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Abstract

Mesenchymal stem cells (MSCs) were, due to
their immunomodulatory and pro-angiogenic
characteristics, extensively explored as new
therapeutic agents in cell-based therapy of
uveitis, glaucoma, retinal and ocular surface
diseases.

Since it was recently revealed that
exosomes play an important role in biological
functions of MSCs, herewith we summarized
current knowledge about the morphology,
structure, phenotype and functional
characteristics of MSC-derived exosomes
emphasizing their therapeutic potential in the
treatment of eye diseases.

MSC-derived exosomes were as efficient as
transplanted MSCs in limiting the extent of
eye injury and inflammation. Immediately

after intravitreal injection, MSC-derived
exosomes, due to nano-dimension, diffused
rapidly throughout the retina and significantly
attenuated retinal damage and inflammation.
MSC-derived exosomes successfully deliv-
ered trophic and immunomodulatory factors
to the inner retina and efficiently promoted
survival and neuritogenesis of injured retinal
ganglion cells. MSC-derived exosomes effi-
ciently suppressed migration of inflammatory
cells, attenuated detrimental Th1 and Th17
cell-driven immune response and ameliorated
experimental autoimmune uveitis.
MSC-derived exosomes were able to fuse
with the lysosomes within corneal cells,
enabling delivering of MSC-derived active
β-glucuronidase and consequent catabolism
of accumulated glycosaminoglycans,
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indicating their therapeutic potential in the
treatment of Mucopolysaccharidosis VII (Sly
Syndrome). Importantly, beneficent effects
were noticed only in animals that received
MSC-derived exosomes and were not seen
after therapy with fibroblasts-derived
exosomes confirming specific therapeutic
potential of MSCs and their products in the
treatment of eye diseases.

In conclusion, MSC-derived exosomes rep-
resent potentially new therapeutic agents in the
therapy of degenerative and inflammatory ocu-
lar diseases.
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1 Introduction

Due to their capacity to produce trophic and
immunosuppressive factors, mesenchymal stem
cells [MSCs] were extensively explored as new
therapeutic agents in cell-based therapy of uveitis,
glaucoma, retinal and ocular surface diseases (Joe
and Gregory-Evans 2010). Although obtained
results were promising, safety issues regarding
MSCs-based transplantation are still a matter of
debate, especially in the long-term follow up. The
primary concern is unwanted differentiation of
the transplanted MSCs induced by cellular and
cytokine milieu of local microenvironment in
which MSCs were engrafted (Volarevic et al.
2018). It was recently reported that three women
suffering from macular degeneration developed
complications including vision loss, detached
retinas, and bleeding resulting in total blindness
in stem cell-treated eyes as a consequence of
unwanted differentiation of transplanted stem
cells (Kuriyan et al. 2017).

As far as we know to date, beneficial effects of
MSCs in cell-based therapy of degenerative and
autoimmune disease are largely due to the activity
of MSC-derived trophic and immunosuppressive
soluble factors (Volarevic et al. 2017). Plenty of
evidence indicate that MSCs conditioned medium
(MSC-CM) attenuate progression of immune

mediated diseases and promote regeneration of
ischemic tissues in almost completely the same
way as transplanted MSCs indicating that para-
crine mechanisms are mainly responsible for
MSC-based therapeutic effects and that therapeu-
tic use of MSC-derived products may overcome
safety concerns regarding unwanted differentia-
tion of transplanted MSCs (Volarevic et al. 2017,
2018).

Since it was recently revealed that exosomes
play an important role in biological functions of
MSCs and MSC-CM (Yu et al. 2014; Rani et al.
2015; Lai et al. 2015), herewith we summarized
current knowledge about the morphology, struc-
ture, phenotype and functional characteristics of
MSC-derived exosomes emphasizing their thera-
peutic potential in the treatment of eye diseases.
An extensive literature review was carried out in
April 2018 across several databases (MEDLINE,
EMBASE, Google Scholar), from 1990 to pres-
ent. Keywords used in the selection were: “mes-
enchymal stem cells”, “exosomes”, “eye”,
“degenerative diseases”, “inflammatory
diseases”, “regeneration”, “immunosuppression”.
Studies that emphasized molecular and cellular
mechanisms responsible for beneficent effects of
MSC-derived exosomes in the therapy of eye
diseases were analyzed in this review.

