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Activity and Functional Importance
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Abstract

Helicobacter pylori is a very successful Gram-
negative pathogen colonizing the stomach of
humans worldwide. Infections with this bacte-
rium can generate pathologies ranging from
chronic gastritis and peptic ulceration to gas-
tric cancer. The best characterized H. pylori
virulence factors that cause direct cell damage
include an effector protein encoded by the
cytotoxin-associated gene A (CagA), a type
IV secretion system (T4SS) encoded in the
cag-pathogenicity island (cag PAI),
vacuolating cytotoxin A (VacA), γ-glutamyl
transpeptidase (GGT), high temperature
requirement A (HtrA, a serine protease) and
cholesterol glycosyl-transferase (CGT). Since
these H. pylori factors are either surface-
exposed, secreted or translocated, they can
directly interact with host cell molecules and
are able to hijack cellular functions. Studies on

these bacterial factors have progressed sub-
stantially in recent years. Here, we review the
current status in the characterization of signal-
ing cascades by these factors in vivo and
in vitro, which comprise the disruption of
cell-to-cell junctions, induction of membrane
rearrangements, cytoskeletal dynamics,
proliferative, pro-inflammatory, as well as,
pro-apoptotic and anti-apoptotic responses or
immune evasion. The impact of these signal
transduction modules in the pathogenesis of
H. pylori infections is discussed.
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1 Introduction

The human stomach represents a highly dynamic
and hostile environment for bacteria, in which the
gastric pathogen H. pylori encounters numerous
stresses, including nutrient limitations, pH
fluctuations or oxidative attack (Kusters et al.
2006). Gastric colonization by H. pylori com-
monly occurs in early childhood and can persist
for the entire lifetime, unless it is eradicated by
antimicrobial treatment. The bacterium is a major
risk factor for the development of various gastric

D. Sgouras (*)
Laboratory of Medical Microbiology, Hellenic Pasteur
Institute, Athens, Greece
e-mail: sgouras@pasteur.gr; dionsgouras@gmail.com

N. Tegtmeyer
Division of Microbiology, Department of Biology,
Friedrich Alexander University Erlangen-Nuremberg,
Erlangen, Germany
e-mail: nicole.tegtmeyer@fau.de

S. Wessler
Division of Microbiology, Department of Biosciences,
Paris-Lodron University of Salzburg, Salzburg, Austria
e-mail: silja.wessler@sbg.ac.at

35

http://crossmark.crossref.org/dialog/?doi=10.1007/5584_2019_358&domain=pdf
https://doi.org/10.1007/5584_2019_358
mailto:sgouras@pasteur.gr
mailto:dionsgouras@gmail.com
mailto:nicole.tegtmeyer@fau.de
mailto:silja.wessler@sbg.ac.at


diseases and severe disorders, such as peptic ulcer
disease, that can develop in about 10–15%, or
gastric malignancies in 1–2% of infected
individuals; occurrence of these pathologies
depends on complex host-pathogen interactions
and correlates to the geography of individuals
(Polk and Peek 2010; Yamaoka and Graham
2014). The presence of H. pylori in the stomach
mucosa is commonly accompanied by strong
inflammatory responses, however, several
immune evasion strategies by the pathogen have
been described (Mejias-Luque and Gerhard 2017)
presenting a prime example of a chronic bacterial
infection (Ramarao et al. 2000; Pachathundikandi
et al. 2016). About half of the human world
population is colonized by the pathogen,
associated with chronic or asymptomatic gastritis
in every infected person. The pathogen has
evolved multiple mechanisms to colonize and
persist within the human stomach despite the
harsh acidic conditions confronted in this milieu
(Robinson et al. 2017). H. pylori is highly
adapted to the stomach and grows at pH ranges
between 6 and 8. Physiological, biochemical and
genetic studies of H. pylori have identified unique
properties of its metabolism, some of which are
crucial for the adaptation to the gastric environ-
ment (Kusters et al. 2006). Well-known pathoge-
nicity-associated properties of H. pylori comprise
flagella-mediated motility, urease-driven chemo-
taxis and neutralization of gastric pH, counterac-
tion of antimicrobial nitric oxide production by
arginase RocF and binding of the bacteria to
gastric epithelial cells using several outer-
membrane proteins; the latter adhesins include
BabA/B, SabA, AlpA/B, OipA, HopZ, HopQ,
and others (Gobert et al. 2001; Dubois and
Borén 2007; Backert et al. 2011; Roure et al.
2012; Posselt et al. 2013; Huang et al. 2015;
Naumann et al. 2017).

Genetic studies have shown thatHomo sapiens
has carried H. pylori for more than 100,000 years
and DNA sequence characteristics of the bacteria
were utilized as signatures to outline multifaceted
demographic events in the history of mankind,
including major human migration routes

