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Abstract

Peripheral nerve injuries (PNI) occur as the
result of sudden trauma and can lead to life-
long disability, reduced quality of life, and
heavy economic and social burdens. Although
the peripheral nervous system (PNS) has the
intrinsic capacity to regenerate and regrow
axons to a certain extent, current treatments
frequently show incomplete recovery with
poor functional outcomes, particularly for
large PNI. Many surgical procedures are avail-
able to halt the propagation of nerve damage,

and the choice of a procedure depends on the
extent of the injury. In particular, recovery
from large PNI gaps is difficult to achieve
without any therapeutic intervention or some
form of tissue/cell-based therapy. Autologous
nerve grafting, considered the “gold standard”
is often implemented for treatment of gap for-
mation type PNI. Although these surgical
procedures provide many benefits, there are
still considerable limitations associated with
such procedures as donor site morbidity, neu-
roma formation, fascicle mismatch, and scar-
ring. To overcome such restrictions,
researchers have explored various avenues to
improve post-surgical outcomes. The most
commonly studied methods include: cell
transplantation, growth factor delivery to
stimulate regenerating axons and implanting
nerve guidance conduits containing replace-
ment cells at the site of injury. Replacement
cells which offer maximum benefits for the
treatment of PNI, are Schwann cells (SCs),
which are the peripheral glial cells and in
part responsible for clearing out debris from
the site of injury. Additionally, they release
growth factors to stimulate myelination and
axonal regeneration. Both primary SCs and
genetically modified SCs enhance nerve
regeneration in animal models; however,
there is no good source for extracting SCs
and the only method to obtain SCs is by
sacrificing a healthy nerve. To overcome
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such challenges, various cell types have been
investigated and reported to enhance nerve
regeneration.

In this review, we have focused on cell-
based strategies aimed to enhance peripheral
nerve regeneration, in particular the use of
mesenchymal stem cells (MSCs). Mesenchy-
mal stem cells are preferred due to benefits
such as autologous transplantation, routine
isolation procedures, and paracrine and immu-
nomodulatory properties. Mesenchymal stem
cells have been transplanted at the site of
injury either directly in their native form
(undifferentiated) or in a SC-like form
(transdifferentiated) and have been shown to
significantly enhance nerve regeneration. In
addition to transdifferentiated MSCs, some
studies have also transplanted ex-vivo geneti-
cally modified MSCs that hypersecrete growth
factors to improve neuroregeneration.
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Abbreviations
AMD age-related macular degeneration
BDNF brain-derived neurotrophic factor
bFGF basic fibroblast growth factor
BMMC bone marrow mononuclear cell
CNTF ciliary neurotrophic factor
CNV choroidal neovascularization
CREB cAMP-response-element-binding

protein
DRG dorsal root ganglia
ELISA enzyme linked immunosorbent assay
GDNF glial cell line-derived neurotrophic

factor
GFP green fluorescent protein
iPSC induced pluripotent stem cell
MBP myelin basic protein
MRI magnetic resonance imaging

MSC mesenchymal stem cell
NGF nerve growth factor
NT-3 neurtrophin 3
NT-4/5 neurotrophins 4 and 5
PDGF platelet-derived growth factor
PNI peripheral nerve injury
PNS peripheral nervous system
RGC retinal ganglion cell
SC Schwann cell
TDM transdifferentiation media
TENG tissue engineered nerve graft
Trk tropomyosin receptor kinases
tMSC transdifferentiated mesenchymal stem

cell
uMSC undifferentiated mesenchymal stem

cell
VEGF vascular endothelial growth factor

1 Introduction

Mesenchymal stem cells (MSCs) which have
been altered to resemble and act like Schwann
cells (SCs) have key beneficial properties within
the context of peripheral nerve trauma such as
enhancing neuron survival and improving return
to function. The prevalence of peripheral nerve
trauma remains surprisingly high and current
treatment options such as nerve graft have several
pitfalls. The traditional gold standard requires the
sacrifice of a healthy nerve, thus alternative
remedies, such as cell transplants, are in high
demand. In particular, SCs are essential to
Wallerian degeneration (Salzer and Bunge 1980;
Stoll et al. 1989; Lee et al. 2006), and nerve
regeneration (Hadlock et al. 2000; Mosahebi
et al. 2001; Schlosshauer et al. 2003; Goto et al.
2010), making excellent transplant candidates
(Hadlock et al. 2000; Mosahebi et al. 2001;
Zhang et al. 2002; Goto et al. 2010). However,
SCs are difficult to culture in vitro and require
harvest from a healthy nerve in order to establish
a mature cell line (Moreno-Flores et al. 2006).
Studies within the last 20 years have instead
searched for easily harvested cells such as MSCs
that can be reprogrammed or transdifferentiated
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into a SC-like phenotype. Transdifferentiated
MSCs are capable of expressing SC marker
proteins, promoting neural tissue survival, and
improving return to function in peripheral nerve
injuries (Cuevas et al. 2002; Ni et al. 2010;
Dadon-Nachum et al. 2011; Oliveira et al. 2013;
Thoma et al. 2014). In addition to mimicking
SCs, MSCs have additional benefits, such as
secreting neurotrophic factors and serving as
targets for genetic modification (Keilhoff et al.
2006; Pereira Lopes et al. 2006; Ribeiro-Resende
et al. 2009; Wang et al. 2009; Wyse et al. 2014).
The following review will provide the reader with
a more in-depth perspective of current treatment
options and their pitfalls; the use of cell
transplants, especially SCs and MSCs; and,
finally, the use of transdifferentiation to create
Schwann-like cells from MSCs and their benefits
to peripheral nerve regeneration.

2 Peripheral Nerve Injuries-
Causes & Prevalence

Peripheral nerve injuries (PNIs) may be caused by
a variety of etiologies including trauma, meta-
bolic disorders such as Diabetes mellitus, or iat-
rogenic surgical complications. The most
common cause of PNI is trauma, during which
nerves may suffer from traction, ischemia,
crushing, or penetrating wounds (Campbell
2008). Other less common causes may include
thermal, electric shock, radiation, or vibrational
injuries (Robinson 2000, 2004). The majority of
incidents are stretch-related injuries, especially in
motor vehicle accidents (Stanec et al. 1997) 30%
of injuries are due to lacerations by knife, glass,
saw, or long bone fractures (Campbell 2008), and
about 6% are related to sports injuries (Hirasawa
and Sakakida 1983). In a retrospective study by
Kouyoumdjian (2006), 456 cases of PNIs showed
upper limb injuries to be the most common, with
the ulnar nerve most often injured
(Kouyoumdjian 2006). Again, these injuries
were most often due to motor vehicle accidents,
particularly motorcycle crashes. In addition to
affecting civilians, PNIs can commonly occur in
a combative setting, where nerve injuries are

commonly caused by shrapnel or blast injury
from bombs or improvised explosive devices
(Maricevic and Erceg 1997).

After suffering from a peripheral nerve injury,
a patient’s prognosis depends on the type of func-
tional injury they have experienced. At the ana-
tomic level, nerve injury can be divided into
neurapraxia, axonotmesis, and neurotmesis
(Seddon et al. 1943). In neurapraxia, the nerve
remains intact but can no longer transmit
impulses. Neurapraxia is typically due to segmen-
tal demyelination and is the mildest form of nerve
injury. Distally, the nerve conducts normally but
there is impaired conduction across the lesion due
to the focal demyelination. Axons are typically
anatomically intact but nonfunctional, which
renders a body part paralyzed. There is sensory
and motor loss due to demyelination but no
Wallerian degeneration occurs. Clinically, muscle
atrophy does not develop. Recovery time is typi-
cally rapid and ranges from hours to a few
months. Full function is usually expected without
any sort of intervention by approximately
12 weeks (Campbell 2008).

In axonotmesis, the axon is damaged but most
of the surrounding connective tissue is intact.
Wallerian degeneration does occur, a process
which will be covered in Sect. 2. Axonotmesis
is usually seen in stretch or crush injuries. Recov-
ery and reinnervation depends upon the distance
from nerve to muscle and the degree of internal
axonal disorganization.

In neurotmesis, the nerve trunk is severed and
most of the connective tissue is lost or distorted.
Neurotmesis occurs with massive trauma, nerve
avulsions, and sharp, cutting injury. There is loss
of nerve trunk continuity and reinnervation typi-
cally does not occur. Without surgical interven-
tion, the prognosis is poor. Recovery from this
sort of trauma when there is significant axon loss
and stromal disruption is usually prolonged and
incomplete (Sunderland and Williams 1992).

When suffering from neurotmesis or
axonotmesis, injuries can cause total or partial
loss of motor, sensory, or even autonomic func-
tion. When left to repair itself, the peripheral
nervous system can attempt one of three
mechanisms: reinnervation by axonal
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regeneration, reinnervation by collateral
branching of uninjured surrounding axons, or
remodeling of the nervous system circuitry; how-
ever, left to only these mechanisms, a full func-
tional recovery is often not achieved (Sunderland
and Williams 1992; Drake 1996; Lundborg
2000). Failure can be attributed to three problems:
First, axons stop elongating and result in neuroma
formation. Second, axon sprouts innervate more
than one peripheral nerve branch and cause weak
or contradicting muscle movements. Third,
regeneration into the wrong nerve can occur if,
for example, a sensory axon grows into a motor
nerve or vice versa (Klimaschewski et al. 2013).