2 MSC Derived Exosomes:
Morphology and Structure

MSC-derived exosomes are nano-sized extracellu-
lar vesicles that originate via the inward budding of
the late endosome membranes called multivesicular
bodies (MVBs). Upon the fusion of MVBs with the
plasma membrane, MSC-derived exosomes are
released into the extracellular milieu and can be
either taken up by target cells residing in the micro-
environment of engrafted MSCs or may be carried
to distant sites via biological fluids where, in endo-
crine manner, modulate function of immune cells,
endothelial cells (ECs), pericytes and other tissue-
resident cells (Hyenne et al. 2015)

MSC derived exosomes have a narrow diameter
range of 40–100 nm and a density of
1.13–1.19 gml�1 in sucrose solution. Their
membranes are enriched in cholesterol
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sphingomyelin ceramide and lipid raft proteins
(de Gassart et al. 2003) which enable protection
of exosome’s cargo from degradative enzymes or
chemicals and facilitates uptake of exosome’s con-
tent into target cells through endocytosis or mem-
brane fusion regardless of biological barriers (Lai
et al. 2011). MSC-derived exosomes express evo-
lutionary conserved set of proteins including
tetraspanins (CD81 CD63 CD9-involved in MSC
proliferation and signaling) heat-shock proteins
(HSP60 HSP70 HSP90-involved in MSC respond
to stress) ALG-2-interacting protein X (Alix-
apoptosis regulating protein) tumor susceptibility
gene 101 (TSG101-having role in cell growth and
proliferation) and adhesion molecules (CD29
CD44,CD73- enabling migration of exosomes to
the inflamed and injured tissues) (Fig. 1). The

incorporation of all these proteins in exosomes is
thought to be controlled by lipid-dependent
mechanisms primarily by the activity of the
endosomal sorting complex required for transport
(ESCRT) (Colombo et al. 2014).

Exosome content may vary according to the
physiological and pathological conditions of the
tissue microenvironment in which engrafted MSC
is exposed. In this regard, the exosomal cargo can
reveal the state of the donor MSC and can also
influence in a paracrine and/or endocrine manner
the fate of the recipient cell (Schey et al. 2015;
Villarroya-Beltri et al. 2014). The reliability of
intercellular communication between MSC and
target cell is maintained and translated by specific
components within the MSC-derived exosomes.
These components are generally made of

Fig. 1 MSC-derived exosomes: morphology and
structure. MSC-derived exosomes are nano-sized extra-
cellular vesicles which are released from MSCs into the
extracellular milieu and taken up by target cells. Their
membranes are enriched in cholesterol, sphingomyelin,
ceramide and lipid raft proteins which enable protection
of exosome’s cargo from degradative enzymes or
chemicals and facilitates uptake of exosome’s content

into target cells through endocytosis or membrane fusion,
regardless of biological barriers. MSC-derived exosomes
express evolutionary conserved set of proteins, including
tetraspanins (CD81, CD63, CD9), heat-shock proteins
(HSP60, HSP70, HSP90), and adhesion molecules
(CD29, CD44,CD73) and carry nucleic acids, proteins
(cytokines, chemokines) and lipids having important role
in immunomodulation and tissue regeneration
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proteins, lipids, DNA fragments, mRNA and
small RNA species (Villarroya-Beltri et al.
2014; Vlassov et al. 2012). The cargo is not
randomly distributed into exosomes: strictly
regulated mechanisms determine the “informa-
tion” that will be distributed from MSC to the
recipient cell by exosome (Villarroya-Beltri
et al. 2014).

