compared to
animals infected with wild type bacteria; like-
wise, tlr2 or nlrp3 deficient mice produced
lower levels of these cells when colonized with
either type of bacteria (Koch et al. 2015). More-
over, it was reported that animals with allergic
asthma had reduced pathologies when neonatal
mice were infected with wild-type H. pylori, but
absence of this effect in case of the ΔureB mutant
suggests that UreB-induced immunity can protect
the host from allergic asthma (Koch et al. 2015).
This observed protection was abrogated by treat-
ment of blocking antibodies raised against IL-18.
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Moreover, adoptive transfer of CD25+ Treg cells
from mice infected with wild type H. pylori
alleviated the asthma pathologies (Koch et al.
2015).

Neither VacA nor CagA were essential for
inflammasome activated IL-1β secretion, but a
bacterial mutant lacking T4SS pilus protein
CagL resulted in decreased activation, which
hints to a role of intact T4SS in this process
(Kim et al. 2013). In this study, expression of
il1β and nlrp3 was found to depend on TLR2
and NOD2. DCs from either tlr2 or nod2 deficient
mice significantly reduced the activation of the
inflammasome, while in double deficient mice
this effect was augmented (Kim et al. 2013).
DCs deficient of casp1 expressed similar amounts
of pro-IL-1β as wild type mice upon infection
with the bacteria, but were no longer able to
secrete active IL-1β (Kim et al. 2013). These
murine infection experiments showed that
H. pylori colonization was increased in il1, il1r,
and casp1 deficient mice compared to wild
type mice, but nlrp3 deficient mice resulted in
normal colonization, which contrasts with the
above-mentioned study (Kim et al. 2013). In
conclusion, TLR2, along with NOD2, is involved
in the activation of the NLRP3 inflammasome
during H. pylori infection and this process
requires bacterial factors such as UreB, LPS
and CagL.

12 Resolution of Inflammation by
H. pylori

Inflammation typically undergoes three phases:
acute inflammation, onset of resolution, and
finally resolution to regain homeostasis. The
acute inflammatory stage is marked by infiltration
of neutrophils and monocytes at the inflamed site,
producing classically activated M1 macrophages
and resulting in the production of more
pro-inflammatory mediators. This results in
long-term adaptive immunity against the invader
and works as a memory system to prevent future
attack. At the onset of resolution, the second
stage is characterized by reduced secretion of
pro-inflammatory cytokines and chemokines.

Neutrophils start to produce microparticles and the
acute-phase production of lipid pro-inflammatory
mediators (e.g. prostaglandins) switches to pro-
duction of pro-resolution lipid mediators such as
lipoxins, resolvins, maresins and protectins. In
addition, more anti-inflammatory cytokines such
as IL-10 and TGFβ are produced during this stage
and thereby induces more M2 macrophages, these
cells are necessary for resolution to gradually
restore homeostasis with assistance of other
factors. (Ortega-Gómez et al. 2013; Sugimoto
et al. 2016).

H. pylori infection is a chronic condition that
in humans typically starts during childhood and
lasts for a life time if not eradicated by antibiotic
therapy. However, the majority of infected
individuals do not develop associated
complications like peptic ulcer, gastric cancer or
MALT lymphoma, despite the fact that gastritis
and local inflammation of the gastric mucosa
probably appears in most infected individuals
(Wroblewski et al. 2010; Bauer and Meyer
2011). The colonization of gastric mucosa by
H. pylori and its interaction with the epithelium
produces a strong chemokine response and
attracts large amounts of neutrophils and other
immune cells to the site (Dunn et al. 1997;
White et al. 2015; Gobert and Wilson 2016).
This inflammation continues unless the bacteria
are eradicated by therapy, which suggests that
resolution processes are limited in this infection.
It is known that long-term infection withH. pylori
produces a robust Th1 immune response and that
can control the infection to a certain degree
(White et al. 2015). The presence of the
pro-resolution factors, such as Treg cells and
IL-10, was demonstrated, but this was not suffi-
cient for total clearance and resolution, although
these factors are able to reduce the immuno-
pathologies associated with H. pylori (Kao et al.
2010; Cook et al. 2014; Hussain et al. 2016). The
reduced immune-pathology mediated by IL-10
could be attributed to its pro-resolution effort,
but lack of complete H. pylori clearance prevents
recovery to homeostasis. In addition, human
H. pylori infection results in a mixed M1/M2
macrophage response, whereas in the mouse
infection model a clear M1 polarization is
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observed (Quiding-Järbrink et al. 2010; Gobert
et al. 2014; Beceiro et al. 2017). This partial
pro-resolution in humans may be due to mixed
immune effector cell populations, which hinder
bacterial clearance and resolution of the infection.