(Moodley and Linz 2009). Because of this long
time of co-existence with humans, it was pro-
posed that hosting of H. pylori may have been
advantageous for its carrier (Atherton and Blaser
2009). In our modern civilization, however, the
bacterium produces a strong burden of morbidity
and mortality caused by malignancies such as
gastric adenocarcinoma and mucosa-associated
lymphoid tissue (MALT) lymphoma (Polk and
Peek 2010; Figueiredo et al. 2017). Gastric cancer
represents one of the highest incident
malignancies on the planet, causing over
700,000 deaths annually (Ferlay et al. 2015).
The clinical consequences of H. pylori infection
are controlled by a very complicated setup of
host-pathogen interactions. The infection and
development of gastric diseases is dependent on
multiple parameters, including environmental
factors, genetic predisposition of the host and
bacterial virulence determinants. For example,
the stomach microbiota, various dietary aspects,
as well as important micronutrients can influence
and change the equilibrium between H. pylori’s
endeavor as a pathogen or a commensal (Amieva
and El-Omar 2008; Polk and Peek 2010;
Yamaoka and Graham 2014). Moreover, specific
single nucleotide polymorphisms (SNPs) have
been discovered in pro-inflammatory and other
immune-regulatory control genes of the human
genome, including tumor necrosis factor, inter-
leukin-1β, interleukin-8, Nod-like and toll-like
receptors, which can account for an increased
risk of developing gastric diseases induced by
H. pylori (Amieva and El-Omar 2008). Com-
monly, H. pylori isolates are genetically
extremely variable, and this diversity also
includes the presence of virulence genes, reveal-
ing different degrees of pathogenicity that affects
the severity of H. pylori infections. Molecular
mechanisms evolved in H. pylori to challenge
host defense instruments and causing disease are
under vigorous examination, by numerous
research labs worldwide. Here, we review the
function and activity of the major H. pylori viru-
lence factors cag PAI carrying T4SS and CagA,
VacA, HtrA, GGT and CGT.
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2 Assembly and Function
of the cag PAI-Encoded T4SS

The cag PAI is a genetic locus of ~40 kilobase
pairs in the H. pylori chromosome carrying up to
32 genes that was acquired from a yet unknown
ancestor by horizontal DNA transfer (Covacci
and Rappuoli 2000). The cag PAI is present in
highly virulent (type-I) H. pylori isolates but typ-
ically absent in less virulent (type-II) strains.
Functional studies have shown that the cag PAI
encodes a T4SS, representing a syringe-like
nanostructure, spanning the inner and outer
membranes of the Gram-negative bacterium.
T4SS assembly involves orthologs of all
12 VirB/VirD4 subunits that were first described
for the prototype Agrobacterium tumefaciens
apparatus, and about a dozen additional Cag
PAI proteins, making this system clearly unique
among other T4SSs as discussed elsewhere
(Backert et al. 2015; Grohmann et al. 2018).
Electron microscopy has been applied to visualize
the T4SS core structure which is sized
approximately 41 nm in diameter, and comprises
a complex of the Cag3, CagT, CagM, CagX and
CagY proteins (Frick-Cheng et al. 2016). This
core structure is connected with an extracellular
pilus appendage in the outer membrane, which
establishes host cell contact (Kwok et al. 2007;
Shaffer et al. 2011). The CagL, CagI, CagY and
CagA proteins have been identified as pilus-
linked factors and permit binding to the host
receptor integrin α5β1, which is necessary for
T4SS functionality (Kwok et al. 2007; Jimenez-
Soto et al. 2009; Barden et al. 2013). The integrin
αvβ5 member was also found to be exploited by
H. pylori to induce gastrin production in a T4SS-
dependent fashion (Wiedemann et al. 2012).
Various translocated effector molecules and sig-
naling effects have been reported (Fig. 1). The
T4SS injects effector protein CagA (Segal et al.
1999; Stein et al. 2000; Odenbreit et al. 2000;
Asahi et al. 2000; Backert et al. 2000), peptido-
glycan (Viala et al. 2004), chromosomal DNA
(Varga et al. 2016) and heptose-1,7-bisphosphate
(HBP) into epithelial target cells, which respec-
tively can stimulate receptor Nod1, toll-like

receptor-9, TRAF-interacting protein with FHA
domain (TIFA), kinase AKAP and
pro-inflammatory transcription factor NF-κB in
infected epithelial cells (Viala et al. 2004; Varga
et al. 2016; Gall et al. 2017; Stein et al. 2017;
Zimmermann et al. 2017).

Interestingly, H. pylori also targets the
carcinoembryonic antigen-related cell adhesion
molecule (CEACAM) receptors by means of
adhesin HopQ for bacterial adhesion and delivery
of CagA (Fig. 1) (Javaheri et al. 2016; Koniger
et al. 2016). It appears that HopQ exploits the
CEACAM dimer interface for binding and this
interaction is required for proper T4SS function
of yet unknown nature, which is required for
effective stomach colonization and subsequent
gastric pathogenesis (Bonsor et al. 2018;
Moonens and Remaut 2017). In addition, the
T4SS itself can also interact with and activate
specific other host cell receptors in a CagA-
independent manner, including epidermal growth
factor receptor members EGFR and Her2/Neu,
leading to increase cellular proliferation, anti-
apoptosis and bacterial survival (Keates et al.
2001; Saha et al. 2010; Tegtmeyer et al. 2010;
Sierra et al. 2018). Furthermore, the T4SS
stimulates the receptor tyrosine kinase c-Met,
which induces epithelial cell migration and inva-
sion by engaging phospholipase PLCγ and
mitogen-activated kinases (Fig. 1) (Churin et al.
2003; Oliveira et al. 2006).