MSC derived exosomes carry nucleic acids
proteins (cytokines chemokines) and lipids. In
cargo of MSC-derived exosomes 4850 unique
gene products and 4150 miRNAs have been
detected and identified by mass spectrometry
antibody array and microarray analysis (Lai
et al. 2012; Chen et al. 2010). Furthermore,
proteasome subunits were observed in
MSC-derived exosomes (Carayon et al. 2011). It
has been revealed that the 20S proteasome is
responsible for degradation of intracellular oxida-
tive damaged proteins which may partly contrib-
ute to the cardioprotective activity of
MSC-derived exosomes (Lai et al. 2012).
Through the activation of phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K)/Akt pathway
MSC-derived exosomes increased levels of aden-
osine triphosphate (ATP) reduced oxidative stress
attenuated myocardial ischemic injury and pro-
moted myocardial viability and cardiac function
(Lai et al. 2010; Li et al. 2013), indicating their
potential therapeutic use in the treatment of
myocardial ischemia (Arslan et al. 2013)

The presence of nucleic acids inside the
exosomes had the crucial role in altering the fate
of recipient cells. Within the nucleic acids spec-
trum, miRNA sequences become the most inten-
sively investigated (Zaharie et al. 2015; Berindan-
Neagoe and Calin 2014). Several miRNAs,
detected in MSC-derived exosomes, including
miR-191, miR-222, miR-21, miR-222, and
miR-6087 were responsible for increased differ-
entiation of ECs enabling modulation of angio-
genesis (Merino-González et al. 2016). Similarly,
through the activity of miR-494, MSC-derived
exosomes accelerate muscle regeneration and
promote myogenesis and angiogenesis
(Nakamura et al. 2015).

MSC based modulation of vascular endothelial
growth factor (VEGF)-driven angiogenesis is
mediated by miR contained within MSC-derived

exosomes (Merino-González et al. 2016;
Nakamura et al. 2015). Lee and coworkers (Lee
et al. 2013) revealed that MSC-derived exosomes
enriched with miR-16 suppress tumor progres-
sion and angiogenesis via down-regulation of
the VEGF expression in tumor cells. Opposite
results were reported by Zhu and colleagues
(Zhu et al. 2012) who showed that in vivo appli-
cation of MSC-derived exosomes activated extra-
cellular signal-regulated kinase1/2 (ERK1/2)
pathway in tumor cells that resulted with the
enhanced expression of VEGF, increased
neo-angiogenesis and accelerated tumor growth.

Intravenous transplantation of MSC-derived
exosomes improves neurogenesis, neurite
remodeling and angiogenesis after ischemic
brain injury (Xin et al. 2013). Therapy based on
the delivery of MSC-derived exosomes promoted
axonal growth and significantly increased the
number of neuroblasts and ECs in ischemic and
injured regions of central nervous system (CNS)
(Xin et al. 2013). MSCs communicate with brain
parenchymal cells and regulate neurites
outgrowth by transferring miR-133b in neurons
and astrocytes via exosomes (Xin et al. 2012)
which could be a promising therapeutic strategy
in the treatment of spinal cord injury.

3 Modulation of Immune
Response and Inflammation
in the Eye by MSC-Derived
Exosomes

MSCs have capacity to synthesize and secrete a
broad spectrum of exosomes, significantly more
than other exosome producing cells of
mesodermal origin (Yeo et al. 2013).
MSC-derived exosomes are involved in impor-
tant physiological and pathological processes
such as disposal of unwanted proteins, genetic
exchange, modulation of immune response and
inflammation (Théry et al. 2009; Zöller 2009).

Immediately after engraftment, MSCs through
the release of exosomes interact with multiple cell
types to elicit appropriate cellular responses:
affect the support of stromal cells enabling main-
tenance of dynamic and homeostatic tissue micro-
environment (Lai et al. 2015) and modulate
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immune response by delivering immunosuppres-
sive factors to the effector immune cells (Lai et al.
2010; Li et al. 2013; van Koppen et al. 2012;
Zhang et al. 2014; Kordelas et al. 2014).