There are a limited number of studies available
that describe resolution of H. pylori infection,
which are either based on observations with
vaccinated mice or describe eradication with anti-
biotic therapy. One early murine study showed
that prophylactic immunization reduced coloniza-
tion levels with several logs 2 weeks after dosage,
and after 52 weeks their gastric tissue resembled
that of uninfected mice (Garhart et al. 2002).
Unimmunized infected mice also reduced coloni-
zation levels eventually, but these animals devel-
oped gastritis later on. This shows that
prophylactic immunization against H. pylori
doesn’t prevent infection but helps to reduce col-
onization levels and at longer time, either clear
the infection or at least resolve the inflammation;
however, this effect cannot be excluded to mice
specific (Garhart et al. 2002).

Involvement of IL-10 has been studied by
infecting il10�/� deficient mice. The immune-
regulatory role of IL-10 was found to be impor-
tant in the control of immune responses against
H. pylori. The IL-10 deficiency enhanced the
immune responses and inflammation with a
highly significant reduction in bacterial coloniza-
tion during the early phase, while it reduced gas-
tritis and colonization levels at prolonged
infection (Matsumoto et al. 2005). These
observations suggest that a reduction in IL-10
producing Treg cells might increase the chance
of bacterial eradication and assist resolution in
H. pylori infection (Matsumoto et al. 2005). It
was also shown that infecting irf1 deficient mice
did not result in gastritis or atrophy, despite colo-
nization with very high numbers of bacteria.
These mice also failed to produce Th1 and Th2
responses, which correlates with the reduced
immunopathology (Sommer et al. 2001). The
above data indicate multiple levels of involve-
ment in H. pylori induced gastric inflammation
and associated pathologies. If we were able to
modulate both colonization and inflammation by
targeting crucial checkpoints of H. pylori

infection, it might be possible to clear the infec-
tion without the need of antimicrobial drugs.

13 Conclusions

H. pylori currently colonizes about 50% of the
world population, although the proportion of
infected individuals is decreasing over time. The
bacteria are responsible for a significant global
health burden, including peptic ulceration and
gastric malignancies. More than 30 years of
research on the bacteria-host cell interactions tak-
ing place during infection have provided amazing
insights into the biology of H. pylori, with con-
siderable progress being made in the past few
years. In this chapter, we have reviewed the
interactions of an array of bacterial factors with
a wide selection of host signaling modules. Upon
the initial intimate contact between bacteria and
gastric epithelial cells, specific bacterial factors
interfere with selected host receptors and other
factors to manipulate the downstream cell signal-
ing. We have highlighted our current understand-
ing how bacterial factors such as VacA, GGT,
UreB, NapA, Hsp60, LPS, peptidoglycan and
ADP-heptose can hijack host cell signaling
modules and downstream signal transduction
pathways. It can be presumed that there exists
very complex crosstalk between bacterial ligands
and their corresponding host cell receptors to
influence cellular responses, which ensures
chronic colonization and gastric disease develop-
ment. It remains a highly interesting challenge to
further unravel the important actions of H. pylori
virulence factors, such as translocation of
ADP-heptose. In addition, single-nucleotide
polymorphisms (SNPs) and other genetic host
differences have been reported in multiple cell
receptors and immune-regulatory factors includ-
ing in IL-1β, IL-1 receptor, TLRs, interleukins or
TNFα, which also control the clinical outcome of
infections by H. pylori (see also Chapter “The
role of host genetic polymorphisms in
Helicobacter pylori mediated disease outcome”
of this book). In addition to their ongoing
uncovering, it can be expected that in the near
future additional genetic polymorphisms in
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H. pylori populations may also be discovered,
now that novel high-throughput sequencing
methods have become widely available. This
will definitely promote the ongoing assessment
and treatment schemes for H. pylori infection.
Therefore, it appears that H. pylori interactions
with the host immune system will continue to be
an attractive and gratifying subject for future
researchers.
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