Early studies have shown that H. pylori can
actively inhibit its phagocytosis through profes-
sional phagocytes (Ramarao et al. 2000). These
antiphagocytosis characteristics possibly play an
important role in immune escape of H. pylori and
depend on a functional cag PAI, since isogenic
T4SS mutants abolished this feature, but does not
require CagA (Ramarao et al. 2000). In addition,
the pathogen was described to change the phos-
phorylation state of histone H3 through a CagA-
independent but T4SS-dependent mechanism
involving the mitotic vaccinia-related kinase
1 and Aurora B (Fehri et al. 2009). Remarkably,
in epithelial cells T4SS-positive bacteria can also
stimulate the NF-κB-mediated induction of AID
(a DNA-editing enzyme) that leads to the
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accumulation of mutations in p53, a well-known
tumor suppressor protein (Matsumoto et al.
2007). Therefore, the activation of AID could
represent a mechanism in which mutations in
crucial genes could accumulate during infection
and trigger gastric malignancy. Finally, the T4SS
ofH. pylori infection engages glycoprotein recep-
tor gp130 (Lee et al. 2010), and the downstream
activation of JAK2–STAT3 (Janus kinase–signal
transducer and activator of transcription) signal-
ing is linked to H. pylori-induced inflammation,
which promotes carcinogenesis. Taken together,
the T4SS located on the cag PAI exhibits remark-
able features in its interactions with the host and is
involved in causing gastric pathology. These data
also demonstrate that H. pylori disrupts crucial
cellular processes by one or more yet unidentified
T4SS factors, which need to be identified in
future studies.

3 CagA, a Multifunctional
Master Key

CagA is an extraordinary protein of approxi-
mately 120–140 kDa, not sharing any sequence
homology with other proteins known to date. It
represents the most researchedH. pylori virulence
factor with over 3200 citations in PubMed
(Backert and Blaser 2016). It was originally
identified independently by two groups as an
immunodominant protein of about 128 kDa in
seropositive H. pylori carriers (Tummuru et al.
1993; Covacci et al. 1993). Subsequently,
CagA-seropositivity in symptomatic patients
was found to be associated with increased risk
of gastric cancer (Blaser et al. 1995; Parsonnet
et al. 1997). Its biological importance was further
acknowledged when a number of research groups

Fig. 1 T4SS-dependent effects inH. pylori-infected cells.
Polarization of the gastric epithelium involves functional
intercellular adhesion complexes, such as tight junctions
(TJs) and adherens junctions (AJs). Disruption of the
epithelium is facilitated by T4SS-positiveH. pylori strains.
The T4SS contact α5β1-integrins to inject the virulence
factor CagA into the cytosol of infected cells (1), which
can compete with β-catenin (β-cat) binding to the intracel-
lular domain of the AJ cell adhesion molecule E-cadherin
and contribute to the disruption of AJs. CagA translocation
is enhanced by theH. pylori-secreted serine protease HtrA.
HtrA cleaves off the extracellular domains of E-cadherin,
occludin, and claudin-8 (2), which opens intercellular TJs
and AJs. HtrA-mediated cleavage of adhesion molecules
further allows binding of the T4SS to the α5β1-integrins at

the basolateral domain of polarized cells. HopQ interac-
tion with apically expressed CEACAMs is involved in
efficient CagA injection (3). Furthermore, the T4SS can
directly target receptors on the cell surface, including
EGFR, Her2/Neu or c-Met, which is implicated in prolif-
eration, cell survival and invasive growth (4). Cytoplasmic
CagA is finally tyrosine-phosphorylated by kinases of the
Src (SFK) and Abl family (5). Both phosphorylated and
non-phosphorylated CagA induce changes in nuclear
responses (e.g., proliferation, apoptosis, cell cycle arrest,
synthesis of cytokines and chemokines, induction of EMT
or p53 inhibition). Lastly, CagA may interfere with signal-
ing pathways leading to cell motility, which might be
facilitated by the disintegrated AJs and TJs
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reported that CagA can be translocated into gas-
tric epithelial cells, passing the membrane by
means of T4SS (Covacci and Rappuoli 2000;
Backert and Tegtmeyer 2017). Further work con-
vincingly demonstrated that for the successful
translocation of the CagA protein, interaction of
a number of T4SS constituents with host receptor
integrin α5β1 was necessary (Kwok et al. 2007;
Jimenez-Soto et al. 2009; Barden et al. 2013).
CagA itself can also bind to integrin α5β1
followed by its internalization into the host cell
cytoplasm (Hayashi et al. 2012; Kaplan-Turkoz
et al. 2012). H. pylori interaction with the host
cell plasma membrane also includes direct bind-
ing of CagA to externalized membrane phosphati-
dylserine (PS), an event which is reported to be
critical for CagA translocation (Fig. 1) (Murata-
Kamiya et al. 2010). A partial crystal structure of
N-terminal segments of the protein has been
obtained (Hayashi et al. 2012; Kaplan-Turkoz
et al. 2012), however, the entire C-terminal part
of CagA is not yet crystallized. This part of the
protein contains a number of Glu-Pro-Ile-Tyr-Ala
(EPIYA)-sequence motifs which can be classified
as EPIYA-A, EPIYA-B, EPIYA-C and EPIYA-D
motifs, depending on their surrounding sequence
(Hayashi et al. 2013). In H. pylori strains derived
from Western countries, single EPIYA-A and
EPIYA-B motifs have been reported, typically
followed by one to four copies of EPIYA-C,
whereas the combination of EPIYA-A and
EPIYA-B with single EPIYA-D motifs has been
predominantly identified in H. pylori isolates
isolated in East-Asia (Xia et al. 2009). Strains
with higher number of EPIYA-C motifs or pres-
ence of EPIYA-D have been associated with an
increased risk for the development of gastric can-
cer (Argent et al. 2004; Jones et al. 2009; Li et al.
2017). However, the situation is not that straight-
forward. For instance, simultaneous infection
with strains expressing diverse CagA EPIYA
characteristics have been observed in adult
patients (Panayotopoulou et al. 2010) and strains
isolated from children do not exhibit multiple
EPIYA-C motifs (Sgouras et al. 2009),
suggesting that potential increments in the num-
ber of repeating EPIYA motifs in CagA occur
throughout adulthood. Once intracellular,