It is important to understand that while the
peripheral nervous system retains the ability to
reconstruct itself, only 60% of patients suffering
from a PNI regain useful function
(Klimaschewski et al. 2013). The occurrence of
postparalytic syndromes such as paresis,
synkinesis, and dysreflexia are common
(Kerrebijn and Freeman 1998). Additionally,
patients can experience chronic neuropathic
pain, health care issues, and long periods of sick
leave (Jaquet et al. 2001; Rosberg et al. 2005).

Due to the high incidence of unsatisfactory
return of function, further improvements in
peripheral nerve repair and regeneration have
become an area of much interest. Today, PNIs
have become the focus of new innovations which
revolve around many different scientific
disciplines. The following section will focus on
the two most common areas of clinical treatment:
surgery and transplantation. Other disciplines
involved such as biomaterial sciences, physical
therapy, and pharmacotherapy are outside of the
realm of this review, though may be mentioned in
the context of important interdisciplinary work.

2.1 Current Treatment Options
for PNIs

The most common medical treatments rely
largely on reconstructive microsurgery. Although
nerve reconstruction has been attempted for
centuries, techniques have improved drastically
within the past few decades (Siemionow and

Brzezicki 2009). Procedural options include
nerve autografts, neurolysis, nerve transfers, and
direct suture (end to end neurorrhaphy) (Geuna
et al. 2013). The nerve transfer method has seen
widespread application in recent years and is used
in severe nerve trauma, including brachial plexus
avulsions (Tung andMackinnon 2010; Zhang and
Gu 2011).

Although advances in microsurgical
techniques have plateaued, a few interesting tech-
nological advances have occurred within the past
10 years. For example, the use of glue rather than
sutures has been tested in animal models, and
results indicate that glue may be equal or even
superior to epi- and perineural microsuturing
(Whitlock et al. 2010, Sameem et al. 2011).
Another area of advancement is robotics assisted
surgery. Results from experimental studies are
encouraging, and robot technologies may be
favored by neurosurgeons in the future (Latif
et al. 2008; Nectoux et al. 2009).

Microsurgical treatment alone has relatively
low success rates, which is why transplantation
is drawing the most interest in regenerative medi-
cine (Geuna et al. 2013). The current “gold stan-
dard” includes transplantation of an autologous
nerve segment which has been harvested from
another healthy, less important nerve such as the
sural nerve. The procedure was first developed by
Millesi (1981) and later deemed the standard of
care (Siemionow and Brzezicki 2009). Although
autografts are the “gold standard,” the harvesting
of another healthy nerve represents obvious
limitations, which is why veins are sometimes
used as an alternative (Chiu and Strauch 1990).
Although vein autografts may lead to satisfactory
return of sensation, comparable to nerve grafting,
they are only useful for short distances as longer
veins tend to collapse (Chiu 1999).

In addition to nerve and vein grafts, skeletal
muscle used as guiding fibers has also been tested
with relative success. Various studies have shown
that muscle conduits may potentially bridge
peripheral nerve defects (Meek and Coert 2002)
and that grafts may even gain some functional
recovery (Pereira et al. 1991, 1996; Rath 2002).

Apart from tissue transplants, cell transplants
are a large area of research. MSCs and glial cells,
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specifically, SCs, are commonly studied for trans-
plantation. The purpose for use and clinical stud-
ies of each cell type will be further discussed in
Sects. 4, 5 and 6. The following section will
explain the process of nerve breakdown and
regeneration following a traumatic nerve injury
and the essential role that SCs play.

3 Wallerian Degeneration

After damage to a peripheral nerve, a complex
system of molecular and cellular events take place
for nerve regeneration to begin. In 1850, August
Waller first described Wallerian degeneration, a
process characterized by degeneration in the dis-
tal nerve stump, with elongation and regeneration
in the proximal nerve stump (Stoll et al. 1989,
2002).

Soon after a PNI, SCs in the distal nerve rap-
idly initiate detachment of their myelin sheaths
(Guertin et al. 2005). The surrounding myelin and
axonal tissue begin to break down. Within hours
of injury, histological changes have occurred as
neurotubules and neurofilaments become
disarrayed (Burnett and Zager 2004). Within
24 h of injury, SCs are stimulated to proliferate
by proteins released from the disintegrating axons
(Karanth et al. 2006), and later, by macrophage-
derived cytokines. The SCs exhibit an increased
mitotic rate, nuclear and cytoplasmic enlarge-
ment, and rapid division to form daughter cells
(Burnett and Zager 2004). These daughter cells
produce cytokines and trophic factors which
assist in degeneration and repair (Gaudet et al.
2011). During this time, local macrophages (Mast
cells) interact with the SCs to remove degenerated
axonal and myelin debris. SCs and macrophages
work together to phagocytose and clear the site of
injury. By 36–48 h, myelin disintegration is quite
advanced (Burnett and Zager 2004). The elimina-
tion of myelin sheaths is important as it clears
certain growth inhibitory factors such as myelin-
associated glycoproteins (Huang et al. 2005).
While the distal nerve is degenerating, the nerve
cell body is undergoing a process known as

chromatolysis. Within 6 h of injury, the nucleus
of the nerve cell body migrates to the periphery of
the soma and the rough endoplasmic reticulum
(Nissl bodies) breaks up and disperses
(Lieberman 1971; Kreutzberg 1995). In this
state, the neuron increases RNA synthesis and
cellular protein content, and reduces DNA repres-
sion, in order to increase synthesis of growth-
associated proteins and membrane structural
components (Watson 1974).

Within 2 days, Schwann cell daughter cells
have undergone rearrangement into a structure
known as Bünger bands (Tetzlaff 1982). These
bands act as a guidance skeleton for regenerating
axon sprouts. Within a week, factors produced by
SCs and injured axons leads to recruitment of
hematogenous monocytes (Tofaris et al. 2002).
The new macrophages continue to clear debris
and produce factors which facilitate SC migration
(Gaudet et al. 2011).

After weeks to months, axon sprouts begin to
form, each with a specialized growth cone at the
tip containing multiple filopodia. These filopodia
adhere to the basal lamina of the Schwann cells
within the Bünger bands, which serve as a guide
toward potential new targets of innervation. Both
physical and chemotactic guidance from the SCs
are important in directing advancement of the
growth cone (Gundersen and Barrett 1980;
Dodd and Jessell 1988). Individual filopodia
respond to environmental alterations in calcium
(Lin and Forscher 1993) and different filopodia
can react independently via local changes to actin
metabolism (Kerrebijn and Freeman 1998). Once
contacted by regenerative sprouts, SCs
re-differentiate, express myelin mRNAs, and
begin the process of remyelinating and
ensheathing newly regenerated axons (Campbell
2008). If axonal sprouts are able to cross the
injury site and contact a new peripheral target,
then reinnervation may occur. The regeneration
and repair phase may last for many months and is
not always successful. Regenerating axons may
enter surrounding tissue instead of the target
organ or may enter the incorrect endoneurial
tube, failing to reinnervate the correct target.
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After nerve injury and repair, the conduction
velocity of regenerated axons, their diameter,
and their excitability remain below previous
levels for a considerable period of time (Fields
and Ellisman 1986).

In addition to the complex cellular response,
PNIs induce the release of many neurotrophic
factors and cytokines to create a favorable envi-
ronment for axon regrowth. These polypeptides
assure that the regenerating axons are growing
towards the distal nerve stump and stimulate axo-
nal sprouting. The following section will review
the role of neuronal growth factors, particularly
brain-derived neurotrophic factor, during
Wallerian degeneration.

4 The Importance
of Neurotrophic Factors During
Peripheral Nerve Regeneration

In response to a peripheral nerve injury, many
neurotrophic factors are upregulated. These
molecules may be classified either as
neurotrophic factors or neuropoietic cytokines
(Lewin and Barde 1996). This review will discuss
neurotrophic factors and will focus primarily on
the role of brain-derived neurotrophic factor
(BDNF).

Neurotrophic factors are vital to healthy neu-
ron function for the course of the cell’s life. They
are important for neurite outgrowth during
embryonic development, maintenance of adult
neurons, and regeneration following a PNI
(Klimaschewski et al. 2013). The specific
neurotrophins involved in regeneration include
nerve growth factor (NGF), BDNF, and
neurotrophins 3 (NT-3), 4, and 5 (NT-4/5). Sev-
eral growth factors are also released, including
glial cell line-derived neurotrophic factor
(GDNF), fibroblast growth factors, insulin-like
growth factors, neuregulins, and neuropeptides
(galanin, vasoactive intestinal peptide, etc.)
(Boyd and Gordon 2003; Gordon 2009). All
neurotrophic factors are believed to be
synthesized in target organs and then delivered
via retrograde transport to the neuronal soma
(Purves 1986; Oppenheim 1991). The

neurotrophin members (NGF, BDNF, NT-3/4/5)
share a common low-affinity receptor p75 (Chao
et al. 1986) to which they all bind equally. It is
thought that p75 interacts with the tropomyosin
receptor kinases (Trk) to assist in transport of
neurotrophins within the neuronal terminals
(Gargano et al. 1997). Each neurotrophin has a
specific high affinity receptor: TrkA for NGF,
TrkB is specific for BDNF, and NT-4/5, and
NT-3 bind to TrkC (Terenghi 1999). Every Trk
receptor is located in a discreet population of
primary sensory neurons (McMahon et al. 1994;
Wright and Snider 1995) and TrkB and C are also
present in spinal motoneurons (Ernfors et al.
1993). The following section will focus on the
TrkB receptor and the various roles that BDNF
plays in neuronal regeneration.