It was recently revealed that exosomes derived
from amniotic fluid derived MSCs (AF-MSCs)
contain immunosuppressive factors TGF-β and
HGF. TGF-β suppresses activation of Jak-Stat
signaling pathway in T cells, causing the G1 cell
cycle arrest (Volarevic et al. 2017; Bright et al.
1997) while HGF acts synergistically with TGF-β
enabling suppression of T cell proliferation and
attenuation of T cell-mediated inflammation
(Volarevic et al. 2017; Di Nicola et al. 2002). In
line with these findings, when
phytohemagglutinin-stimulated peripheral blood
mononuclear cells [PB-MNCs] were cultured in
the presence of TGF-β and HGF-containing AF-
MSCs-derived exosomes, proliferation of
PB-MNCs was notably reduced and their apopto-
sis was significantly enhanced (Balbi et al. 2017).
Similarly, maturation and proliferation of B cells
was reduced and their capacity for production of
antibodies was suppressed, indicating strong
immunosuppressive potential of AF-MSCs-
derived exosomes (Balbi et al. 2017). Interest-
ingly, among PB-MNCs, AF-MSC-derived
exosomes did not attenuate proliferation of
immunosuppressive CD4 + CD25 + FoxP3+ T
regulatory cells, confirming significance of AF-
MSC-derived exosomes as potentially new thera-
peutic agents in the therapy of inflammatory
diseases.

In line with these findings, we recently devel-
oped immunomodulatory ophthalmic solution
(“Derived Multiple Allogeneic Proteins Paracrine
Signaling “D-MAPPS”) the activity of which is
based on the activity of AF-MSC-derived
exosomes, cytokines and growth factors capable
to attenuate inflammation in the eye: IL-1 recep-
tor antagonist [IL-1Ra], indoleamine
2,3-dioxygenase (IDO) and growth related onco-
gene (GRO). Based on our preliminary results,
this product had beneficent effects in treatment of
corneal injuries and dry eye syndrome (DED).

Corneal injuries are usually complicated with
the influx of immune cells and consequently
developed inflammation (Dana et al. 2000).

During the early stage of corneal damage, injured
epithelial cells secrete the inflammatory cytokine
IL-1, which is stored in epithelial cells and
released when the cell membrane is damaged by
external insults (Yamada et al. 2003). IL-1Ra has
an important anti-inflammatory role in corneal
protection and regeneration. When IL-1Ra binds
to the IL-1 receptor (IL-1R), interaction between
inflammatory IL-1 and IL-1R is prevented.
Accordingly, various pro-inflammatory events,
initiated by IL-1:IL-1R interaction, including the
synthesis and release of chemokines, and
enhanced influx of neutrophils, macrophages,
and lymphocytes in injured corneas are inhibited
(Balbi et al. 2017). In line with these
observations, our preliminary findings suggest
that IL-1Ra containing AF-MSC-derived oph-
thalmic solution significantly attenuated inflam-
mation in patients suffering from corneal injury.

Similarly, as for progression of corneal injury,
inflammation has crucial role in the pathogenesis
of DED, multifactorial disease of the tears and
ocular surface that results in symptoms of dis-
comfort, visual disturbance, and tear film instabil-
ity (Gayton 2009). It is well known that Th17
cell-driven inflammation plays important role in
the pathogenesis of DED (Théry et al. 2009).
Inflammatory dendritic cells (DCs), in IL-1,
IL-6, and IL-23 dependent manner induce differ-
entiation of naïve T cells into Th17 cells which
reduce tear production and promote progression
of DED in IL-17 dependent manner (Gayton
2009; De Paiva et al. 2009). AF-MSCs, through
the production of immunomodulatory GRO,
attenuate maturation and antigen-presenting func-
tion of inflammatory DCs and suppress Th17
immune response. At the same time, AF-MSC-
derived GRO promote generation of regulatory
DCs capable to produce high levels of anti-
inflammatory IL-10 (Merino-González et al.
2016; Nakamura et al. 2015; Yi and Song 2012)
creating immunosuppressive microenvironment.
Similarly, MSC-derived IDO acts as a critical
molecular switch that simultaneously blocks
re-programming of Tregs into inflammatory,
IL-17 producing effector Th17 cells having
important role in Treg-based immunosuppression
of Th17 driven inflammation (Volarevic et al.
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2017). In line with these observations, our pre-
liminary results showed that AF-MSC-derived
ophthalmic solution, which contains a high con-
centration of immunosuppressive GRO and IDO,
significantly attenuated dryness, grittiness,
scratchiness, soreness, irritation, burning,
watering, and eye fatigue in patients suffering
from DED, indicating therapeutic potential of
AF-MSC-derived secretomes in the treatment
of DED.