tyrosine moieties of the EPIYA motifs have
been shown to be hierarchically phosphorylated
by c-Src and c-Abl family host kinases (Mueller
et al. 2012), thereby derailing the host cell func-
tion, effectively acting as a molecular “Trojan
horse” (Covacci and Rappuoli 2000). How this
deregulates downstream signaling processes was
summarized in detail in other review articles
(Backert et al. 2010; Senda and Hatakeyama
2016; Hatakeyama 2017; Berge and Terradot
2017; Tegtmeyer et al. 2017a). More specifically,
a surprisingly high number of over 25 host cell
factors have been reported to interact with CagA,
in a manner that may or may not depend on
EPIYA-phosphorylation, thereby suggesting that
CagA can operate as a molecular master key
(Backert et al. 2010). A number of key intracellu-
lar signaling pathways can be affected, relating to
apoptosis and cell cycle proliferation, inflamma-
tory response, cell motility and elongation, inter-
cellular junction integrity or p53-inhibition
(Backert et al. 2010; Hatakeyama 2017). Notable
interacting targets of the “promiscuous” CagA
protein have been identified in a
phosphorylation-dependent manner for the
SHP-2 phosphatase (Higashi et al. 2002) and in
a phosphorylation-independent manner for the
tight junction proteins JAM and ZO-1 (Amieva
et al. 2003; Krueger et al. 2007), E-cadherin
(Murata-Kamiya et al. 2007; Oliveira et al.
2009) and PAR-1 (Hayashi et al. 2012).

A more recent, holistic approach proposed that
in order forH. pylori to control key host cell signal
transduction functions, it injects the CagA protein
which functions as a kinase pathway deregulator of
a variety of serine/threonine and tyrosine kinases
(Tegtmeyer et al. 2017a). These molecules are
involved as both receptor- or non-receptor-
mediated signaling elements; therefore, CagA
seems to be able to manipulate a selection of
fundamental cell processes such as adhesion,
polarity, proliferation and motility, receptor
mediated endocytosis, cytoskeletal
rearrangements, apoptosis, inflammation, and cell
cycle progression (Fig. 1) (Tegtmeyer et al.
2017a). CagA can accomplish such diverse
strategies by activating or deactivating key
kinase-dependent pathways. For instance, the Abl

Activity and Functional Importance of Helicobacter pylori Virulence Factors 39



kinase was specifically reported to be activated by
CagA (Poppe et al. 2007; Tammer et al. 2007), and
so were the carboxy-terminal Src kinase (Csk)
(Selbach et al. 2003; Tsutsumi et al. 2003; Selbach
et al. 2009), the phosphatidylinositide 3-kinase
(PI3K)/Akt pathway (Suzuki et al. 2009; Selbach
et al. 2009; Wei et al. 2010; Zhang et al. 2015), the
glycogen synthase kinase 3 (GSK-3) (Lee et al.
2014), the Janus kinase (JAK), a family of intra-
cellular, non-receptor tyrosine kinases (Bauer et al.
2012), the Focal adhesion kinase (FAK)
(Tegtmeyer et al. 2011), the atypical Protein
Kinase C (aPKC) associated with junctional and
polarity defects (Saadat et al. 2007; Zeaiter et al.
2008) andMAP kinases. On the other hand, CagA-
dependent inactivation has been described for Src
kinases (Selbach et al. 2003; Tsutsumi et al. 2003),
the partitioning-defective Par1 kinase (Saadat et al.
2007) and the protein kinase C-related kinase
2 (PRK2) (Mishra et al. 2015). Further to GSK-3
targeting, translocated CagA has been suggested to
induce epithelial mesenchymal transition (EMT)
through EPIYA phosphorylation-dependent
up-regulation of metalloproteaseMMP-3 (Sougleri
et al. 2016). In a phosphorylation-independent
manner, translocated CagA has been demonstrated
to promote survival of the infected epithelial cells
by subverting pro-apoptotic signaling, leading to
CagA-dependent p53 degradation (Tsang et al.
2010; Wei et al. 2015, 2010; Buti et al. 2011).
Taken together, the CagA protein, following its
endocytic translocation, can interact with a number
of cellular elements, thus interfering with multiple
cell functions and thereby exhibiting a versatile
role in H. pylori pathogenesis. The elucidation of
the exact molecular mechanisms and signaling of
these interactions will benefit from structural stud-
ies of respective complexes involving full length
CagA protein.