4.1 Promotion of Neuron Survival

Activation of each neurotrophin is dependent on
the type of neuronal damage (motor, sensory, or
autonomic). BDNF, in particular, is upregulated
in motor neurons, as is its receptor, TrkB, for 48 h
following an axotomy lesion (Kobayashi et al.
1996). During this time, BDNF acts as a
neuroprotectant. It has been shown to rescue
motor neurons from natural cell death, as well as
prevent their death following axotomy
(Oppenheim et al. 1992; Yan et al. 1992, 1994).
This ability of BDNF to rescue motor neurons is
carried out through its TrkB receptor. Once
BDNF binds to TrkB, several signal transduction
cascades are activated. These include insulin
receptor substrate-1, Ras, protein kinase C, and
many other intermediate proteins. BDNF signal-
ing pathways activate one or more transcription
factors (cAMP-response-element-binding protein
(CREB), and CREB-binding protein) which reg-
ulate the expression of genes encoding proteins
that are involved in neural plasticity, stress resis-
tance, and cell survival (Bonni et al. 1999; Brunet
et al. 1999; Bathina and Das 2015).

Indeed, external application of BDNF follow-
ing axotomy or ventral root avulsion reduces
motoneuron death (Yan et al. 1992; Novikov
et al. 1995) and continuous dose-dependent
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administration of BDNF shows long-term sur-
vival effects on adult motoneurons after sciatic
nerve avulsion (Kishino et al. 1997). Addition-
ally, a few studies found that application of NGF,
BDNF, and NT-3 can reverse detrimental changes
induced by axotomy in adult and neonatal sen-
sory neurons (Verge et al. 1992, 1995; Eriksson
et al. 1994).

4.2 Remyelination

After Wallerian degeneration occurs, the next
important step in peripheral nerve recovery is
remyelination, in which BDNF plays an impor-
tant role. Several studies have added exogenous
BDNF to a peripheral nerve injury model and
examined the effects on myelin protein synthesis
and myelin sheath thickness. The first study to
examine this phenomenon observed that when
applied in combination with ciliary neurotrophic
factor (CNTF), exogenous BDNF increases mye-
lin thickness of regenerating sciatic nerves
(Lewin et al. 1997). This work was continued by
a study (Chan et al. 2001) that used a SC and
dorsal root ganglion (DRG) cell co-culture model,
as well as a sciatic nerve in vivo model, to test the
effects of exogenous BDNF addition following an
injury. Immediately following injury, BDNF
caused an enhancement in the expression of mye-
lin protein MAG and P0. This effect was seen in
both the co-culture and sciatic nerve in vivo
model. Furthermore, when endogenous BDNF
levels were reduced in the co-culture via addition
of the receptor scavenger TrkB, myelin protein
synthesis was inhibited as was the formation of
myelin, verifying that BDNF is indeed beneficial
during remyelination.

Several studies found that BDNF increases
myelination during peripheral nerve regeneration.
With the use of electron microscopy, Chan et al.
demonstrated that the addition of BDNF
increased the number of myelinating axons and
the thickness of the myelin sheath in vivo (Chan
et al. 2001). A similar study (Zheng et al. 2016)
created a mouse sciatic nerve injury model and
administered exogenous BDNF injections to
examine the effects on myelin sheaths in the distal

nerve stump. Their results showed that mice
receiving BDNF administration had an increased
number of myelinated fibers and that myelin
sheaths were thicker when compared to control
mice. Additionally, mice receiving BDNF
blocking antibodies showed significant myelin
deterioration in the distal sheath. Furthermore, a
study by Zhang et al. 2000, demonstrated that
treatment with BDNF antibody reduced the num-
ber and density of myelinated axons by 83%, and
found that sensory reinnervation was impaired
(Zheng and Kuffler 2000). Combined, these
results demonstrate that BDNF is critical for pre-
paring nerves for remyelination by increasing
myelin proteins such as P0 and MAG, as well as
protecting the distal nerve portion from atrophy
by promoting remyelination.

4.3 Axonal Sprouting, Regeneration,
and Functional Recovery

In addition to examining neuronal survival,
regeneration, and re-myelination, several studies
have looked at BDNF’s role in axonal sprouting.
It has been shown that following severe trauma
such as ventral root avulsion, exogenous BDNF
significantly increases axonal sprouting (Gordon
2009). In support of Gordon’s findings, another
study found that application of BDNF blocking
antibodies on a transected facial nerve trunk sig-
nificantly reduced axon sprouting up to 18%
(Streppel et al. 2002). Axonal sprouting may
increase in part, due to BDNF’s role as a guid-
ance molecule for the growth cone at the end of
each axonal sprout. Studies in Xenopus spinal
neuron models show that BDNF and NT-3 can
attract or repulse growth cones based on concen-
tration gradients (Song and Poo 1999; Zheng and
Kuffler 2000).

Although BDNF may increase axonal
sprouting, the data is controversial in regard to
increased functional return upon application of
BDNF. For example, using the sciatic function
index (Bredesen and Rabizadeh 1997), gait anal-
ysis (Shirley et al. 1996), and force recovery,
several studies failed to demonstrate a return to
function with exogenous BDNF. One study even
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showed that local long-term continuous infusion
of low dose BDNF had no effect on tibial
motoneurons after immediate microsurgical
repair (Boyd and Gordon 2002).

On the other hand, a more recent study found
that exogenous BDNF administration accelerates
the recovery process in a mouse sciatic nerve
injury model, while BDNF antibody treatment
delayed it (Zheng et al. 2016). After the crush
injury, control mice took 12 days to show initial
improvement using the toe spreading score of gait
analysis, and 24 days for a full recovery. Mice
receiving the BDNF treatment required only
7 and 18 days, respectively. Conversely, BDNF
antibody treatment delayed the processes to
17 and 30 days.

Another study created control and heterozy-
gote BDNF knockout mice that received a left
sciatic nerve crush (Takemura et al. 2012).
Nerve function was evaluated using a rotarod
test, sciatic function index, and motor nerve con-
duction velocity simultaneously with histological
nerve analysis. Impaired nerve repair was
observed in the BDNF heterozygote mice,
which was consistent with attenuated function of
BDNF. In contrast, the BDNF homozygote mice
showed complete functional and histological
recovery. These observations support the view
that BDNF may play a pivotal role in functional
return following a peripheral nerve injury.

Unlike other neurotrophic factors, BDNF is
unique in that it regulates and maintains neuronal
function, and when given exogenously, it
counteracts degenerative changes in both sensory
and motor axons. Unlike NGF, BDNF supports
motoneuron survival in vitro, rescues from
naturally-induced apoptosis, and prevents in vivo
axotomy-induced cell death (Yin et al. 1998).
While there are benefits of exogenous BDNF
application to peripheral nerve lesion sites, its
abilities to increase functional return are still
controversial. Therefore, recent research has
focused on the adjunct use of BDNF in combina-
tion with other therapies such as stem cell ther-
apy, biomaterial conduits, pharmacotherapy, etc.
A more in-depth discussion of BDNF therapy
combined with stem cell use will be included in
Sects. 6 and 8.

5 Cell-Based Therapy
for Improving Nerve
Regeneration

As discussed above, the gold standard of periph-
eral nerve repair continues to be the use of nerve
grafting combined with direct nerve repair, and
occasionally, the use of conduits to bridge larger
nerve gaps. Recent research, however, has
focused on cell therapy as a promising therapeutic
approach for promoting nerve regeneration. Par-
ticularly, cell-based therapy has been widely stud-
ied as a delivery system for growth-promoting
molecules and as a graft replacement. This sec-
tion will focus briefly on the past use of glial cells
such as SCs and then discuss the promising
potential of bone marrow-derived MSCs.

5.1 Use of Schwann Cells

Schwann cells (SCs) play a key role in axonal
regeneration, making them an attractive cell type
to use for transplantation. During Wallerian
degeneration, SCs remove necrotic tissue and
myelin debris together with macrophages
(Geuna et al. 2009). In the regeneration phase,
SCs form the Bünger bands and increase synthe-
sis of surface cell adhesion molecules and base-
ment membrane proteins such as laminin and
fibronectin to physically guide axons to distal
innervation targets (Fu and Gordon 1997). SCs
also produce neurotrophic factors, cytokines, and
other compounds which promote neurite growth
(Funakoshi et al. 1993; Hall 2001). Experimental
evidence shows that addition of SCs to nerve
conduits in vitro support axonal outgrowth
(Schlosshauer et al. 2003), and improves the qual-
ity and rate of axon regeneration (Hadlock et al.
2000; Mosahebi et al. 2001; Goto et al. 2010).
SCs combined with a vein conduit have even
been used in bridging long nerve gaps (Strauch
et al. 2001; Zhang et al. 2002). The Miami Proj-
ect, a program for the investigation of brain and
spinal cord injury has used SCs in a phase I
clinical trial. Previous methods for SC culture
were adapted for the manufacture of clinical
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grade human SC products that meet FDA
standards (Bunge et al. 2017), and the autologous
transplant of SCs into individuals with spinal cord
injury was deemed safe and feasible with no
complications (Anderson et al. 2017).