4 MSC Derived Exosomes
in the Therapy of Retinal Injury

Damage of retinal cells caused by injury, infec-
tion or ischemia triggers degeneration in neigh-
boring neural cells, resulting with the spread of
morphological and functional retinal damage and
irreversible visual impairment (Yoles and
Schwartz 1998). Till now, there is no effective
neuroprotection therapy currently available for
retinal injury and, accordingly, transplantation of
stem cells and their products have been exten-
sively tested as new therapeutic approach for
retinal regeneration. By using animal model of
laser-induced retinal injury, Yu and coworkers
recently demonstrated therapeutic potential of
MSC-derived exosomes in attenuation of retinal
damage and inflammation (Fig. 2) (Yu et al.
2016). One hour after their intravitreal injection,
MSC-derived exosomes diffused rapidly through-
out the neural retina, retinal pigment epithelium
and gradually spread to the outer layers. Impor-
tantly, MSC-derived exosomes were as efficient
as transplanted MSCs in limiting the extent of
retinal damage. MSC-exosome-treated and
MSC-treated eyes showed equivalent attenuation
of laser-induced retinal injury with milder disor-
ganization of the tissue, more residual photore-
ceptor cells, smaller retinal disordered areas, and
reduced loss of nuclei in the outer nuclear layers
compared with the eyes that were treated with
vehicle only. Furthermore, application of
MSC-derived exosomes significantly reduced
infiltration of immune cells, particularly CD68+

macrophages and attenuate consequent apoptosis
of retinal cells when compared to vehicle-treated
group. MSC-derived exosomes managed to sig-
nificantly alleviate expression of inflammatory
mediators in the injured retinas involved in migra-
tion of monocytes in the eye: cytokine (TNF-α),
chemokine (monocyte chemoattractant protein-1,
MCP-1) and adhesion molecule (intercellular
Adhesion Molecule 1, ICAM-1). Application of
MCP-1 abolished effects of MSC-derived
exosomes suggesting that they reduce retinal
injury and inflammation mainly by targeting
MCP-1-dependent migration of monocytes
(Yu et al. 2016). In accordance to the attenuated
retinal injury and inflammation, the significant
improvement of dark- and light-adapted electro-
retinogram response in laser-injured mice treated
with MSC-derived exosomes was observed,
indicating functional recovery of retinal cells
(Yu et al. 2016).

In line with result obtained by Yu and
colleagues (Yu et al. 2016) are findings recently
reported by Mead and Tomarev (Mead and
Tomarev 2017) who demonstrated therapeutic
potential of bone marrow MSCs [BM-MSCs]-
derived exosomes in the regeneration of injured
retinal ganglion cells [RGCs]. RGCs are the sole
projection neurons and their axons make up the
optic nerve, making them susceptible to traumatic
(optic nerve crush; ONC) and degenerative (glau-
coma) diseases. Since RGC are CNS neurons,
they are neither replaceable nor capable of axon
regeneration and their loss or dysfunction results
with irreversible blindness. BM-MSC-derived
exosomes efficiently promoted survival and
neuritogenesis of RGCs in vitro and in vivo, in
ONC experimental model. In compared to
untreated animals where, 3 weeks after ONC,
more than 80% of RGCs are lost, cell death of
RGCs was reduced to 30% in rats treated with
BM-MSC-derived exosomes. Moreover, in
BM-MSC exosome-treated retinas, over 50% of
RGC function was maintained, suggesting that
exosomes managed not only to protect RGC
from death but also to preserve their function.
Importantly, this was significantly higher
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neuroprotection of RGCs than those observed
after transplantation of BM-MSCs. BM-MSCs
lack the capacity to integrate into the retina and
they remain in the vitreous after application. On
contrary, within 1 hour after intavitreal injection,
MSC-derived exosomes diffused rapidly and suc-
cessfully delivered their cargo to the inner retina,
including the RGCs where they elicited their
therapeutic effects through miRNA dependent
mechanisms (particularly through miR-17-92
and miR21 that regulate phosphatase and tensin

homolog (PTEN) expression which is an impor-
tant suppressor of RGC axonal growth and sur-
vival and through miR-146a that targets
expression of epidermal growth factor receptor
(EGFR) involved in inhibition of axon regenera-
tion. Importantly, beneficial effects of
MSC-derived exosomes in the treatment of retinal
injury and in protection of RGCs were noticed
only in animals that received MSC-derived
exosomes and were not seen after therapy with
fibroblasts-derived exosomes confirming specific