The application of animal models of H. pylori
infection have further highlighted the important
role that CagA may play in pathogenesis, as
introduction of CagA-positive H. pylori into
Mongolian gerbils has shown to induce gastric
dysplasia and adenocarcinoma, through β-catenin
activation and its nuclear accumulation, follow-
ing CagA translocation (Franco et al. 2005). Fur-
ther evidence on CagA tumorigenicity was

provided following transgenic expression of
CagA in C57BL/6J mice, under the control of
the β subunit gene promoter of mouse H+/K+-
ATPase, which resulted in abnormal proliferation
of gastric epithelial and hematopoietic cells, thus
contributing to the development of gastrointesti-
nal carcinomas and leukemias/lymphomas, in a
tyrosine phosphorylation-dependent manner
(Ohnishi et al. 2008). Similar observations of
the activation of pathways related to oncogenic
potential were further supported by other trans-
genic model systems, including a model using
Drosophila (Wandler and Guillemin 2012) and
another with zebrafish (Neal et al. 2013).

Despite the plethora of reports describing the
molecular mechanisms by which CagA can con-
tribute to the bacterial pathogenesis, no clinical
recommendations exist with regards to CagA
subtyping in the management of patients
(Malfertheiner et al. 2017; Chey et al. 2017),
although CagA antibodies, which remain positive
for a very long period of time, have been
suggested to allow detection ofH. pylori infection
in gastric cancer patients when other tests are
negative (Malfertheiner et al. 2017). Recent evi-
dence provides further intriguing clues on the
complex biology of CagA with regards to its
clinical importance, as CagA translocation within
gastric epithelial cells has been shown to be
dependent on the levels of bacterial hydrogen
metabolism. Clinical strains isolated from cancer
patients seem to harbor significantly higher
hydrogenase activity compared to those derived
from patients with gastritis, thereby proposing an
association between H. pylori hydrogenase activ-
ity and gastric carcinogenesis in humans (Wang
et al. 2016). Finally, with regards to a role of
CagA in pathogenicity, recent evidence suggests
that variation in cagA gene copy numbers may
serve as a novel mechanism by which H. pylori
can modulate gastric disease development: a con-
siderable proportion of H. pylori clinical strains
harbor multiple cagA copies, which can be differ-
entially associated with gastric disease (Jang et al.
2017). In summary, CagA will continue to
intrigue by its mechanistic versatility and
fascinating complexity of the evolutionary advan-
tage it may confer to H. pylori pathogenesis.
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4 H. pylori Secretes the Serine
Protease HtrA to Shape
the Epithelial Barrier

Depolarization of the epithelium represents a hall-
mark of H. pylori-induced gastric carcinogenesis
and involves manifold complex pathogen-host
interactions that have been summarized in several
other review articles (Posselt et al. 2013;
Wroblewski and Peek 2007; Hatakeyama 2008).
The investigation of bacterial-derived proteases
implicated in the disruption of the epithelial bar-
rier function is a relatively new field of research.
H. pylori expresses HtrA, a protein with dual
function acting as a chaperone and a serine prote-
ase, which is localized in the periplasm, but is
also secreted into the environment (Bumann et al.
2002; Lower et al. 2008). The extracellular local-
ization of HtrA allows a direct interaction with
host cell surface molecules. In fact, E-cadherin
exposed on gastric epithelial cells was identified
as the first substrate for HtrA, that has severe
consequences on the epithelial integrity (Hoy
et al. 2010).

E-cadherin represents an important cell adhe-
sion molecule, which is essential for the estab-
lishment and maintenance of an intact, polarized
epithelium. Alterations of E-cadherin function,
either through loss-of-function mutations, epige-
netically down-regulated gene expression or by
protein cleavage, were identified as important
steps in gastric carcinogenesis (Liu and Chu
2014; Carneiro et al. 2012). The finding of
HtrA-mediated E-cadherin cleavage unravels a
novel mechanism in the pathogenesis of
H. pylori (Wessler and Backert 2017). For a
long time, it was suggested that H. pylori initiates
bacterial pathogenesis via adherence at the apical
domain of the epithelium, where it translocates
CagA into the cytoplasm. The observation that
basolaterally exposed integrin β1 serves as a
receptor for the T4SS (Kwok et al. 2007) resulted
in the conclusion that H. pylori must open inter-
cellular adhesion complexes, which are mainly
composed of tight junctions at the transition of
the apical to basolateral membrane domains and
the subjacent E-cadherin-mediated adherens

junctions prior to contact integrin β1 (Fig. 1).
Hence, the finding that HtrA cleaves-off the
ectodomain of E-cadherin uncovered an elegant
mechanism by which H. pylori can disrupt
intercellular adhesions to open the intercellular
space for transmigration (Hoy et al. 2010). Con-
sequently, HtrA-dependent E-cadherin shedding
strongly enhances CagA delivery into infected
host cells via integrin β1 (Tegtmeyer et al.
2017b). Additional substrates for H. pylori HtrA
are the extracellular matrix protein fibronectin
(Hoy et al. 2010) and the tight junction proteins
occludin and claudin-8 (Tegtmeyer et al. 2017b).
While the HtrA/E-cadherin interaction is
intensively investigated (Schmidt et al. 2016a,
b), HtrA-induced cleavage of fibronectin,
occludin and claudin-8 needs to be examined in
more detail.