Although SCs appear be an ideal source of cell
for regenerative therapy, there are several techni-
cal limitations. In order to obtain a source of
autologous SCs, another healthy nerve must be
sacrificed for harvesting, making donor site mor-
bidity an additional concern. Use of SCs is
thought by some to be impractical since the time
requirement for expanding autologous cells in
culture is lengthy (Moreno-Flores et al. 2006).
There is also a risk of fibroblast contamination
which would lead to unwanted scarring of the
nerve (Mosahebi et al. 2001). SCs require stimu-
lation by axons or specific growth factors that
mimic axonal signals in order to proliferate, and
do not proliferate in response to serum factor
unlike other cell types. All of these limitations
have led researchers to seek an alternative to SCs
for cell transplantation, and stem cells have been
posed as better candidates.

5.2 Mesenchymal Stem Cells

Stem cells are a distinct population of undifferen-
tiated cells which are characterized by potency,
the ability to differentiate into a wide variety of
specialized cell types, and the ability to undergo
numerous rounds of mitosis while remaining
undifferentiated. There are embryonic, induced,
fetal, and adult stem cells, of which this review
will focus on adult stem cells.

Of these different categories, adult stem cells
are thought to be the most limited in their potency
and are generally considered multipotent in
nature since their primary role is to repair dam-
aged tissue in which they are found (Oliveira et al.
2013). Unlike fetal and embryonic stem cells,
adult stem cells raise fewer ethical concerns as
they do not require human embryo destruction.
Additionally, adult stem cells have a lower risk of
tissue rejection as auto-transplantation is a possi-
bility, and the small risk of teratoma formation
that pluripotent embryonic or induced stem cells

presents is almost null with adult cells (Bjorklund
et al. 2002). Common sources of adult stem cells
include mesenchymal, hematopoietic, or umbili-
cal cord-derived. In particular, bone marrow-
derived stem cells are known as mesenchymal
stem cells and can differentiate into connective
tissue types such as chondrocytes, adipocytes,
myocytes, osteocytes, fibroblasts, and tenocytes
(Muraglia et al. 2000). There is also extensive
additional research to suggest that MSCs have
the ability to transdifferentiate into ectodermal
and endodermal lineages such as glial cells,
neurons, hepatocytes, etc (Fig. 1) (Woodbury
et al. 2000; Dezawa et al. 2001; Kim et al. 2002).

In addition to being a source for many cell
types, MSCs are easily accessible and have the
ability to rapidly divide under culture, allowing
them to meet the requirements of an in vitro cell
system. Additionally, MSCs are excellent
candidates for allogenic transplantation as they
are immune privileged cells and often do not
require the use of immune suppressive drugs
(Oliveira et al. 2013). Besides their high safety
and efficacy, MSCs release paracrine factors, sur-
vive and integrate into host tissue, and concen-
trate in injured tissues. (Keilhoff and Fansa 2011).

6 Mechanisms Behind Nerve
Regeneration Potential
of MSCs

Although MSCs are highly regarded for their
plasticity and ability to differentiate into many
cell types, there are other mechanisms by which
MSCs are thought to promote and support nerve
regeneration. Such mechanisms include
immunomodulation, transdifferentiation into
SCs, paracrine activity, genetic manipulations,
and mitochondrial transfer/cellular fusion
(Fig. 2).

6.1 Secretion of Neurotrophins

As discussed already, neurotrophins promote
neuronal survival, reverse the negative effects of
PNIs, and lead to SC proliferation and
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differentiation. MSCs can produce neurotrophic
substances for paracrine signaling, which is likely
one of the key ways that MSCs are thought to
help in regeneration. Gu et al. investigated DRG

explants and neurons co-cultured with MSCs and
showed enhanced neurite outgrowth and neuronal
cell survival due to the production of NGF,
CNTF, BDNF, and basic fibroblast growth factor

Fig. 1 Differentiation potential of multipotent bone
marrow-derived mesenchymal stem cells (MSCs). Mesen-
chymal stem cells are capable of differentiating into
mesodermal lineages including osteoblasts, chondrocytes,
adipocytes, myocytes, tenocytes and stromal fibroblasts. A
number of studies have also demonstrated that MSCs can

be transdifferentiated or reprogrammed into endodermal
and ectodermal lineages including, microglia, endothelial
cells, hepatocytes and neural cells (neural genesis into:
Schwann cells, neurons, astrocytes and oligodendrocytes).
(Illustration modified from Sandquist et al. 2016)
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(bFGF) by MSCs (Gu et al. 2010). In the culture
system, there was no direct contact between the
neurons/explants and MSCs, leading researchers
to believe that positive effects were due to the
release of soluble growth factors. Other studies
have found that DRG explants or adult neural
progenitor cells treated with MSC-conditioned
media also showed increased neurite outgrowth,
presumably due to the presence of released
growth factors in the media (Ribeiro-Resende
et al. 2009; Ye et al. 2016). In addition to their

direct paracrine effects, MSCs can induce SCs to
produce neurotrophic mediators as well. In
co-culture studies of rat SCs and MSCs, increased
survival and proliferation rates of SCs was noted
as well as high expression of mRNA and protein
levels for NGF, BDNF, and Trk/p75NTR receptors
(Wang et al. 2009). The same group also exam-
ined the effect of MSCs on SCs in a rat peripheral
nerve repair model, and showed that MSCs
increased the generation of SCs and promoted
SC-mediated neurotrophic functions. Thus,

Fig. 2 Mechanisms and strategies using MSCs to pro-
mote and support nerve regeneration. Abbreviations:
MSCs, mesenchymal stem cells; tMSCs, transdiffer-
entiated MSCs; DNA, deoxyribonucleic acid. (Illustration

prepared by S. Mientka, K. Moss, D. S. Sakaguchi,
Biological Pre/Medical Illustration (BPMI) program,
Iowa State University)
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MSCs are considered beneficial for regeneration
due to their production and secretion of
neurotrophic factors.

After in vitro co-culture studies, the next step
was to determine whether MSCs continued to
produce growth factors in vivo after transplanta-
tion, and whether these factors were biologically
active. Fortunately, this inquiry returned positive
results. Several studies were able to document
expression of GDNF, CNTF, FGF, and even
BDNF by MSCs in vivo, allowing for survival
and elongation of neuronal growth cones (Pereira
Lopes et al. 2006; Chen et al. 2007; Pan et al.
2007; Yang et al. 2011). A similar study (Ribeiro-
Resende et al. 2009) transplanted MSCs at a rat
sciatic nerve lesion and the results demonstrated
improved regeneration of motor and sensory
axons due to the production of growth factors.
Other studies incorporated conduits filled with
MSCs to test models of long sciatic nerve gaps
(Wang et al. 2011; Yang et al. 2011; Hu et al.
2013). For example, one group implanted a colla-
gen conduit filled with MSCs at a mouse sciatic
nerve transection lesion and saw enhanced axon
regeneration and remyelination (Pereira Lopes
et al. 2006). Additionally, high levels of NGF
and BDNF were detected, suggesting that MSCs
were expressing these neurotrophins in vivo.

Combined, these results demonstrate that
MSC-based therapy improves peripheral nerve
regeneration through direct secretion of
neurotrophic factors which may act locally as
well as on glial cells further away.

6.2 Immuno-modulatory Effects

One of the most interesting features of MSCs is
their ability to modulate the immune system
making it a popular candidate for transplant ther-
apy. When transplanted into tissues, MSCs
decrease tissue inflammation and can have
immunosuppressive effects by restraining T-cell
proliferation and inhibiting natural killer T cell
signaling (Di Nicola et al. 2002).

Additionally, MSCs promote anti-
inflammatory T helper 2 cells (Aggarwal and
Pittenger 2005). MSCs also suppress monocyte

differentiation into dendritic cells, thus decreas-
ing the amount of antigen presentation to T cells
(Jiang et al. 2005). In a spinal cord injury model,
MSC transplantation favored the development of
M2 macrophages and suppressed M1 activation
(Nakajima et al. 2012). M2 macrophages have
anti-inflammatory activity while the classic M1
phenotype has pro-inflammatory effects in dam-
aged tissue (Nakajima et al. 2012). The complex
mechanisms behind MSCs immunomodulatory
properties are still being uncovered, but they are
thought to be facilitated by cell-cell contact and
the secretion of soluble factors such as
indoleamine-pyrrole 2,3-dioxygenase (IDO) and
nitric oxide that are known to inhibit T-Cell pro-
liferation (Mazzoni et al. 2002; Terness et al.
2002; Wang et al. 2014). A recent review by
Gao et al. further details immunomodulatory
properties of MSCs (Gao et al. 2017). Though
exact mechanisms of MSC immunomodulation
are not fully understood, their ability to decrease
inflammation has been widely described,
supporting the therapeutic merits of stem cells.