Fig. 2 Mechanisms responsible for therapeutic effects
of MSC-derived exosomes in the therapy of autoim-
mune uveitis and retinal injury. MSC-derived exosomes
deliver immunomodulatory enabling suppression of detri-
mental immune response in autoimmune uveitis. By

providing trophic support, MSC-derived exosome attenu-
ate apoptosis of retinal cells and promote survival of
retinal ganglion cells (RGCs) enabling regeneration of
injured retinal tissue
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therapeutic potential of MSCs and their products
in retinal regeneration (Yu et al. 2016; Mead and
Tomarev 2017).

5 Therapeutic Potential of MSC-
Derived Exosomes
in the Treatment
of Autoimmune Uveitis

Autoimmune uveitis represents one of leading
causes of visual disability. Since long-term use of
immunosuppressive drugs and corticosteroids is
limited due to the serious side effects and possible
development of glaucoma and cataract, new thera-
peutic approaches for attenuation of autoimmune
reaction in the eye are urgently needed. Most
recently, Bai and colleagues demonstrated that
MSC-derived exosomes efficiently attenuated
experimental autoimmune uveitis (EAU), well
established murine model of autoimmune uveitis
(Bai et al. 2017), indicating their potential therapeu-
tic use in the treatment of this disease (Fig. 2). Both
clinical and histological analysis revealed that
periocular injection of MSC-derived exosomes sig-
nificantly ameliorated EAU, protect retinal structure
and rescue retinal function in experimental rats.
This was followed with notably reduced number
of Gr-1+ granulocytes, CD161+ natural killer
(NK) cells, CD68+ macrophages and CD4+ T
cells in the inflamed retinas. Application of
MSC-derived exosomes inhibited influx of
leukocytes in the eye by suppressing effects of
CCL2 and CCL21 chemokines which are involved
in chemotaxis of inflammatory cells in the injured
eyes. Interestingly, MSC-exosomes did not affect
proliferation of activated T cells but managed to
remarkably down-regulate presence of inflamma-
tory, IFN-γ producing Th1 and IL-17 producing
Th17 cells in the retinas, without affecting total
number of immunosuppressive
CD4 + CD25 + FoxP3+ T regulatory cells. Similar
to these results are findings obtained by Shigemoto-
Kuroda and colleagues (Shigemoto-Kuroda et al.
2017) who demonstrated that intravenous injection
of MSC-derived exosomes, given immediately after
immunization, prevented development of EAU in

the same way as intravenously transplanted MSCs.
Little structural damage of retinas with few inflam-
matory infiltrates were noticed in the eyes of EAU
mice that received MSCs or MSC-derived
exosomes while EAU mice that received vehicle
showed severe disruption of the retinal photorecep-
tor layer accompanied with massive infiltration of
inflammatory cells. Total number of retinal-
infiltrating CD3+ T lymphocytes was significantly
reduced both in MSCs and exosome-treated EAU
mice when compare to vehicle-treated animals with
EAU. In similar manner as it was observed by Bai
and colleagues (Bai et al. 2017), MSC-derived
exosome efficiently attenuated Th1 and Th17
immune response in the eye, without affecting
total cell number, phenotype and function of
immunosuppressive T regulatory cells
(Shigemoto-Kuroda et al. 2017). The transcript
levels of Th1 and Th17 related inflammatory
cytokines (IFN-γ, IL-17A, IL-2, IL-1β, IL-6, and
IL-12) and total number of eye-infiltrated Th1 and
Th17 cells were significantly lower in the eyes of
MSCs- and exosome-treated mice when compared
with the vehicle-treated controls, while there was no
significant difference in total number of T regu-
latory cells and immunosuppressive IL-10
(Shigemoto-Kuroda et al. 2017). Mixed lymphocyte
reaction and flow cytometry analysis of DCs
revealed that MSC-derived exosomes attenuated
Th1 and Th17 immune response directly, by
attenuating proliferation, effector function and cyto-
kine production of CD4+ T lymphocytes and indi-
rectly, by suppressing expression of costimulatory
molecules (CD40, CD80 and CD86) and major
histocompatibility complex (MHC) class II
molecules on DCs, inhibiting their capacity for
antigen presentation (Shigemoto-Kuroda et al.
2017). Results obtained by Bai and colleagues
(Bai et al. 2017) and Shigemoto-Kuroda and
coworkers strongly suggest that MSC-derived
exosomes efficiently suppress migration of inflam-
matory cells in inflamed retinas, attenuate detrimen-
tal Th1 and Th17 cell-driven immune response and,
accordingly, should be further explored as novel
therapeutic agents for the treatment of human auto-
immune uveitis, for which local non-corticosteroid
therapy is urgently needed.
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6 Effects of MSC-Derived
Exosomes in the Treatment
of Sly Syndrome