H. pylori expresses HtrA ubiquitously and this
protease is highly stable under extreme conditions
such as high salt concentration, low pH or
extreme temperature (Hoy et al. 2013). Until
now, htrA-negative H. pylori isolates have not
yet been described as experimental ΔhtrA knock-
out mutants are lethal, underlining that the
expression of HtrA is essential for bacterial sur-
vival (Tegtmeyer et al. 2016; Salama et al. 2004).
These observations led to the development of
potent HtrA inhibitors in the form of small
molecules as well as substrate-derived peptidic
inhibitors. The first described small molecule
able to inhibit Helicobacter HtrA was developed
with help of a computational homology model.
This H. pylori HtrA inhibitor (HHI) efficiently
blocked E-cadherin shedding and subsequent
bacterial transmigration across a polarized epithe-
lial monolayer (Hoy et al. 2010). Motivated by
these results, a large collection of small molecule
inhibitors were developed and tested on HtrA
activity and H. pylori/epithelium interaction
(Lower et al. 2011; Geppert et al. 2011; Klenner
et al. 2012; Perna et al. 2014, 2015). Through the
analysis of the preferred HtrA signature sites in
the E-cadherin molecule, an alternative, substrate-
derived peptide inhibitor was also found that
selectively binds and inhibits HtrA resulting in
blocked transmigration of H. pylori (Schmidt
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et al. 2016b). These studies reveal that pharmaco-
logical inhibition of H. pylori HtrA can represent
a new option in the treatment of H. pylori
infections.

5 H. pylori VacA, GGT and CGT
Are Involved in Immune
Suppression and Evasion

Previous work identified the H. pylori factors
VacA, GGT and CGT, which despite a profound
effect on gastric epithelial cells, seem to be able to
act as immune modulators that impair the activa-
tion and proliferation of a variety of immune
cells, including T cells, suggesting important
roles in immune suppression and evasion (Fig. 2).

6 Vacuolating Cytotoxin A (VacA)

The vacuolating activity associated with H. pylori
infection of epithelial cells (Leunk et al. 1988)
remained controversial with relation to its rele-
vance to pathogenesis, until a protein was purified
that seemed responsible for this activity (Cover
and Blaser 1992). This VacA was genetically
characterized with reference to its pathological
significance (Cover et al. 1994; Schmitt and Haas
1994; Telford et al. 1994; Phadnis et al. 1994).
Amongst all the Helicobacter species known,
intact VacA protein with activity associated to
gastritis is only present in H. pylori and
H. cetorum, the latter being isolated from marine
mammals, potentially suggesting an evolutionary
significance (Foegeding et al. 2016).

Early studies have indicated that VacA has a
capacity to form anion-selective channels
(Czajkowsky et al. 1999; Tombola et al. 1999;
Iwamoto et al. 1999), so that VacA was classified
as a pore-forming toxin, with vacuolating activity
in cell culture assays (Vinion-Dubiel et al. 1999;
McClain et al. 2003). Oligomerization into single
(hexamers or heptamers) or double layered
structures (12-mers or 14-mers) seems to be
required for VacA activity, although VacA is
believed to initially interact with the plasma mem-
brane of host cells as a monomer, after which it

oligomerizes to form a membrane channel
(de Bernard et al. 1995; McClain et al. 2000).
Phylogenetic analysis of H. pylori clinical strains
has revealed the existence of several distinct
groups of vacA alleles (Gangwer et al. 2010).
Three main regions of diversity in vacA sequences
have been recognized, namely the signal sequence
region (s-region), the intermediate region (i-region)
and middle region (m-region). These result in vacA
alleles containing multiple combinations of s-, i-
and m-region types, relating to variable
vacuolating activity (Atherton et al. 1995; Letley
and Atherton 2000; McClain et al. 2001; Letley
et al. 2003; Rhead et al. 2007), and linked to a
potentially higher relative risk for development of
gastric cancer or peptic ulcer disease (Figueiredo
et al. 2002; Cover 2016).

VacA activity on epithelial cell culture systems
have revealed a multitude of effects, varying from
endosomal alterations of intraluminal pH (Ricci
et al. 1997; Morbiato et al. 2001) and disruption
of endocytic compartment trafficking (Satin et al.
1997; Molinari et al. 1998b; Tan et al. 2011),
induction of autophagy (Terebiznik et al. 2009;
Yahiro et al. 2012) and enhancement of mitochon-
drial dysfunction, which can result either from its
pore-forming ability (Willhite and Blanke 2004) or
through the activation of pro-apoptotic factors
(Yamasaki et al. 2006). Moreover, VacA activity
has been shown to cause increased epithelial bar-
rier alterations through augmented plasma mem-
brane permeability to the extracellular space
(Tombola et al. 2001; Debellis et al. 2001), the
formation of VacA channels in the plasma mem-
brane (Iwamoto et al. 1999; Tombola et al. 1999)
and by increasing paracellular permeability (Papini
et al. 1998; Pelicic et al. 1999; Amieva et al. 2003).
Finally, VacA-induced effects on epithelial cells
include extensive alterations in cell signaling,
related to MAP kinase p38 (Nakayama et al.
2004; Hisatsune et al. 2007) and ERK1/2 activation
(Nakayama et al. 2004), VEGF upregulation
(Caputo et al. 2003) and β-catenin nuclear locali-
zation (Nakayama et al. 2009) with subsequent
reduction in the expression of pro-survival factors
(Matsumoto et al. 2011). Moreover, it has been
shown to inhibit gastric acid secretion from parie-
tal cells (Kobayashi et al. 1996; Wang et al. 2008).
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With regards to its ability to act as an immu-
nomodulator, VacA has been demonstrated to
inhibit the function and proliferation of a variety
of immune cells, such as T cells (Gebert et al.
2003; Utsch and Haas 2016), B cells (Torres et al.
2007), eosinophils (Kim et al. 2007, 2010a),
macrophages (Allen et al. 2000; Zheng and
Jones 2003), dendritic cells (Kim et al. 2011;
Oertli et al. 2013; Djekic and Muller 2016) and
neutrophils. Furthermore, the immunomodulatory
activity of VacA has been demonstrated in in vivo
experimental infection models (Oertli et al. 2013;
Engler et al. 2014; Kyburz et al. 2017). Such
diverse immune functions of VacA accentuate
its significant role in the tempering of an immune