6.3 Cellular Fusion

In addition to the various nerve regeneration
mechanisms discussed, a few studies have
documented the spontaneous transfer of
mitochondria from MSCs with a variety of other
cell types. MSCs can form tunneling nanotubes
through which mitochondria and nuclear DNA
can be transferred. Several studies have utilized
MSCs in acute pulmonary damage models to
demonstrate mitochondrial transfer from MSCs
to alveolar cells and airway epithelial cells
(Spees et al. 2006; Islam et al. 2012; Li et al.
2014). Mitochondrial transfer has also been
demonstrated between MSCs and
cardiomyocytes, causing increased proliferation
and, in Acquistapace’s study, reprogramming
towards a progenitor-like state (Plotnikov et al.
2008; Acquistapace et al. 2011; Vallabhaneni
et al. 2012). The majority of these studies
involved use of epithelial or muscle cells; how-
ever, one study found that bone marrow-derived
MSCs were able to fuse with neuronal cell types,
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including Purkinje cells (Weimann et al. 2003).
To date, there is no evidence of mitochondrial
transfer or MSC fusion with SCs, but this could
represent an alternative mechanism by which
MSCs support SC activity and regeneration.

7 Clinical Trials with MSCs
for Neurological Disorders

Autologous cell transplantation has been
investigated extensively as a therapeutic strategy
for neurological disorders. Extensive in vitro and
in vivo data suggest that MSCs secrete several
trophic factors, support neuritogenesis and
neurite growth, and promote survival and elonga-
tion of damaged peripheral nerves. An even larger
body of work exists demonstrating the benefits of
MSCs within the context of central nervous sys-
tem disorders and spinal cord trauma. Combined,
the data has proven the safety and efficacy of
MSCs and allowed their use in human clinical
trials – a key stepping stone to their common
use as a clinical therapy.

A large number of studies have reported the
use of MSCs in treatment of neurological disease
and trauma (Harrop et al. 2012). Clinical trials
include treatment of Multiple Sclerosis (23%),
Amyotrophic Lateral Sclerosis (14%),
Alzheimer’s disease (5%), Duchene muscular
dystrophy (3%), Parkinson’s Disease (3%) to
treatment of traumatic injury, with spinal cord
injury models having the largest number of trials
(29%) (Squillaro et al. 2016).

Fewer clinical trials have utilized MSCs within
a peripheral nerve context. One retrospective
study reports the use of bone marrow mononu-
clear cells (BMMCs) as a source of MSCs to treat
patients with a median or ulnar nerve severed by
knife or glass. Cells were collected from the
patient’s iliac crest and injected into a silicone
conduit used to bridge the nerve gap. Patients
implanted with the BMMC-filled conduits scored
higher for motor function, sensation, and effect of
pain on function than those who received empty
conduits (Braga-Silva et al. 2008). Though these
results are promising, the two groups of patients
(with and without BMMCs) were studied decades

apart; furthermore, it is unclear whether the
improvements were mediated specifically by
MSCs within the BMMC fraction. Nonetheless,
this study provides a basis for future clinical
trials.

Most clinical trials related to peripheral nerve
repair with MSCs focus on diabetic peripheral
neuropathy patients. For diabetic patients, MSCs
are an effective therapeutic agent due to secretion
of bFGF and vascular endothelial growth factor
(VEGF) (Shibata et al. 2008). Evidence suggests
that the effects are not mediated through differen-
tiation into neural cell types, but rather through
the secretion of these beneficial factors.
(Siniscalco et al. 2011). One clinical trial was
conducted using MSCs to treat patients with dia-
betic foot disease – a complication in which
hyperglycemia induces peripheral nerve damage.
Human umbilical cord blood-MSCs were injected
into the patient’s impaired limb resulting in obvi-
ous improvement 12 weeks after treatment. This
result was attributed to the MSC’s bFGF and
VEGF production and also to their immune cell
modulatory effects (Li et al. 2013). Current clini-
cal trials are in stage II and III and revolve around
change of nerve conduction velocities before and
after stem cell intravenous transfusion
(clinicaltrials.gov; NCT02387749). Results indi-
cate that autologous bone marrow stem cells have
increased bFGF and epidermal growth factor
(EGF) levels at time of transfusion. Patients with
MSC transfusion had greater sural nerve conduc-
tion velocities 90 days after treatment.

Other conditions with MSC-based clinical
trials involving the peripheral nervous system
include hemifacial spasm and burn wound
healing (clinicaltrials.gov; NCT02394873,
NCT03183622). One clinical trial in early phase
I aims to inject autologous adipose-derived MSCs
into patients with hemifacial spasm in hopes to
increase facial nerve function and evaluate
changes in facial nerve electrophysiology
(clinicaltrials.gov; NCT02853942). While
peripheral nerve regeneration is not the primary
focus of some of these studies, transplanted
MSCs and their secreted factors are likely to
facilitate the overall repair of damaged nerves.
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Unfortunately, there are no current clinical
trials examining the use of MSCs in traumatic
peripheral nerve damage, but important
pre-clinical studies are underway. Xue et al.
transplanted autologous bone marrow-MSCs
into a 60 mm-long canine sciatic nerve gap
using a tissue-engineered nerve graft (TENG)
with improved repair and regeneration (Xue
et al. 2012). The same group then moved on to
implanting the MSC-TENGs into a rhesus mon-
key median nerve gap. Animals with
MSC-TENG implants recovered motor function
comparable to autologous nerve grafted animals
and with greater recovery than the animals with
tissue-engineered scaffold alone. Transplanted
MSCs were found to express SC marker S100
and neurotrophic factors BDNF, CNTF and
bFGF. Thus, it is likely that the autologous
MSCs contribute to the peripheral nerve regener-
ation via cell replacement and secretion of bene-
ficial factors. Lastly, after extensive safety
evaluations, it was concluded that autologous
MSCs could safely be used in a primate
(Hu et al. 2013). Altogether, these studies provide
strong support for the future clinical use of MSCs
for traumatic peripheral nerve damage.

The data obtained from clinical trials, as well
as in vitro and in vivo studies shows that unaltered
MSCs offer many benefits for nerve regeneration,
mainly by secretion of neurotrophic factors, as
well as by support of SCs. However, MSCs may
hold even greater potential when transdiffer-
entiated into another cell type, such as Schwann
cells. The various benefits and methods of
transdifferentiated MSCs will be discussed
below.

8 Transdifferentiation

Bone mesenchymal stem cells were once thought
to be fairly restricted in their differentiation
patterns but more studies are demonstrating that
they are capable of versatility and greater plastic-
ity. In response to a variety of culture conditions,
specialized in vivo microenvironments and
genetic manipulations, MSCs can turn into differ-
ent phenotypes such as glial cells (Fig. 3). In

particular, turning MSCs into a SC-like pheno-
type is of high interest due to the beneficial effects
on nerve regeneration. MSCs can be transdiffer-
entiated with a variety of methods, including the
use of transplantation, co-cultures, small mole-
cule cues, genetic manipulation, or as most
recently described, through electric stimulation.
Each method will be discussed in greater detail
below.

8.1 Transdifferentiation via
Transplantation

During Wallerian degeneration and nerve regen-
eration, a wide variety of cytokines and growth
factors are released, creating a specialized micro-
environment with the capacity to greatly influ-
ence cell differentiation patterns. Although
controversial, these environmental signals have
been utilized to transdifferentiate MSCs in
response to injury or inflammation. Bone
marrow-derived MSCs injected at the site of a
rat sciatic nerve transection were capable of sur-
viving and migrating, as well as differentiating
into an SC-like phenotype, based on S100 immu-
noreactivity patterns (Cuevas et al. 2002). In this
study, it was presumed that MSC transdiffer-
entiation occurred in response to physiological
environmental cues, as no MSC medium changes
were made. Although transdifferentiation may
have occurred, the percentage of cells positive
for S100 was so low that this may not be a very
efficacious method. Another 2010 study
demonstrated similar results, with few numbers
of transplanted MSCs at an injury site converting
to an SC-like phenotype (Oliveira et al. 2010).

8.2 Transdifferentiation via
Co-culture

A more simplistic approach to changing a cell’s
microenvironment is to adjust its neighboring
interactions using co-culture methods. One study
showed that direct contact co-cultures of DRG
neurons and MSCs could cause a phenotypic
and morphological change in MSCs to resemble
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SCs (Yang et al. 2008). Researchers suggested
that the release of cytokines and other neuronal
molecules on the axonal surface may play a role
in the transdifferentiation process. However, this
method alone did not allow transdifferentiated
MSCs (tMSCs) to form compact myelin,
suggesting that further molecular cues are neces-
sary for a complete transdifferentiation process.
Another study looked at co-culture of MSCs with
olfactory ensheathing cells and saw a dramatic
increase in the number of MSCs resembling a
neural morphology which were immunoreactive
to various neural markers such as GFAP, p75NTR,
and MAP 2 (Ni et al. 2010). These studies
demonstrated that co-culturing methods may be
sufficient to begin the transdifferentiation proto-
col, but additional small molecules may be
needed to affect a functional change in tMSCs.