Mucopolysaccharidosis (MPS) is a group of seven
related disorders caused by a mutation in one of the
lysosomal exoglycosidases required for the sequen-
tial degradation of glycosaminoglycans (GAGs),
resulting with lysosomal storage in several organs,
including eyes. MPS VII, also known as Sly syn-
drome, manifested by corneal clouding, hepatomeg-
aly, skeletal dysplasia, short stature, and delayed
development is caused by a mutation of
β-glucuronidase which leads to the accumulation
of heparin sulfate, dermatan sulfate and chondroi-
tin-4- and -6-sulfate. Current treatment for MPS VII
is transplantation of bone marrow-derived stem
cells or enzyme substitution therapy, but neither of
these two therapeutic approaches are effective for
ameliorating the corneal clouding due to corneal
avascularity. Therefore, corneal clouding is ulti-
mately treated by corneal transplantation (kerato-
plasty) which requires general anesthetic which is
usually not possible in MPS VII patients suffering
from respiratory dysfunction and/or severe cardio-
myopathy. Accordingly, new therapeutic
approaches are urgently needed for these patients.
Most recently, Coulson-Thomas and colleagues
proposed MSC-derived exosomes as potentially
new agents for the treatment of MPS VII patients
(Coulson-Thomas et al. 2013). Results obtained in
this study suggest that β-glucuronidase-containing
exosomes released from umbilical cord derived
MSCs (UC-MSCs) are able to successfully enter
into host corneal keratocytes and ECs of MPS VII
mice (Coulson-Thomas et al. 2013). Furthermore,
UC-MSC-derived exosomes managed to fuse with
the lysosomes within recipient cells, enabling deliv-
ering of MSC-derived active β-glucuronidase and
consequent catabolism of accumulated GAGs in
MPS VII mice. These findings strongly support
the hypothesis that UC-MSCs-derived exosomes
have great potential for being successful in treating
MPS VII and other human corneal congenital met-
abolic diseases.

7 Conclusion

Although transplantation of MSCs has enormous
perspective in regenerative medicine,
accumulating evidence indicates that treatment
using MSC-derived exosomes have multiple
advantages over MSC-based therapy. The risks
of allogeneic immunological rejection, unwanted
differentiation, and obstruction of small vessels
by intravenously injected MSCs might be
avoided by therapeutic application of
MSC-derived exosomes that have similar effects
and migration potential as MSCs. Additionally,
exosomes, due to their nano-dimension, can eas-
ily pass through biological barriers and enter all
target organs (Yu et al. 2016).

Nevertheless, there are still some challenges
that need to be addressed in order to develop
MSC-derived exosomes as an effective therapeu-
tic agent in the treatment of eye diseases. Further
studies are needed to optimize the injection fre-
quency and dose to maintain the long-lasting
effects of MSC-derived exosomes. Moreover,
having in mind that exosomes are highly hetero-
geneous depending on the tissue origin of MSCs
from which they were derived, pre-selection of
the most effective tissue source of MSCs-derived
exosomes is of crucial importance for their further
successful use in ophthalmology. Finally, precise
exosome-containing factors responsible for thera-
peutic effects of MSC-derived exosomes should
be defined for each eye disease. In this way,
defined therapeutic factor could be overexpressed
in MSCs-derived exosomes prior to application in
patients maximizing their therapeutic potential
and efficacy.
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