response in order to facilitate colonization of the
gastric epithelium as well as its potential immu-
nomodulatory role on extragastric diseases
(Djekic and Muller 2016).

A number of receptors have been proposed for
the adhesion of VacA to host cells; however, it
remains unclear whether VacA binds to a single
abundant, low-affinity receptor or to multiple cell
surface components (Foegeding et al. 2016).
Candidates include receptor protein tyrosine
phosphatase (RPTP) members α and β (Yahiro
et al. 1999; Fujikawa et al. 2003; Yahiro et al.
2003, 2004), low-density lipoprotein receptor-
related protein-1 (LRP1) (Yahiro et al. 2012),
epidermal growth factor receptor (EGFR) (Seto

Fig. 2 An interplay of soluble H. pylori factors in bacte-
rial persistence. Pleiotropic VacA is secreted by H. pylori
and can form anion-selective channels leading to extensive
vacuolization, changes in compartment trafficking, apo-
ptosis, and autophagy. Vacualization also results in an
increased permeability of the epithelial barrier through
the disruption of TJs. Further, VacA-induced effects on
epithelial cells lead to extensive alterations in cell signal-
ing related to cell survival and cell death, in response to
binding to cell surface receptor or localization within lipid
rafts. Subsequently, VacA can inhibit the function and
proliferation of T cells, B cells, eosinophils, macrophages,
dendritic cells and neutrophils (1). Soluble GGT is

responsible for the conversion of glutamine and glutathi-
one into glutamate. This damages epithelial cells through
the production of ammonia and generation of ROS, induc-
ing a cell-cycle arrest and upregulating COX-2 in gastric
epithelial cells. Similar to VacA, GGT has been described
to inhibit immune cell function. Therefore, inducing
H. pylori persistence (2). H. pylori depletes cholesterol
from the cell membrane and incorporates it into the bacte-
rial membrane where it is glycosylated by CGT. This
results in a destruction of lipid rafts. It further inactivates
the JAK/STAT1 signal transduction pathways in primary
gastric cells. CGT has also been associated with anti-
phagocytosis and T-cell inhibition (3)
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et al. 1998), heparan sulphate (Utt et al. 2001),
sphingomyelin (Gupta et al. 2008; Gupta et al.
2010), glycosphingolipids (Roche et al. 2007),
and phospholipids (Molinari et al. 1998a). Of
these, only sphingomyelin is suggested to dictate
the extent to which VacA binds to the cell surface
with subsequent VacA-dependent vacuolation
(Foegeding et al. 2016) and sphingomyelin is
thought to be the reason for VacA localization
within lipid rafts (Geisse et al. 2004;
Raghunathan et al. 2018).

In accordance to in vitro observations, animal
studies have suggested that although,VacA may
not be essential for gastric colonization, infection
with H. pylori strains producing the most active
forms of VacA (s1-i1) can induce more severe
gastric inflammatory response and extensive
metaplasia compared to strains with less active
VacA of the s1-i2 or s2-i2 types (Winter et al.
2014). Whether VacA activity is related to gastric
carcinogenesis due to impaired tumor surveil-
lance, as a result of its immunomodulatory activ-
ity, or due to the augmentation of inflammatory
response (Elinav et al. 2013) remains to be
clarified – possibly, all three effects may attribute
to the pathology.

7 Gamma-Glutamyl
Transpeptidase (GGT)

The enzyme GGT catalyzes the transpeptidation
and hydrolysis of the gamma-glutamyl group of
glutathione and related compounds and is abun-
dant amongst gastric Helicobacter species (Rossi
et al. 2012). In H. pylori, it is synthesized as a
proenzyme which is activated through autocatal-
ysis, to form a heterodimer of two subunits of ~40
and 60 kDa, respectively (Boanca et al. 2006).
Purified H. pylori GGT has a high hydrolyzing
activity for conversion of glutamine and glutathi-
one to glutamate with very high affinity for the
substrates, indicating a central physiological role
of this enzyme in glutamate biosynthesis
(Shibayama et al. 2007). However, it has been
shown to exhibit a pleiotropic activity both on
both gastric epithelial cells and on T-cell
mediated immunity. Related to its role in

glutamate synthesis, a number of studies have
shown that GGT is required for bacterial coloni-
zation, since knock-out mutants have exhibited a
diminished (McGovern et al. 2001) or even
completely abolished (Chevalier et al. 1999) abil-
ity to colonize the gastric mucosa in animal
models. Furthermore, analysis of clinical strains
has suggested that higher GGT activity is
associated with peptic ulcer disease while lower
GGT activity is more typically observed in strains
causing non-ulcer dyspepsia (Gong et al. 2010).
Consequently, a damaging effect of GGT on epi-
thelial cells has been associated with the produc-
tion of ammonia and generation of ROS, leading
to caspase-9 and caspase-3 activation and apopto-
sis (Shibayama et al. 2003, 2007), ATP-depletion
and necrosis (Flahou et al. 2011) as well as cell-
cycle arrest at G1-S phase (Kim et al. 2010b).
Moreover, it was demonstrated that GGT-induced
up-regulation of EGF-related peptides and
COX-2 in gastric epithelial cells could effectively
contribute to the proinflammatory and
procarcinogenic effect of H. pylori infection
(Busiello et al. 2004).