8.3 Use of Small Molecules in Media

Although transdifferentiation via transplantation
and co-culture has shown some success, this
method is not as successful or efficient as the
addition of small molecules to culture medium.
These specific molecules can trigger cell-
signaling pathways and rapidly modulate cell
phenotype. In 2001, Dezawa et al., discovered a
cell medium protocol for transdifferentiation of
MSCs into an SC-like morphology requiring
incubation with beta-mercaptoethanol, then
retinoic acid for 3 days, followed by forskolin,
bFGF, platelet-derived growth factor (PDGF) and
heregulin (Dezawa et al. 2001). After induction,
these cells physically resembled SCs and
expressed several SC markers including p75,
S100, GFAP and O4. Bierlein De la Rosa et al.

Fig. 3 Methods for MSC
transdifferentiation. MSCs
can be transdifferentiated
with a variety of methods,
including the use of
transplantation (a),
co-cultures (b), small
molecule cues (c), genetic
manipulation (d), or
through electric stimulation
(e). (Illustration prepared by
S. Mientka, K. Moss, D. S.
Sakaguchi, Biological
Pre/Medical Illustration
(BPMI) program, Iowa
State University; ((a)
adapted from Sakaguchi
2017, (e) adapted from Das
et al. 2017)
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used Dezawa et al’s protocol to transdifferentiate
MSCs which had been genetically modified to
hypersecrete BDNF. The cells were morphologi-
cally similar to SCs and expressed SC markers
S100 and p75 even after 20 days in transdiffer-
entiation media. Additionally, secreted BDNF
levels increased after 20 days and the BDNF
secreting MSCs actually showed more SC
markers after 8 days compared to the control,
green fluorescent protein (GFP) expressing
MSCs, indicating the BDNF itself may facilitate
faster conversion to SC phenotype (De la Rosa
et al. 2017).

Biomaterial-based scaffolds are also being
investigated as a means to augment the transdif-
ferentiation of MSCs into Schwann-like cells. For
example, gelatin-based 3D conduits with differ-
ent microstructures (nanofibrous, macroporous
and ladder-like) have been fabricated for periph-
eral nerve regeneration applications (Uz et al.
2017). Their results indicated that 3D
macroporous and ladder-like 3D microstructures
enhanced MSC attachment, proliferation and
spreading, creating interconnected cellular
networks. This type of approach investigates the
effects of 3D conduit microstructure and mechan-
ical properties and may provide a better under-
standing of how material-cell interfaces can
influence the transdifferentiation process.

Recently, the first comparative proteomic eval-
uation of MSC transdifferentiation was
undertaken to uncover the protein contents that
affects SC formulation (Sharma et al. 2017). This
study identified a number of MSC proteins that
were significantly regulated during SC transdif-
ferentiation. Many of these proteins support axo-
nal guidance, myelination, neural development
and differentiation. These results provide clues
to unraveling the molecular events that underlie
the transdifferentiation process and may ulti-
mately serve to facilitate nerve regeneration and
repair.

Other studies have utilized compounds such as
valproic acid and histone deacetylase inhibitors,
along with neural inducing signaling molecules to
create mature neural cells (Sandquist et al. 2016).
A 2014 study used a two-step method to first
create neural precursor cells, and then induced

SCs from human foreskin fibroblasts (Thoma
et al. 2014). These cells may potentially be used
to treat peripheral nerve injuries in the future.

8.4 Genetic Modification
for Transdifferentiation

A newer transdifferentiation method can now
convert adult differentiated cells to a specific ter-
minal cell type without going through
pluripotency. This methodology is based on the
idea of ‘master control genes’ in somatic cells
which can be overexpressed to induce a cascade
of cell fate changes (Lewis 1992; Nizzardo et al.
2013; Prasad et al. 2016). The earliest evidence of
this possibility was provided by Weintraub et al,
who confirmed conversion of fibroblasts to myo-
genic lineage by transfection of a master regu-
latory gene (MyoD) (Weintraub et al. 1991).
Later, Pax6 was recognized as a master gene
responsible for neuronal differentiation.
Vierbuchen et al. identified the combination of
Asc11, Brn2 and Myt11 as able to convert mouse
embryonic fibroblasts into mature neurons
(Vierbuchen et al. 2010). Cells transdifferentiated
in this manner exhibited similar functionality to
cells differentiated from induced pluripotent stem
cells (iPSCs) or wild-type analogs and show no
tumorigenicity when transplanted in vivo (López-
León et al. 2017). Unfortunately, this method of
generating target cells through transdiffer-
entiation relies on viral expression of exogenous
transcription factors which makes demonstration
of safety for clinical trials difficult; however, the
method holds promise for direct cellular
conversion.

8.5 Electrical Transdifferentiation

A recent study by Das et al. 2017 described a
novel procedure for transdifferentiation of MSCs
through the application of electrical stimuli via
graphene-based electrodes (Fig. 4) (Das et al.
2017; Uz et al. 2018). Rat MSCs were seeded
on a graphene interdigital electrode and subjected
to either electrical or chemical
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transdifferentiation, then expression of cell sur-
face markers such as p75, S100, and S100β were
analyzed with immunocytochemistry after
15 days. The results for electrical tMSCs were
compelling, showing the highest degree of pref-
erential immunolabeling, with more than 85% of
cells demonstrating labeling for SC
markers vs. 75% for chemically transdiffer-
entiated MSCs. Additionally, electrically
stimulated cells secreted significantly higher
levels of NGF as compared to their chemically
transdifferentiated counter-parts. Although not
statistically significant, higher levels of BDNF
and GDNF were also noted. While other reports
have shown that electrical stimuli can increase
growth factor level production in SCs (Huang
et al. 2010; Koppes et al. 2011, 2014), this
paper is the first to describe such effects in
transdifferentiated MSCs. Furthermore, Das
et al., demonstrated that electrical stimuli alone
can transdifferentiate MSCs to a SC-like pheno-
type without the need for chemical growth

factors, thus saving researchers time, labor, and
money, while providing a novel platform for an
artificial neural network circuit.

8.6 Beneficial Properties of tMSCs

Once methods of transdifferentiation had been
discovered, scientists moved on to in vivo studies
to determine the effect of tMSCs on models of
peripheral nerve injury. After Dezawa et al.
performed their in vitro cell characterization,
tMSCs were transplanted into the cut end of a
rat sciatic nerve. Results showed that the
transplanted cells remained in a Schwann-cell
like state and were capable of forming myelin
sheaths, as well as supporting nerve fiber
regrowth (Keilhoff and Fansa 2011). Addition-
ally, Dezawa and collaborators also showed that
tMSCs co-localized with the myelin-associated
glycoprotein antibody signal, suggesting that
MSCs may be able to differentiate into

Fig. 4 Fabrication and MSC differentiation protocol on
graphene interdigitated electrodes (IDEs). (a) The inkjet
printing of the graphene IDE on a flexible and bendable
polyimide substrate (Fujifilm Dimatix Materials Printer is
shown in the background). (b) An optical image of the
graphene IDE circuit with 400 μm finger width, pitch of
250 μm, and printed graphene thickness of 5–7 μm. (c)
Schematic diagram of the pulsed-laser processing setup

used for postprint annealing. (d) Electrical sheet resistance
measurements of the printed graphene IDE irradiated with
distinct laser energies. (e) Schematic diagrams dis-playing
the cell culture medium and application of sole-electrical
stimulation to the IDE circuit while (f) displays schematic
magnified views of MSCs and postelectrical stimulated
differentiated SCs. (Adapted from Das et al. 2017)
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myelinating cells. After this initial trial, many
labs followed suite by implanting transdiffer-
entiated MSCs into a variety of peripheral nerve
and spinal cord injury models. In 2004, Mimura
et al. supported Dezawa’s work by showing that
human and rodent MSC-derived SCs expressed
myelin-related markers and contributed to
re-myelination when transplanted into a rat sciatic
nerve injury (Mimura et al. 2004). Using a similar
transdifferentiation protocol, Keilhoff et al.
(2006) also demonstrated that transplanted
tMSCs within a muscle conduit promoted
remyelination, and electron microscopy showed
that single tMSCs were even capable of wrapping
more than one axon, similar to an oligodendro-
cyte (Keilhoff et al. 2006).

In addition to providing functional support,
transdifferentiated MSCs are capable of produc-
ing trophic factors at even higher levels than SCs.
When transdifferentiated MSCs were placed in a
DRG co-culture system without direct contact,
tMSCs showed upregulation of BDNF and
NGF. Additionally, neurite outgrowth was
observed even in the presence of NGF and
BDNF blocking antibodies, suggesting that
other trophic cytokines or factors may be pro-
duced by tMSCs (Mahay et al. 2008). Another
interesting study used a combination of two dif-
ferent mediums to transdifferentiate MSCs,
facilitating production of large amounts of
BDNF and GDNF. Interestingly, cells resembled
an astrocyte morphology and expressed certain
astrocyte markers. When transplanted, the cells
improved muscle reinnervation and restored
motor function in a rat sciatic nerve crush model
(Dadon-Nachum et al. 2011). Combined, these
results support the idea that MSCs display func-
tional characteristics similar to SCs by secreting
bioactive neurotrophic factors.

Soon after the introduction of tMSC
transplants, scientists began to question the dura-
tion of a SC-like state once cells were placed in an
in vivo environment. Shimizu et al. transplanted
MSC Schwann-like cells within a transpermeable
tube into a rat sciatic nerve gap (Fig. 5) (Shimizu
et al. 2007). After 3 weeks, tMSCs continued to
express SC markers such as p75, GFAP and
increased S100 expression. Most importantly,

the MSCs expressed myelin-associated markers
such as MAG and myelin basic protein (MBP)
even after 3 weeks in vivo, which the authors
contend supports the premise that MSCs may
retain SC-like characteristics even after transplan-
tation. It is important to note however, that
remeylination was not seen via immunohisto-
chemistry or electron microscopy, as in other
studies. A different study by Ishikawa et al.
2009 transplanted MSC-derived SCs within
chitosan gel sponges and found that cells were
able to form myelin sheaths 1 month after trans-
plant (Ishikawa et al. 2009). The mean diameter
of myelinated fibers increased continuously, even
out to 4 months post-transplant. This study, along
with the work by Dezawa et al. 2001,
demonstrates that rat tMSCs may contribute to
remyelination after transplantation into an injured
PNS model. Similar results have been found in
spinal cord injury models (Someya et al. 2008;
Wakao et al. 2010; Kamada et al. 2011),
indicating that MSC-derived SCs are effective
for both PNS and CNS regeneration. Thus,
MSCs are capable of expressing SC biomarkers,
may express myelin markers, and even physically
form myelin sheaths. Moreover, these effects may
last well past the time that MSCs were last
exposed to transdifferentiation media, suggesting
that the acquired SC-like state is at least semi-
permanent and allows cells to persist well into the
acute phase of Wallerian degeneration.

Unfortunately, there have never been clinical
trials involving the use of chemically transdiffer-
entiated MSCs for the nervous system. However,
a non-human primate study has been completed as
an important pre-clinical step. Wakao et al. 2010,
used a monkeymodel and followed subjects out to
a year post transplant (Wakao et al. 2010). MSCs
were chemically induced to resemble SCs and
cell marker expression patterns were confirmed
with both immunocytochemistry and reverse
transcription-PCR. Cells were transplanted for
1 year in a median nerve transection model. Dur-
ing this year, no major health abnormalities were
observed in the monkeys. Immunohistochemistry
with Ki-67 revealed no signs of massive prolifera-
tion and the 18F-FDG-PET scan, which detects
neoplastic cells, demonstrated no abnormalities.
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Furthermore, monkeys regained function, and
electrophysiology with histology revealed resto-
ration of the severed nerve. This study is particu-
larly important because it demonstrated not only
the efficacy of transdifferentiation, but also the
safety of long-term implantation of tMSCs in
nonhuman primates.

9 Genetically Modified MSCs

The literature has aptly demonstrated that undif-
ferentiated MSCs can produce neurotrophic
factors in vitro as well as in vivo and that the
process of transdifferentiation can even further
increase production levels. Only in recent years
have researchers begun to investigate the contin-
uous production of these proteins via functional
gene insertion. As one of their novel features,

MSCs are suitable for transduction and expres-
sion of exogenous genes, making them a good
candidate system for genetic engineering. The
most widely used systems are now either lentivi-
rus or retrovirus-based. In regards to nervous
system disorders, MSC lines have been created
to over express a wide variety of neurotrophic
factors such as GDNF, NGF, and BDNF (Wyse
et al. 2014), as well as other growth factors.
Pre-clinical studies by Sharma et al. 2015,
demonstrated that MSCs genetically modified
for production and secretion of BDNF, GDNF
and even a hybrid MSC line hyper-secreting
both BDNF and GDNF, had similar viability
and proliferation rates when compared to the
non-genetically modified original MSCs (Sharma
et al. 2015). One 2008 study by Bauer et al., went
so far as to develop an in depth biosafety model to
specifically assess the risk of retro- and lentiviral

Fig. 5 Transdifferentiated MSCs bridge 10 mm nerve
gap. Transected rat sciatic nerve gap bridged with graft
containing MSCs transdifferentiated into SCs
(M-Schwann cells, (a) and undifferentiated MSCs (b)
3 weeks after transplantation. Newly formed tissue

indicated by arrowheads. Nerve fibers stained with
neurofilament (red) for M-Schwann cell (c) and MSC (d)
groups. Scale bar ¼ 100 μm. (Figure adapted from
Shimizu et al. 2007)
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vectors (Bauer et al. 2008). Human hematopoietic
stem cells and MSCs were transduced with
Moloney murine leukemia virus and transplanted
into 481 immunodeficient mice. There was no
detectable evidence of insertional mutagenesis
leading to human leukemias or solid tumors dur-
ing the 18 months animals were studied. Addi-
tionally, no vector-associated adverse events were
observed and in 117 serum samples analyzed,
there was no detectable viral DNA. These
findings indicate that virally transduced MSCs
are stable and may behave biologically like the
wild type MSC population, making them suitable
for in vivo study and use in a variety of disease
and injury models. Genetically modified MSCs
have been used in studies ranging from the treat-
ment of neurodegenerative disorders, including
ischemic injury, retinal degeneration, spinal cord
injuries and peripheral nerve transections. Studies
in each of these areas will be discussed below.

9.1 Use of Genetically Modified
MSCs in Neurodegenerative
Disorders

9.1.1 Parkinson’s Disease
Use of GDNF was first described in 1993 as a
potential treatment for Parkinson’s disease
because of its ability to increase dopamine uptake
and aid in the survival of embryonic midbrain
dopaminergic neurons (Lin et al. 1993). With
the challenge of administering GDNF infusions,
cell-based strategies to deliver GDNF have been
receiving attention. In one study, MSCs trans-
duced with a GDNF retrovirus vector increased
dopaminergic neuron sprouting (Moloney et al.
2010). A similar study found that injections of
GDNF MSCs given 1 week before a lactacystin
lesion of the medial forebrain also significantly
increased dopamine levels (Wu et al. 2010). Fur-
thermore, Ren et al. (2013) transplanted GDNF
MSCs into the brain of non-human primates and
saw increased dopamine levels and improved
contralateral limb function (Ren et al. 2013). Pre-
clinical studies provide evidence that GDNF
MSCs produce high levels of a functional trophic
factor, which, with further safety and efficacy

data, could be used in clinical trials as adjunct
treatment for Parkinson’s disease.

9.1.2 Alzheimer’s Disease
Treatment options for Alzheimer’s disease are
limited and focus on symptoms related to neuro-
transmitter systems, rather than targeting the
underlying pathologies. Given the prevalence of
the disease and lack of treatments, new strategies
are being developed which focus around the use
of NGF. Autologous fibroblasts engineered to
express NGF were transplanted in eight patients
with Alzheimer’s. Patients saw an improvement
of Mini-Mental Status Examination scores and a
reduced decline in cognitive scores (Ren et al.
2013). A phase II clinical trial is still open for
this method (Wyse et al. 2014). MSCs have not
directly been used in human clinical trials, how-
ever, promising work by Li et al. (2008)
demonstrated reduced memory deficits in the
Morris-water-maze task in a rat model when
NGF MSCs were transplanted to the hippocam-
pus (Li et al. 2008). Future studies will likely
include further in vivo transplantation trials with
NGF MSCs in both rodent and non-human pri-
mate models, and in human trials.

9.1.3 Huntington’s Disease
Compared to the other neurodegenerative
diseases discussed, Huntington’s disease is
unique in that clinical signs may be directly
correlated to reduced levels of neurotrophic factor
BDNF. Low BDNF levels in the striatum are due
to loss of function of the wild-type huntingtin
protein. This protein modulates BDNF transcrip-
tion and plays a role in BDNF transport and
secretion (Zuccato et al. 2001). The Dunbar labo-
ratory first demonstrated that murine MSCs
engineered to overexpress BDNF improved dis-
ease progression on a transgenic mouse model of
Huntington’s (Dey et al. 2010). Important
pre-clinical trials by Pollock et al. 2016 utilized
a double-blind study to examine the effects of
transplanted human BDNF MSCs on disease pro-
gression in a mouse Huntington’s disease model
(Pollock et al. 2016). Treatment with MSCs
decreased striatal atrophy and significantly
reduced anxiety. BDNF MSC treatment also
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increased the mean lifespan of mice. This study
demonstrated the efficacy of BDNF
hypersecreting MSCs as a medical therapy for
Huntington’s disease and set the groundwork for
future clinical trials.