In addition to the effect on epithelial cells,
GGT has also been documented to modulate
T-cell mediated immunity and thus contributes
to immune evasion during infection. More specif-
ically, GGT was identified as the secreted protein
responsible for the G1 phase arrest of T cells
through disruption of Ras MAPK-dependent sig-
naling (Gerhard et al. 2005), independent of the
VacA-dependent T cell proliferation arrest. Col-
lectively, GGT and VacA can inhibit T cell pro-
liferation and differentiation to Th1 and Th17
(Gerhard et al. 2005; Schmees et al. 2007;
Beigier-Bompadre et al. 2011). Furthermore,
GGT- and VacA-dependent effects on T-cells
were suggested to be effected through dendritic
cell reprogramming (Oertli et al. 2013), leading to
interleukin-10 (IL-10) and IL-18 production and
promotion of Treg differentiation that could fur-
ther suppress Th1 and Th17 effector functions.
Such activities exerted by GGT and VacA were
associated with an increased protection against
allergen-induced asthma, presumably by
preventing airway hyper-responsiveness,
bronchoalveolar eosinophilia, pulmonary
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inflammation and Th2 cytokine production, as
was shown in mice tolerized with H. pylori
extracts applied orally or intraperitoneally (Engler
et al. 2014). Depletion of extracellular levels of
glutamine by GGT could also result in the
impairment of immune functions of the recruited
inflammatory cells (Kabisch et al. 2016) and
H. pylori GGT has been demonstrated to alter T
lymphocyte metabolic reprogramming by depriv-
ing them from glutamine (Wustner et al. 2017).

8 Cholesterol-α-
Glucosyltransferase (CGT)

H. pylori lacks the necessary components for
independent sterol synthesis. During infection
the bacteria migrate towards a cholesterol gradi-
ent and efficiently extract cholesterol from gastric
epithelial cell membranes to incorporate
glycosylated and non-glycosylated cholesterol
into the bacterial membrane (Wunder et al.
2006). The enzyme cholesterol-α-glucosyl-
transferase (CGT) was identified to glycosylate
cholesterol; it is encoded by the hp0421 gene
(Lebrun et al. 2006). The expression of CGT
correlates to cholesterol depletion of host
membranes, resulting in severe destruction of
lipid rafts (Wunder et al. 2006). In initial studies,
it was found that incorporation of
non-glycosylated cholesterol could enhance
phagocytosis by antigen-presenting cells (APCs)
and T cell activation, which led to protection
against H. pylori infections. In contrast,
cholesteryl-glucosides abrogated the uptake of
H. pylori by APCs. Consequently a
CGT-negative H. pylori deletion mutant was
rapidly cleared in a mouse animal model (Wunder
et al. 2006), demonstrating that CGT activity can
function as a new factor implicated in immune
evasion and persistent infection.

The molecular mechanism of CGT-dependent
immune evasion is still elusive, but it was
indicated that H. pylori CGT can induce
phagosome maturation arrest, which also
involves PI3K activity (Du et al. 2016). In other
cell types, such as primary gastric cells, it was
proposed that decreased cholesterol levels in host

cell membranes caused by H. pylori CGT activity
not only disrupt lipid rafts, but also prevent IFNγ
receptor-mediated signal transduction (Morey
et al. 2017). This leads to an inactivation of
JAK/STAT1 signal transduction pathways,
which creates a micro-niche with lower
concentrations of T-cell chemotactic attractants
and anti-microbial peptides (human β-defensin
3, hBD3) (Morey et al. 2017). In summary,
CGT has emerged as a novel H. pylori virulence
factor that contributes to gastric carcinogenesis
via promoting persistent infections together with
T-cell inhibition.

9 Concluding Remarks

H. pylori is one of the most successful pathogens
in the world, which colonizes the human gastric
mucosa to induce a diverse range of gastric
disorders and diseases. Since early human devel-
opment, H. pylori coevolved with the human
species through the development of a number of
sophisticated strategies, leading to evasion of host
surveillance and increased bacterial persistence.
In particular, bacterial virulence and pathogenic
factors, through their capability to specifically
interfere with host cell components, contribute
to a highly dynamic and complex
pathomechanism. In this review we summarized
the function of a number of putative bacterial
virulence factors, such as T4SS, CagA, HtrA,
VacA, CGT or GGT and examined the
mechanisms by which they interfere with the
gastric epithelial barrier and immune system.
Moreover, these virulence factors seem to interact
in synergy, in order to create such conditions of
balance between the initial assault, the induction
of tolerance and life-long bacterial persistence.
These complex associations shaping
coevolutionary relationships, between pathogenic
H. pylori virulence determinants, host factors in
inflammatory response genes and environmental
factors warrant further careful investigation, nec-
essary for the development of novel pharmaco-
logical compounds.
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