9.2 Ischemic Brain Injury

Ischemic brain injury causes the death of various
important cell types such as neurons, glial, and
endothelial cells. Regain of function and brain
tissue repair necessitates cell replacement and
formation of a new network (van Velthoven
et al. 2009). When transplanted into ischemic
regions of the rat brain, MSCs reduced functional
deficits after 14 days, scar thickness was
decreased, and the number of proliferating cells
in the subventricular zone was increased (Chen
et al. 2001; Li et al. 2001; Lu et al. 2001).
Improvement by MSC treatment has been
attributed to decreased apoptosis, MSC differen-
tiation into neuronal cells, and promotion of
neurogenesis, angiogenesis, and synaptogenesis
(Chen et al. 2003; Iihoshi et al. 2004; Mimura
et al. 2004; Mimura et al. 2005; Li et al. 2006).
Several groups have used genetically modified
stem cells that overexpress growth factors
known to enhance neuronal survival including
BDNF and GDNF. When BDNF overexpressing
MSCs were delivered to an ischemic brain model
via injection, infarct volume was reduced and
functional outcome was improved (Kurozumi
et al. 2004; Nomura et al. 2005; Horita et al.
2006). Furthermore, BDNF expressing MSCs
can significantly improve behavioral test results
and reduce ischemic damage as indicated via
magnetic resonance imaging (MRI) analysis
after 7 and 14 days (Kurozumi et al. 2005;
Nomura et al. 2005).

9.3 Retinal Degenerative Disease –
Glaucoma

Glaucoma is a leading cause of progressive blind-
ness and is estimated to effect over 2 million
Americans (Friedman et al. 2004). Glaucoma is

an optic neuropathy resulting in progressive loss
of visual function due to loss of retinal ganglion
cells (RGC) whose axons project through the
optic nerve and terminate in visual centers. To
prevent this loss of retinal cells, several research
groups have investigated the neuroprotective
effects of MSCs which have been genetically
modified (Hou et al. 2010; Harper et al. 2011;
Park et al. 2012; Machalińska et al. 2013) or
chemically stimulated (Levkovitch-Verbin et al.
2010) to augment secretion of neurotrophic
factors as a strategy for retinal neuroprotection.
In these studies, modified MSCs were success-
fully transplanted whether intravitreally or
subretinally, though subretinal transplant appears
to yield greater neurotrophic factor mRNA and
protein levels in the rat retina (Park et al. 2012).

Harper et al found that intravitreal transplant of
BDNF-expressing MSCs preserved RGCs to a
greater degree than unmodified MSCs and
allowed for greater protection of retina and optic
nerve function in a rat glaucoma model (Harper
et al. 2011). Rat and human MSCs chemically
stimulated to secrete BDNF and GDNF were
also neuroprotective after intravitreal transplant
in rats with optic nerve transection (Levkovitch-
Verbin et al. 2010). Hou et al. used MSCs geneti-
cally modified to secrete an anti-angiogenic factor
called pigment epithelial-derived factor (PEDF)
as a strategy to inhibit choroidal neovascu-
larization (CNV) – the underlying cause of wet
AMD. The results indicate a recruitment of MSCs
to sites of CNV, a reduction in the CNV prolifer-
ation and an increase in retinal pigment epithelial
cells that protect photoreceptor cells (Hou et al.
2010). These studies provide a promising basis to
the use of modified MSCs as a therapy for retinal
degenerative diseases such as glaucoma and
AMD via neuroprotection of cells vulnerable to
these diseases.

9.4 Spinal Cord Injuries

In addition to various therapies within the brain
and retina, modified MSCs have been used with
variable success in the spinal cord. In a 2005
study by Lu, Jones, and Tuszynski, BDNF
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MSCs were injected into a crushed rat spinal cord
injury and the extent and diversity of axonal
growth was increased (Lu et al. 2005). Addition-
ally, SCs preferentially migrated to the BDNF
secreting grafts. Unfortunately, functional recov-
ery was not achieved for any of the studied rats.
Another study was performed by Sasaki et al.
2009, in which BDNF secreting human MSCs
were implanted at a T9 spinal cord lesion (Sasaki
et al. 2009). After 5 weeks, locomotor improve-
ment was observed for the BDNF group and there
was increased axonal sprouting. Specifically, an
increased number of serotonergic fibers were
observed in the ventral horn grey matter, an area
important for motor controlled movement. Unlike
the 2005 Lu study, Sasaki’s group demonstrated
that BDNF MSCs are associated with improved
functional outcome following a spinal cord
injury. Due to the conflicting data reports, addi-
tional studies are necessary before the full
benefits of BDNF delivery via engineered MSCs
can be determined for the treatment of spinal cord
damage.

9.5 Peripheral Nerve Injury

Of all the disease models discussed so far, periph-
eral nerve injuries have the fewest published stud-
ies involving transplantation of genetically
modified MSCs. This may be because researchers
are now utilizing a multi-disciplinary approach
and studies often involve the use of engineered
conduits, cell transplants, and now even gene
therapy. One of the first studies to use a MSC
gene delivery system transplanted MSC
spheroids transfected with the BDNF gene
(Tseng and Hsu 2014). Spheroids were combined
with a polymeric nerve conduit to bridge a 10 mm
rat sciatic nerve transection gap. MRI was used to
track the transplanted cells. Animals receiving the
BDNFMSC spheroids had the shortest gap bridg-
ing time, the largest regenerated nerve, and the
thickest myelin sheath at 31 days. Furthermore,
BDNF MSC spheroids significantly promoted
functional recovery. A more recent study (Gao
et al. 2016) combined multi-channel agarose
scaffolds with BDNF MSCs to bridge a 15 mm

sciatic nerve transection gap. Additionally, the
distal sciatic nerve segment was injected with a
BDNF lentiviral vector. Twelve weeks after
injury, BDNF secreting cells significantly
increased axonal regeneration and injection of
the lentiviral vector at the distal segment
enhanced axonal regeneration beyond the lesion.
A recent study investigated the efficacy of BDNF
ex vivo gene transfer to umbilical cord blood-
derived MSCs in a rat sciatic nerve crush injury
model (Hei et al. 2017). Four weeks post-surgery,
the BDNF expressing MSCs exhibited more
peripheral nerve regeneration than the controls.
Additionally, sciatic function index, axon counts,
and axon density were significantly increased for
both the BDNF MSC and regular MSC groups.
The results from these studies are promising and
indicate that BDNF hypersecreting MSCs in par-
ticular can improve sciatic nerve regeneration.
Unlike other areas of research, no pre-clinical
characterization studies looking at safety and
appropriate dosage ranges have been published.
This would be a necessary step before testing
BDNF MSCs outside of a rat model.

10 Conclusions and Future
Directions

Peripheral nerve injury limits mobility and sensa-
tion in up to 2.8% of all trauma patients and often
results in unsatisfactory return to function (Noble
et al. 1998). Although the gold standard of micro-
surgery with autograft has seen advances in the
last decade, there are significant drawbacks
associated with the procedure. For this reason,
scientists have proposed the use of an alternative
transplant type, in the form of autologous stem
cells. Specifically, research is directed at the con-
version of mesenchymal stem cells towards a
SC-like fate to aid in Wallerian degeneration,
neuronal regeneration, and possibly even
remyelination. Additionally, MSCs have their
own unique benefits such as immunomodulatory
properties, secretion of neurotrophic factors, pos-
sible mitochondrial transfer, and the ability to be
easily genetically modified. In order to resemble a
SC, MSCs must undergo transdifferentiation
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which can be achieved through a variety of
methods including incorporating specific factors
into the growth media, co-culture method, in vivo
transdifferentiation, and others. Although these
older techniques have their benefits, methods of
transdifferentiation have changed drastically
within the last 10 years and now include master
gene modification as wells as the use of specific
cell signaling molecules combined with histone
deacetylase inhibitors.

As demonstrated by the more recent body of
literature, scientists are beginning to investigate
other somatic cell types in addition to bone mar-
row MSCs including but not limited to
fibroblasts, adipocytes, and even hair follicle
stem cells (Amoh et al. 2005; Kingham et al.
2007; Thoma et al. 2014). These studies rely
largely on immunocytochemical staining,
co-culture neurite outgrowth, and gene expres-
sion patterns to support transdifferentiation of
cells into SCs. Unfortunately, none of these stud-
ies have measured growth factor secretion levels
from transdifferentiated cells, and only Thoma’s
study looked at the ability of these cells to create
myelin. In order to truly assess whether these
transdifferentiated cells are SCs, future work
should test growth factor secretion, perform
patch-clamp recordings, transplant cells into rat
sciatic nerve models, and examine myelin forma-
tion via electron microscopy.

In addition to testing new cell types,
researchers are trying new methods of transdiffer-
entiation and emphasizing the use of genetic con-
trol and epigenetic cues. Future research may
focus on SC de-differentiation or multi-step
transdifferentiation in which a less-differentiated
intermediate is first created, and then the fully
transdifferentiated cell type is achieved, such as
in Thoma et al.’s work with fibroblasts. While
these cell fate reprogramming methods are
promising, they can often be time consuming,
difficult to consistently reproduce, and cost pro-
hibitive. Additionally, rigorous studies have yet
to be performed which examine the tumorigenic
capacity of these cells and their long term genetic
stability. While the field of transdifferentiation
still has many challenges to overcome, it is a
promising focus in the study of regenerative

medicine and offers new insight into cell fate
plasticity.

Specifically, in regards to the peripheral ner-
vous system, researchers have shown that a vari-
ety of regenerative cell types may act like SCs by
secreting trophic factors, supporting
re-myelination, and decreasing time to functional
return of severed nerves. When transdiffer-
entiated cells are combined with multiple neuro-
regenerative strategies such as ex vivo gene deliv-
ery, and biomaterial conduits, they may become
powerful alternatives to traditional peripheral
nerve regeneration therapies.
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